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Chapter 24 
 

 

1. THINK Ampere is the SI unit for current. An ampere is one coulomb per second. 

 

EXPRESS To calculate the total charge through the circuit, we note that 1 A 1C/s  and 

1 h 3600 s.    

  

ANALYZE (a) Thus, 

84 84 3600 30 105 A h
C h

s

s

h
 C 

F
HG

I
KJ
F
HG
I
KJ  . .  

 

(b) The change in potential energy is U = q V = (3.0  10
5
 C)(12 V) = 3.6  10

6
 J. 

 

LEARN Potential difference is the change of potential energy per unit charge. Unlike 

electric field, potential difference is a scalar quantity. 

 

2. The magnitude is U = eV = 1.2  10
9
 eV = 1.2 GeV. 

 

3. (a) The change in energy of the transferred charge is 

 

U = q V = (30 C)(1.0 10
9
 V) = 3.0  10

10
 J. 

 

(b) If all this energy is used to accelerate a 1000-kg car from rest, then 21
2

,U K mv    

and we find the car’s final speed to be 

 

 
10

32 2 2(3.0 10 J)
7.7 10 m/s.

1000 kg

K U
v

m m

 
      

 

4. (a)     15 19 4 43.9 10 N 1.60 10 C 2.4 10 N C 2.4 10 V/m.E F e           

 

(b) V E s    2 4 10 012 2 9 104 3. . . .N C m Vc hb g  

 

5. THINK The electric field produced by an infinite sheet of charge is normal to the 

sheet and is uniform. 

 

EXPRESS The magnitude of the electric field produced by the infinite sheet of charge is 

E = /20, where  is the surface charge density. Place the origin of a coordinate system 

at the sheet and take the x axis to be parallel to the field and positive in the direction of 

the field. Then the electric potential is 
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V V E dx V Exs

x

s   z0 ,  

 

where Vs is the potential at the sheet. The equipotential surfaces are surfaces of constant x; 

that is, they are planes that are parallel to the plane of charge. If two surfaces are 

separated by x then their potentials differ in magnitude by  

 

V = Ex = (/20)x. 

 

ANALYZE Thus, for 6 20.10 10 C m   and 50 V,V   we have 

  




x
V

 
 


 





2 2 885 10 50

010 10
88 100

12 2

6

3



.

.
. .

C N m V

C m
m

2

2

c hb g
 

 

LEARN Equipotential surfaces are always perpendicular to the electric field lines. Figure 

24-5(a) depicts the electric field lines and equipotential surfaces for a uniform electric 

field.  

 

6. (a) VB – VA = U/q = –W/(–e) = – (3.94  10
–19

 J)/(–1.60  10
–19

 C) = 2.46 V. 

 

(b) VC – VA = VB – VA = 2.46 V. 

 

(c) VC – VB = 0 (since C and B are on the same equipotential line). 

 

7. We connect A to the origin with a line along the y axis, along which there is no change 

of potential (Eq. 24-18: 
 
E ds z 0). Then, we connect the origin to B with a line along 

the x axis, along which the change in potential is 

 

V E ds x dx
x

      
F
HG
I
KJzz   

4 00 4 00
4

2

2

0

4

0

4

. .  

 

which yields VB – VA = –32.0 V. 

 

8. (a) By Eq. 24-18, the change in potential is the negative of the “area” under the curve. 

Thus, using the area-of-a-triangle formula, we have 

 

V E ds
x

    
z10

1

2
2 20

0

2   b gb g  
which yields V = 30 V. 

 

(b) For any region within 0 3m,x E ds     is positive, but for any region for which  

x > 3 m it is negative. Therefore, V = Vmax occurs at x = 3 m. 
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V E ds
x

    
z10

1

2
3 20

0

3   b gb g  
which yields Vmax = 40 V. 

 

(c) In view of our result in part (b), we see that now (to find V = 0) we are looking for 

some X > 3 m such that the “area” from x = 3 m to x = X is 40 V. Using the formula for a 

triangle (3 < x < 4) and a rectangle (4 < x < X), we require 

 

1

2
1 20 4 20 40b gb g b gb g  X .  

Therefore, X = 5.5 m. 

 

9. (a) The work done by the electric field is  

 
19 12 2

0 0
0 12 2 20

0 0

21

(1.60 10 C)(5.80 10 C/m )(0.0356 m)

2 2 2(8.85 10 C /N m )

1.87 10 J.

f d

i

q q d
W q E ds dz

 

 

 





 
    

 

 

   

 

(b) Since  

V – V0 = –W/q0 = –z/20, 

 

with V0 set to be zero on the sheet, the electric potential at P is 

  

    
12 2

2

12 2 2

0

(5.80 10 C/m )(0.0356 m)
1.17 10  V.

2 2(8.85 10 C /N m )

z
V











   

 
 

 

10. In the “inside” region between the plates, the individual fields (given by Eq. 24-13) 

are in the same direction (i ): 

 
9 2 9 2

3

in 12 2 2 12 2 2

50 10 C/m 25 10 C/m ˆ ˆi (4.2 10 N/C)i
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
 

 

  
      

    
. 

 

In the “outside” region where x > 0.5 m, the individual fields point in opposite directions: 

 
9 2 9 2

3

out 12 2 2 12 2 2

50 10 C/m 25 10 C/mˆ ˆ ˆi i (1.4 10 N/C)i .
2(8.85 10 C /N m ) 2(8.85 10 C /N m )

E
 

 

 
     

   
 

 

Therefore, by Eq. 24-18, we have 

 

     
0.8 0.5 0.8

3 3

in out
0 0 0.5

3

4.2 10 0.5 1.4 10 0.3

2.5 10 V.

V E ds E dx E dx           

 

    
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11. (a) The potential as a function of r is  

 

     
2

3 30 0
0 0

9 2 2 15 2
4

3

0 0
4 8

(8.99 10 N m C )(3.50 10 C)(0.0145 m)
2.68 10  V.

2(0.0231 m)

r r qr qr
V r V E r dr dr

R R 




    

  
   

 
 

 

(b) Since V = V(0) – V(R) = q/80R, we have  

 

 
9 2 2 15

4

0

(8.99 10 N m C )(3.50 10 C)
6.81 10  V.

8 2(0.0231 m)

q
V R

R


  

     

 

12. The charge is 

9

0 9 2 2
m /C

(10m)( 1.0V)
4 1.1 10 C.

8.99 10 N
q RV 




   


 

 

13. (a) The charge on the sphere is 

 

9

0 9 2 2

(200 V)(0.15 m)
4 3.3 10  C.

8.99 10 N m C
q VR    

 
 

 

(b) The (uniform) surface charge density (charge divided by the area of the sphere) is 

 

 

9
8 2

22

3.3 10  C
1.2 10  C/m .

4 4 0.15 m

q

R


 




     

 

14. (a) The potential difference is 

 

  6 9 2 2

0 0

3

1 1
1.0 10  C 8.99 10 N m C

4 4 2.0 m 1.0 m

4.5 10  V.

A B

A B

q q
V V

r r 

  
        

 

  

 

 

(b) Since V(r) depends only on the magnitude of 

r , the result is unchanged. 

 

15. THINK The electric potential for a spherically symmetric charge distribution falls off 

as 1/ ,r  where r is the radial distance from the center of the charge distribution. 

 

EXPRESS The electric potential V at the surface of a drop of charge q and radius R is 

given by V = q/40R.  
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ANALYZE (a) With V = 500 V and 1230 10  C,q    we find the radius to be 

 

  9 2 2 12

4

0

8.99 10  N m / C 30 10  C
5.4 10  m.

4 500 V

q
R

V




  

     

 

(b) After the two drops combine to form one big drop, the total volume is twice the 

volume of an original drop, so the radius R' of the combined drop is given by (R')
3
 = 2R

3
 

and R' = 2
1/3

R. The charge is twice the charge of the original drop: q' = 2q. Thus, 

 

 



   V

q

R

q

R
V

1

4

1

4

2

2
2 2 500 790

0 0

1 3

2 3 2 3

   /

/ / (  V)  V.  

 

LEARN A positively charged configuration produces a positive electric potential, and a 

negatively charged configuration produces a negative electric potential. Adding more 

charge increases the electric potential. 

 

16. In applying Eq. 24-27, we are assuming V  0 as r  .  All corner particles are 

equidistant from the center, and since their total charge is  

 

2q1– 3q1+ 2 q1– q1 = 0, 

 

then their contribution to Eq. 24-27 vanishes.  The net potential is due, then, to the two 

+4q2 particles, each of which is a distance of a/2 from the center: 

 

 

9 2 2 12

2 2 2

0 0 0

4 4 161 1 16(8.99 10 N m C )(6.00 10 C)

4 / 2 4 / 2 4 0.39 m

2.21 V.

q q q
V

a a a  

  
   



 

 

17. A charge –5q is a distance 2d from P, a charge –5q is a distance d from P, and two 

charges +5q are each a distance d from P, so the electric potential at P is  

 
9 2 2 15

2

0 0

4

1 1 1 1 (8.99 10 N m C )(5.00 10 C)

4 2 8 2(4.00 10  m)

5.62 10 V.

q q
V

d d d d d 







   
         

 

 

 

The zero of the electric potential was taken to be at infinity. 

 

18. When the charge q2 is infinitely far away, the potential at the origin is due only to the 

charge q1 : 

V1 = 1

04

q

d
 =  5.76 × 10

7 
V. 
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Thus, q1/d = 6.41 × 10
17 

C/m.  Next, we note that when q2 is located at x = 0.080 m, the 

net potential vanishes (V1 + V2 = 0).  Therefore,  

 

 2 10
0.08 m

kq kq

d
   

 

Thus, we find q2 = 1( / )(0.08 m)q d = –5.13 × 10
18 

C =  –32 e. 

 

19. First, we observe that V (x) cannot be equal to zero for x > d. In fact V (x) is always 

negative for x > d. Now we consider the two remaining regions on the x axis: x < 0 and  

0 < x < d.  

 

(a) For 0 < x < d we have d1 = x and d2 = d – x. Let 

 

V x k
q

d

q

d

q

x d x
( )  
F
HG

I
KJ  





F
HG

I
KJ   1

1

2

2 04

1 3
0


 

 

and solve: x = d/4. With d = 24.0 cm, we have x = 6.00 cm. 

 

(b) Similarly, for x < 0 the separation between q1 and a point on the x axis whose 

coordinate is x is given by d1 = –x; while the corresponding separation for q2 is d2 = d – x. 

We set 

V x k
q

d

q

d

q

x d x
( )  
F
HG

I
KJ  






F
HG

I
KJ   1

1

2

2 04

1 3
0


 

 

to obtain x = –d/2. With d = 24.0 cm, we have x = –12.0 cm. 

 

20. Since according to the problem statement there is a point in between the two charges 

on the x axis where the net electric field is zero, the fields at that point due to q1 and q2 

must be directed opposite to each other. This means that q1 and q2 must have the same 

sign (i.e., either both are positive or both negative). Thus, the potentials due to either of 

them must be of the same sign. Therefore, the net electric potential cannot possibly be 

zero anywhere except at infinity. 

 

21. We use Eq. 24-20: 

 

   

 

9 2 2 30

5

22 9
0

8.99 10 N m C 1.47 3.34 10 C m1
1.63 10 V.

4 52.0 10 m

p
V

r







    
   


 

 

22. From Eq. 24-30 and Eq. 24-14, we have (for i = 0º)  
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  2 2 2

0 0 0

coscos cos
cos 1

4 4 4

i
a

pp ep
W q V e

r r r

 


  

 
      

 
 

 

with r = 20 × 10
9 

m.  For  = 180º the graph indicates Wa = 4.0 × 10
30 

J, from which 

we can determine p.  The magnitude of the dipole moment is therefore 5.6  10
37 

C m . 

 

23. (a) From Eq. 24-35, we find the potential to be 

 

2 2

0

2 2

9 2 2 12

2 

/ 2 ( / 4)
2 ln

4

(0.06 m / 2) (0.06 m) / 4 (0.08 m)
2(8.99 10 N m C )(3.68 10 C/m) ln

0.08 m

2.43 10 V.

L L d
V

d





  
  

  

  
     

  

 

 

 

(b) The potential at P is V = 0 due to superposition. 

 

24. The potential is  

 
9 2 2 12

2 rod  rod
0 0 0

1 1 (8.99 10 N m C )(25.6 10 C)

4 4 4 3.71 10  m

6.20 V.

P

dq Q
V dq

R R R  





   
   

  



   

 

We note that the result is exactly what one would expect for a point-charge –Q at a 

distance R. This “coincidence” is due, in part, to the fact that V is a scalar quantity. 

 

25. (a) All the charge is the same distance R from C, so the electric potential at C is 

 
9 2 2 12

1 1 1

2

0 0

6 51 5(8.99 10 N m C )(4.20 10 C)
2.30 V,

4 4 8.20 10  m

Q Q Q
V

R R R 





   
     

   
 

 

where the zero was taken to be at infinity. 

 

(b) All the charge is the same distance from P. That distance is 2 2 ,R D  so the electric 

potential at P is  

2

1 1 1

2 2 2 2 2
0

0

9 2 2 12

2 2 2 2

6 51

4 4

5(8.99 10 N m C )(4.20 10 C)

(8.20 10  m) (6.71 10  m)

1.78 V.

Q Q Q
V

R D R D R D 



 

 
    

   

  
 

  

 
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26. The derivation is shown in the book (Eq. 24-33 through Eq. 24-35) except for the 

change in the lower limit of integration (which is now x = D instead of x = 0).  The result 

is therefore (cf. Eq. 24-35)  

              

V =  


4o
 ln






L + L

2
 + d

2

 D + D
2
 + d

2   = 
6

0

2.0 10 4 17
ln

4 1 2

   
   

 = 2.18  10
4
 V. 

 

27. Letting d denote 0.010 m, we have 

 

 

9 2 2 9

1 1 1 1

0 0 0 0

4

3 3 (8.99 10 N m C )(30 10 C)

4 2(0.01 m)

1.3 10  V.

Q Q Q Q
V

d d d d   

  
    

   

 

 

 

28. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq =  dx, where  = Q/L is the linear charge density of the 

rod. Its distance from P1 is d + x and the potential it creates at P1 is 

 

0 0

1 1
.

4 4

dq dx
dV

d x d x



 
 

 
 

 

To find the total potential at P1, we integrate over the length of the rod and obtain: 

 

0
00 0 0

9 2 2 15

3

ln( ) ln 1
4 4 4

(8.99 10 N m C )(56.1 10 C) 0.12 m
ln 1

0.12 m 0.025 m

7.39 10  V.

LL dx Q L
V d x

d x L d

 

  





 
     

     

    
  

 

 



 

 

29. Since the charge distribution on the arc is equidistant from the point where V is 

evaluated, its contribution is identical to that of a point charge at that distance. We 

assume V  0 as r   and apply Eq. 24-27: 

 

1 1 1 1

0 0

9 2 2 12

2

4 21 1 1 1

4 4 2 4 4

(8.99 10 N m C )(7.21 10 C)

2.00 m

3.24 10  V.

Q Q Q Q
V

R R R R    





  
   

  


 

 

 

30. The dipole potential is given by Eq. 24-30 (with  = 90º in this case)  
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2 2

0 0

cos cos90
0

4 4

p p
V

r r



 


    

 

since cos(90º) = 0 . The potential due to the short arc is 1 0 1/ 4q r   and that caused by the 

long arc is 2 0 2/ 4q r .  Since q1 = +2 C, r1 = 4.0 cm, q2 = 3 C, and r2 = 6.0 cm, the 

potentials of the arcs cancel.  The result is zero. 

 

31. THINK Since the disk is uniformly charged, when the full disk is present each 

quadrant contributes equally to the electric potential at P.  

 

EXPRESS Electrical potential is a scalar quantity. The potential at P due to a single 

quadrant is one-fourth the potential due to the entire disk. We first find an expression for 

the potential at P due to the entire disk. To do so, consider a ring of charge with radius r 

and (infinitesimal) width dr. Its area is 2r dr and it contains charge dq = 2r dr. All the 

charge in it is at a distance 2 2r D from P, so the potential it produces at P is 

 

2 2 2 2
0 0

1 2
.

4 2

rdr rdr
dV

r D r D

 

 
 

 

p

p
 

 

ANALYZE Integrating over r, the total potential at P is 

 

2 2 2 2

2 20
00 0 0

.
2 2 2

RR rdr
V r D R D D

r D

  

  
      
 

  

 

Therefore, the potential Vsq at P due to a single quadrant is  

 
15 2

2 2 2 2

12 2 2

0

5

(7.73 10 C/m )
(0.640 m) (0.259 m) 0.259 m

4 8 8(8.85 10 C /N m )

4.71 10  V.

sq

V
V R D D











         
    

 
 

LEARN Consider the limit .D R  The potential becomes 

 
2

2 2

2

0 0

2 2

0 0 0

1
1

8 8 2

/ 4

8 2 4 4

sq

sq

R
V R D D D D

D

qR R

D D D

 

 

  

  

               

  

 

 

where 
2 / 4sqq R   is the charge on the quadrant. In this limit, we see that the potential 

resembles that due to a point charge .sqq  

 

32. Equation 24-32 applies with dq =  dx = bx dx (along 0  x  0.20 m). 
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(a) Here r = x > 0, so that 

V
bx dx

x

b
 z1

4

0 20

40

0 20

   

.. b g
 = 36 V. 

 

(b) Now r x d 2 2  where d = 0.15 m, so that 

 

 
0.20

0.20
2 2

2 20
0

1

4 4

bxdx b
V x d

x d 
  




 

 = 18 V. 

 

33. Consider an infinitesimal segment of the rod, located between x and x + dx. It has 

length dx and contains charge dq =  dx = cx dx. Its distance from P1 is d + x and the 

potential it creates at P1 is 

 

dV
dq

d x

cx dx

d x







1

4

1

40 0  
.  

 

To find the total potential at P1, we integrate over the length of the rod and obtain 

 

0
00 0 0

9 2 2 12 2

2

[ ln( )] ln 1
4 4 4

0.120 m
(8.99 10 N m C )(28.9 10 C/m ) 0.120 m (0.030 m) ln 1

0.030 m

1.86 10  V.

LLc xdx c c L
V x d x d L d

d x d  





  
        

   

  
       

  

 

  

 

 

34. The magnitude of the electric field is given by 

 

22(5.0V)
| | 6.7 10 V m.

0.015m

V
E

x


    


 

 

At any point in the region between the plates, 

E  points away from the positively charged 

plate, directly toward the negatively charged one. 

 

35. We use Eq. 24-41: 

 

E x y
V

x x
x y x

E x y
V

y y
x y y

x

y

( , ) ( . ) . ) ( . ) ;

( , ) ( . ) . ) ( . ) .

 



 




  

 



 




 

2 0 30 2 2 0

2 0 30 2 30

2 2

2 2

V / m V / m V / m

V / m V / m V / m

2 2 2

2 2 2

c h

c h
 

 

We evaluate at x = 3.0 m and y = 2.0 m to obtain  
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ˆ ˆ( 12 V/m)i (12 V/m)jE    . 

 

36. We use Eq. 24-41. This is an ordinary derivative since the potential is a function of 

only one variable. 

 

2 2ˆ ˆ ˆ ˆi (1500 )i ( 3000 )i ( 3000V/m )(0.0130m)i

ˆ( 39V/m)i.

dV d
E x x

dx dx

 
       

 

 

 

 

(a) Thus, the magnitude of the electric field is E = 39 V/m. 

 

(b) The direction of E is î , or toward plate 1. 

 

37. THINK The component of the electric field E in a given direction is the negative of 

the rate at which potential changes with distance in that direction. 

 

EXPRESS With 22.00 ,V xyz  we apply Eq. 24-41 to calculate the x, y, and z 

components of the electric field: 

2

2

2.00

2.00

4.00

x

y

z

V
E yz

x

V
E xz

y

V
E xyz

z


   




   




   



 

 

which, at (x, y, z) = (3.00 m, –2.00 m, 4.00 m), gives  

 

(Ex, Ey, Ez) = (64.0 V/m, –96.0 V/m, 96.0 V/m). 

 

ANALYZE The magnitude of the field is therefore 

 
2 2 2 2 2 2(64.0 V/m) ( 96.0 V/m) (96.0 V/m)

150V m 150 N C.

x y zE E E E      

 
 

 

LEARN If the electric potential increases along some direction, say x, with / 0,V x    

then there is a corresponding nonvanishing component of E  in the opposite direction 

( 0xE  ).  

 

38. (a) From the result of Problem 24-28, the electric potential at a point with coordinate 

x is given by 
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0

ln .
4

Q x L
V

L x

 
  

 
 

At x = d we obtain   

 

 

9 2 2 15

0

3

(8.99 10 N m C )(43.6 10 C) 0.135 m
ln ln 1

4 0.135 m

0.135 m
(2.90 10  V) ln 1 .

Q d L
V

L d d

d







      
     

   

 
   

 


 

 

(b) We differentiate the potential with respect to x to find the x component of the electric 

field: 

 

2

0 0 0

9 2 2 15 4 2

1
ln

4 4 4 ( )

(8.99 10 N m C )(43.6 10 C) (3.92 10 N m C)
,

( 0.135 m) ( 0.135 m)

x

V Q x L Q x x L Q
E

x L x x L x L x x x x L

x x x x

  

 

      
           

      

    
   

 

  
 

or 
4 2(3.92 10 N m C)

| | .
( 0.135 m)

xE
x x

 



 

 

(c) Since 0xE  , its direction relative to the positive x axis is 180 .  

 

(d) At x = d = 6.20 cm, we obtain 

 
4 2(3.92 10 N m C)

| | 0.0321 N/C.
(0.0620 m)(0.0620 m 0.135 m)

xE
 

 


 

 

(e) Consider two points an equal infinitesimal distance on either side of P1, along a line 

that is perpendicular to the x axis. The difference in the electric potential divided by their 

separation gives the transverse component of the electric field. Since the two points are 

situated symmetrically with respect to the rod, their potentials are the same and the 

potential difference is zero. Thus, the transverse component of the electric field Ey is zero. 

 

39. The electric field (along some axis) is the (negative of the) derivative of the potential 

V with respect to the corresponding coordinate.  In this case, the derivatives can be read 

off of the graphs as slopes (since the graphs are of straight lines).  Thus, 

 

500 V
2500 V/m 2500 N/C

0.20 m

300 V
1000 V/m 1000 N/C.

0.30 m

x

y

V
E

x

V
E

y

  
     

  

  
     

  
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These components imply the electric field has a magnitude of 2693 N/C and a direction 

of –21.8º (with respect to the positive x axis).  The force on the electron is given by 

F qE  where q = –e.  The minus sign associated with the value of q has the implication 

that F  


 points in the opposite direction from E  


 (which is to say that its angle is found by 

adding 180º to that of E  


 ).  With e = 1.60 × 10
–19 

C, we obtain 

 

 19 16 16ˆ ˆ ˆ ˆ( 1.60 10 C)[(2500 N/C)i (1000 N/C)j] ( 4.0 10 N)i (1.60 10  N)jF            . 

 

40. (a) Consider an infinitesimal segment of the rod from x to x + dx. Its contribution to 

the potential at point P2 is 

 

dV
x dx

x y

cx

x y
dx






1

4

1

40
2 2

0
2 2 





( )
.  

Thus,  

 

 

 

2 2

2 2rod 0
0 0

9 2 2 12 2 2 2

2

4 4

(8.99 10 N m C )(49.9 10 C/m ) (0.100 m) (0.0356 m) 0.0356 m

3.16 10  V.

L

P

c x c
V dV dx L y y

x y 





    


     

 

  

 

 

(b) The y component of the field there is 

 

 2 2

2 2
0 0

9 2 2 12 2

2 2

1
4 4

0.0356 m
(8.99 10 N m C )(49.9 10 C/m ) 1

(0.100 m) (0.0356 m)

0.298 N/C.

P
y

V c d c y
E L y y

y dy L y 



 
        
     

 
     
  



 

 

(c) We obtained above the value of the potential at any point P strictly on the y-axis. In 

order to obtain Ex(x, y) we need to first calculate V(x, y). That is, we must find the 

potential for an arbitrary point located at (x, y). Then Ex(x, y) can be obtained from 

( , ) ( , ) /xE x y V x y x   . 

 

41. We apply conservation of energy for the particle with q = 7.5  10
6

 C (which has 

zero initial kinetic energy): 

U0  = Kf  + Uf , 

where U  =  
q Q

4or
 . 



    CHAPTER 24 1086   

 

(a) The initial value of r is 0.60 m and the final value is (0.6 + 0.4) m = 1.0 m (since the 

particles repel each other).  Conservation of energy, then, leads to Kf  = 0.90 J. 

 

(b) Now the particles attract each other so that the final value of r is 0.60  0.40 = 0.20 m.  

Use of energy conservation yields Kf  = 4.5 J in this case. 

 

42. (a) We use Eq. 24-43 with q1 = q2 = –e and r = 2.00 nm: 

 

 9 2 2 19 22
191 2

9

8.99 10 N m C (1.60 10 C)
1.15 10 J.

2.00 10 m

q q e
U k k

r r







  
    


 

 

(b) Since U > 0 and U  r
–1

 the potential energy U decreases as r increases. 

 

43. THINK The work required to set up the arrangement is equal to the potential energy 

of the system. 

 

EXPRESS We choose the zero of electric potential to be at infinity. The initial electric 

potential energy Ui of the system before the particles are brought together is therefore 

zero. After the system is set up the final potential energy is 

 
2 2

0 0

1 1 1 1 1 1 2 1
2 .

4 42 2 2
f

q q
U

a a a a aa a 

   
           

   p p
 

 

Thus the amount of work required to set up the system is given by  

 

 
2 9 2 2 12 2

0

13

2 1 2(8.99 10 N m C )(2.30 10 C) 1
2 2

4 0.640 m2 2

1.92 10 J.

f i f

q
W U U U U

a





     
          

   

  



 

LEARN The work done in assembling the system is negative. This means that an 

external agent would have to supply 13

ext 1.92 10 JW   in order to take apart the 

arrangement completely.  

 

44. The work done must equal the change in the electric potential energy.  From Eq. 24-

14 and Eq. 24-26, we find (with r = 0.020 m) 

 

 
 9 2 2 19 2

25

0

8.99 10 N m C (18)(1.60 10 C)(3 2 2 )(6 )
2.1 10  J

4 0.020 m

e e e e
W

r




   

    . 

 

45. We use the conservation of energy principle. The initial potential energy is Ui = 

q
2
/40r1, the initial kinetic energy is Ki = 0, the final potential energy is Uf = q

2
/40r2, 
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and the final kinetic energy is K mvf 
1
2

2 , where v is the final speed of the particle. 

Conservation of energy yields 

     
q

r

q

r
mv

2

0 1

2

0 2

2

4 4

1

2  
  .  

The solution for v is 

 

2 9 2 2 6 2

6 3 3

0 1 2

3

2 1 1 (8.99 10 N m C )(2)(3.1 10 C) 1 1

4 20 10 kg 0.90 10 m 2.5 10 m

2.5 10 m s.

q
v

m r r



  

      
      

    

 

p

 

46. Let r = 1.5 m, x = 3.0 m, q1 = –9.0 nC, and q2 = –6.0 pC. The work done by an 

external agent is given by 

 

W U
q q

r r x
  



F
HG

I
KJ

     
F

HG
I
KJ  



L

N
MM

O

Q
PP

 

 



 1 2

2 2

9 12

10

4

1

9 0 10 6 0 10
1

15

1

15 30

18 10

 

1

    C C  8.99 10
N m

C  m  m  m

   J.

9
2

2 2 2
. .

. . .

.

c hc h
b g b g

 

 

47. The escape speed may be calculated from the requirement that the initial kinetic 

energy (of launch) be equal to the absolute value of the initial potential energy (compare 

with the gravitational case in Chapter 14).  Thus, 

 

 2

0

1

2 4

eq
mv

r
  

 

where  m = 9.11  10
31 

kg, e = 1.60  10
19 

C, q = 10000e, and r = 0.010 m.  This yields 

v = 22490 m/s 42.2 10  m/s  .   

 

48. The change in electric potential energy of the electron-shell system as the electron 

starts from its initial position and just reaches the shell is U = (–e)(–V) = eV. Thus from 

U K m ve i  1
2

2  we find the initial electron speed to be 

 
19

6

31

2 2 2(1.6 10 C)(125 V)
6.63 10  m/s.

9.11 10 kg
i

e e

U eV
v

m m





 
    


 

 

49. We use conservation of energy, taking the potential energy to be zero when the 

moving electron is far away from the fixed electrons. The final potential energy is then 
2

02 / 4fU e d , where d is half the distance between the fixed electrons. The initial 
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kinetic energy is K mvi 
1
2

2 ,  where m is the mass of an electron and v is the initial speed 

of the moving electron. The final kinetic energy is zero. Thus, 

 

Ki = Uf     
2 2

0

1
2 / 4 .

2
mv e d   

Hence, 

v
e

dm
 

  


 





4

4

8 99 10 4 160 10

0 010
32 10

2 9 19

31

2

 

. .

.
.

 N m C  C

 m 9.11 10  kg
m s.

2 2
2c hb gc h

b gc h  

 

50. The work required is 

 

1 2 1 1

0 0

( / 2)1 1
0.

4 2 4 2

q Q q Q q Q q Q
W U

d d d d 

   
        

   
 

 

51. (a) Let   015. m  be the length of the rectangle and w = 0.050 m be its width. Charge 

q1 is a distance   from point A and charge q2 is a distance w, so the electric potential at A 

is 
6 6

9 2 21 2

0

4

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.15m 0.050 m

6.0 10 V.

A

q q
V

w

     
       

    

 

 

 

(b) Charge q1 is a distance w from point b and charge q2 is a distance ,  so the electric 

potential at B is 

 
6 6

9 2 21 2

0

5

1 5.0 10 C 2.0 10 C
(8.99 10 N m / C )

4 0.050 m 0.15m

7.8 10 V.

B

q q
V

w

     
       

    

  

 

 

(c) Since the kinetic energy is zero at the beginning and end of the trip, the work done by 

an external agent equals the change in the potential energy of the system. The potential 

energy is the product of the charge q3 and the electric potential. If UA is the potential 

energy when q3 is at A and UB is the potential energy when q3 is at B, then the work done 

in moving the charge from B to A is  

 

W = UA – UB = q3(VA – VB) = (3.0  10
–6

 C)(6.0  10
4
 V + 7.8  10

5
 V) = 2.5 J. 

 

(d) The work done by the external agent is positive, so the energy of the three-charge 

system increases. 

 

(e) and (f) The electrostatic force is conservative, so the work is the same no matter 

which path is used. 
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52. From Eq. 24-30 and Eq. 24-7, we have (for  = 180º)  

 

 
2 2

0 0

cos

4 4

p ep
U qV e

r r



 

 
    

 
 

 

where r = 0.020 m. Using energy conservation, we set this expression equal to 100 eV 

and solve for p.  The magnitude of the dipole moment is therefore  p = 4.5  10
12 

C m .  

 

53. (a) The potential energy is 

 

U
q

d
 

  


2 9 6

4

8 99 10 50 10

100
0 225

 

. .

.
.

 N m C  C

 m
 J

2 2
2c hc h

 

 

relative to the potential energy at infinite separation. 

 

(b) Each sphere repels the other with a force that has magnitude 

 

F
q

d
 

  


2

2

9 6

4

8 99 10 50 10
0 225

 

. .
.

 N m C  C

1.00 m
 N.

2 2
2

2

c hc h
b g  

 

According to Newton’s second law the acceleration of each sphere is the force divided by 

the mass of the sphere. Let mA and mB be the masses of the spheres. The acceleration of 

sphere A is 

a
F

m
A

A

 





0 225
450

3

.
.

 N

5.0 10  kg
 m s2  

 

and the acceleration of sphere B is 

 

a
F

m
B

B

 





0 225
22 5

3

.
. .

 N

10 10  kg
 m s2  

 

(c) Energy is conserved. The initial potential energy is U = 0.225 J, as calculated in part 

(a). The initial kinetic energy is zero since the spheres start from rest. The final potential 

energy is zero since the spheres are then far apart. The final kinetic energy is 
1
2

2 1
2

2m v m vA A B B ,  where vA and vB are the final velocities. Thus, 

 

U m v m vA A B B 
1

2

1

2

2 2 .  

Momentum is also conserved, so 

 

0  m v m vA A B B .  
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These equations may be solved simultaneously for vA and vB. Substituting 

( / )B A B Av m m v  , from the momentum equation into the energy equation, and collecting 

terms, we obtain  

U m m m m vA B A B A 1
2

2( / )( ) .  

Thus, 

 
3

3 3 3

2 2(0.225 J)(10 10  kg)
7.75 m/s.

( ) (5.0 10  kg)(5.0 10  kg 10 10  kg)

B
A

A A B

Um
v

m m m



  


  

    
 

 

We thus obtain 
3

3

5.0 10  kg
  (7.75 m/s) 3.87 m/s,

10 10  kg

A
B A

B

m
v v

m





 
      

 
 

 

or | | 3.87 m/s.Bv   

 

54. (a) Using U = qV we can “translate” the graph of voltage into a potential energy 

graph (in eV units).  From the information in the problem, we can calculate its kinetic 

energy (which is its total energy at x = 0) in those units: Ki = 284 eV.  This is less than 

the “height” of the potential energy “barrier” (500 eV high once we’ve translated the 

graph as indicated above).  Thus, it must reach a turning point and then reverse its motion. 

 

(b) Its final velocity, then, is in the negative x direction with a magnitude equal to that of 

its initial velocity.  That is, its speed (upon leaving this region) is 1.0  10
7 

m/s. 

      

55. Let the distance in question be r. The initial kinetic energy of the electron is 

K m vi e i 1
2

2 ,  where vi = 3.2  10
5
 m/s. As the speed doubles, K becomes 4Ki. Thus 

 

 U
e

r
K K K K m vi i i e i


        

2
2

4
4 3

3

2 
( ) ,  

or 

 

   

  

2
19 9 2 22

9

22 19 5
0

2 1.6 10  C 8.99 10 N m C2
1.6 10 m.

3 4 3 9.11 10  kg 3.2 10  m se i

e
r

m v







  
   

 
 

 

56. When particle 3 is at x = 0.10 m, the total potential energy vanishes.  Using Eq. 24-43, 

we have (with meters understood at the length unit) 

 

 1 3 3 21 2

0 0 0

0
4 4 ( 0.10 m) 4 (0.10 m)

q q q qq q

d d  
  


 

This leads to  
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1 2 1 2
3

0.10 m 0.10 m

q q q q
q

d d

 
   

 
 

 

which yields q3 = 5.7 C.  

 

57. THINK Mechanical energy is conserved in the process.   

 

EXPRESS The electric potential at (0, y) due to the two charges Q held fixed at ( ,0x ) 

is 

2 2

0

2

4

Q
V

x y



. 

 

Thus, the potential energy of the particle of charge q at (0, y) is  

 

2 2

0

2

4

Qq
U qV

x y
 


. 

 

Conservation of mechanical energy (Ki + Ui  =  Kf  + Uf ) gives 

 

2 2 2 2
0

2 1 1

4
f i i f i

i f

Qq
K K U U K

x y x y

 
      
  
 

, 

 

where iy  and fy  are the initial and final coordinates of the moving charge along the y 

axis. 

 

ANALYZE (a) With 615 10 C,q     Q = 50  10
6

 C, x = 3 m, yi = 4 m, and 0,fy   

we obtain 

 

6 6

12 2 2 2 2 2

2(50 10 C)( 15 10 C) 1 1
1.2 J

4 (8.85 10 C /N m ) (3.0 m) (4.0 m) (3.0 m)

3.0 J.

fK


 



   
   
    



  

 

(b) We set Kf  = 0 and solve for fy  (choosing the negative root, as indicated in the 

problem statement): 

2 2 2 2

0 0

2 2
1.2 J

4 4
i i f

i f

Qq Qq
K U U

x y x y 
    

 
 . 

 

Substituting the values given, we have 2.7 J,iU    and fy  = 8.5 m.  
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LEARN The dependence of the final kinetic energy of the particle on y is plotted below. 

From the plot, we see that 3.0 JfK   at y = 0, and 0fK  at y = 8.5 m. The particle 

oscillates between the two end-points 8.5 m.fy    

 
 

58. (a) When the proton is released, its energy is K + U = 4.0 eV + 3.0 eV (the latter 

value is inferred from the graph).  This implies that if we draw a horizontal line at the 7.0 

volt “height” in the graph and find where it intersects the voltage plot, then we can 

determine the turning point.  Interpolating in the region between 1.0 cm and 3.0 cm, we 

find the turning point is at roughly x = 1.7 cm. 

 

(b) There is no turning point toward the right, so the speed there is nonzero, and is given 

by energy conservation:  

 

v = 
2(7.0 eV)

m
  = 

2(7.0 eV)(1.6 x 10
-19 

J/eV)

1.67 x 10
-27

 kg
 = 20 km/s. 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P. Once we know the electric field, the force on the proton follows 

immediately from F 


 = q E 


 , where q = +e for the proton. In the region just to the left of x 

= 3.0 cm, the field is E 


 = (+300 V/m) î  and the force is F = +4.8  10
17 

N. 

 

(d) The force F  points in the +x direction, as the electric field E . 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 


 =(–200 V/m) î  and the 

magnitude of the force is F = 3.2  10
17 

N. 

 

(f) The force F  points in the x direction, as the electric field E . 

 

59. (a)  The electric field between the plates is leftward in Fig, 24-59 since it points 

toward lower values of potential. The force (associated with the field, by Eq. 23-28) is 

evidently leftward, from the problem description (indicating deceleration of the rightward 

moving particle), so that q > 0 (ensuring that F  


is parallel to E  


); it is a proton. 

 

(b) We use conservation of energy: 
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K0 + U0 = K + U       
1

2
 mpv

2
0  + qV1= 

1

2
 mpv

2
 + qV 2  . 

 

Using q = +1.6  10
19

 C, mp = 1.67  10
27

 kg, v0 = 90  10
3
 m/s, V1 = 70 V, and 

2 50 VV  , we obtain the final speed v = 6.53  10
4
 m/s.  We note that the value of d is 

not used in the solution. 

 

60. (a) The work done results in a potential energy gain: 

 

W = q V  = (e) 






Q

4o R
  =  + 2.16  10

13 
J . 

 

With R = 0.0800 m, we find Q =  –1.20  10
5 

C. 

 

(b) The work is the same, so the increase in the potential energy is U =  + 2.16  10
13 

J.   

 

61. We note that for two points on a circle, separated by angle  (in radians), the direct-

line distance between them is r = 2R sin(/2). Using this fact, distinguishing between the 

cases where N = odd and N = even, and counting the pair-wise interactions very carefully, 

we arrive at the following results for the total potential energies. We use k 1 4  .  For 

configuration 1 (where all N electrons are on the circle), we have 

 

   

1
1

2 22 2

1, even 1, odd

1 1

1 1 1
,    

2 sin 2 2 2 sin 2

N N

N N

j j

Nke Nke
U U

R j R j 




 

 

   
     
   
   
   

   

 

where 
2

.
N


   For configuration 2, we find 

 

 

 

 

 

3
12 22 2

2, even 2, odd

1 1

1 11 1 5
2 ,

2 sin 2 2 sin 2 2

N N

N N

j j

N ke N ke
U U

R j R j 




 

 

   
       

       
   

   

 

where 
2

.
1N





 The results are all of the form 

U
ke

R
1

2

2
or 2 a pure number.  

 

In our table below we have the results for those “pure numbers” as they depend on N and 

on which configuration we are considering. The values listed in the U rows are the 

potential energies divided by ke
2
/2R. 
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N 4 5 6 7 8 9 10 11 12 13 14 15 

U1 3.83 6.88 10.96 16.13 22.44 29.92 38.62 48.58 59.81 72.35 86.22 101.5 

U2 4.73 7.83 11.88 16.96 23.13 30.44 39.92 48.62 59.58 71.81 85.35 100.2 

 

We see that the potential energy for configuration 2 is greater than that for configuration 

1 for N < 12, but for N  12 it is configuration 1 that has the greatest potential energy. 

 

(a) N = 12 is the smallest value such that U2 < U1. 

 

(b) For N = 12, configuration 2 consists of 11 electrons distributed at equal distances 

around the circle, and one electron at the center. A specific electron e0 on the circle is R 

distance from the one in the center, and is 

 

2 sin 0.56
11

r R R
 

  
 

 

 

distance away from its nearest neighbors on the circle (of which there are two — one on 

each side). Beyond the nearest neighbors, the next nearest electron on the circle is 

 

2
2 sin 1.1

11
r R R

 
  

 
 

 

distance away from e0. Thus, we see that there are only two electrons closer to e0 than the 

one in the center. 

 

62. (a) Since the two conductors are connected V1 and V2 must be equal to each other. 

 

Let V1 = q1/40R1 = V2 = q2/40R2 and note that q1 + q2 = q and R2 = 2R1. We solve for 

q1 and q2:  q1 = q/3, q2 = 2q/3, or 

 

(b) q1/q = 1/3 = 0.333. 

 

(c) Similarly, q2/q = 2/3 = 0.667. 

 

(d) The ratio of surface charge densities is 

2
2

1 1 1 1 2

2

2 2 2 2 1

4
 2.00.

4

q R q R

q R q R





   
     

   

p

p
 

 

63. THINK The electric potential is the sum of the contributions of the individual 

spheres.  

 

EXPRESS Let q1 be the charge on one, q2 be the charge on the other, and d be their 

separation. The point halfway between them is the same distance d/2 (= 1.0 m) from the 

center of each sphere.  
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For parts (b) and (c), we note that the distance from the center of one sphere to the 

surface of the other is d – R, where R is the radius of either sphere. The potential of either 

one of the spheres is due to the charge on that sphere as well as the charge on the other 

sphere. 

 

ANALYZE (a) The potential at the halfway point is 

 

  9 2 2 8 8

21 2
8.99 10  N m C 1.0 10 C 3.0 10 C

1.8 10 V.
4 2 1.0 m

q q
V

d

     
    

0p
 

 

(b) The potential at the surface of sphere 1 is 

 

 
8 8

9 2 2 31 2
1

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 2.9 10 V.

4 0.030m 2.0m 0.030m

q q
V

R d R

    
             

 

(c) Similarly, the potential at the surface of sphere 2 is 

 

 
8 8

9 2 2 31 2
2

0

1 1.0 10 C 3.0 10 C
8.99 10 N m C 8.9 10 V.

4 2.0m 0.030m 0.030m

q q
V

d R R

    
              

 

LEARN In the limit where ,d   the spheres are isolated from each other and the 

electric potentials at the surface of each individual sphere become 

 
9 2 2 8

31
10

0

(8.99 10 N m C )(1.0 10 C)
3.0 10 V,

4 0.030m

q
V

R

  
     

and  
9 2 2 8

32
20

0

(8.99 10 N m C )( 3.0 10 C)
8.99 10 V.

4 0.030m

q
V

R

   
      

 

64. Since the electric potential throughout the entire conductor is a constant, the electric 

potential at its center is also +400 V. 

 

65. THINK If the electric potential is zero at infinity, then the potential at the surface of 

the sphere is given by V = Q/40R, where Q is the charge on the sphere and R is its 

radius.  

 

EXPRESS From V = Q/40R, we find the charge to be 04 .Q RV  

 

ANALYZE With 0.15 mR  and 1500 V,V   we have  

 

   8

0 9 2 2

0.15 m 1500 V
4 2.5 10 C.

8.99 10  N m C
Q RV    

 
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LEARN A plot of the electric potential as a function of 

r is shown to the right with 01/ 4k  . Note that the 

potential is constant inside the conducting sphere. 

 

66. Since the charge distribution is spherically 

symmetric we may write 

 

enc

0

1
( ) ,

4

q
E r

r
  

 

where qenc is the charge enclosed in a sphere of radius r centered at the origin.  

 

(a) For r = 4.00 m, R2 = 1.00 m, and R1 = 0.500 m, with r > R2 > R1 we have 

 

 
9 2 2 6 6

31 2

2 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
1.69 10  V/m.

4 (4.00 m)

q q
E r

r

      
     

 

(b) For R2 > r = 0.700 m > R2, 

 

 
9 2 2 6

41

2 2

0

(8.99 10 N m C )(2.00 10 C)
3.67 10  V/m.

4 (0.700 m)

q
E r

r

  
     

 

(c) For R2 > R1 > r, the enclosed charge is zero. Thus, E = 0. 

 

The electric potential may be obtained using Eq. 24-18:  

 

V r V r E r dr
r

rb g b g b g  
z .  

 

(d) For r = 4.00 m > R2 > R1, we have 

 

 
9 2 2 6 6

31 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
6.74 10  V.

4 (4.00 m)

q q
V r

r

      
     

 

(e) For r = 1.00 m = R2 > R1, we have 

 

 
9 2 2 6 6

41 2

0

(8.99 10 N m C )(2.00 10 C 1.00 10 C)
2.70 10  V.

4 (1.00 m)

q q
V r

r

      
     

 

(f) For R2 > r = 0.700 m > R2,  
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 
6 6

9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C
(8.99 10 N m C )

4 0.700 m 1.00 m

3.47 10  V.

q q
V r

r R

     
        

  

 

 

 

(g) For R2 > r = 0.500 m = R2,  

 

 
6 6

9 2 21 2

0 2

4

1 2.00 10 C 1.00 10 C
(8.99 10 N m C )

4 0.500 m 1.00 m

4.50 10  V.

q q
V r

r R

     
        

  

 

 

 

(h) For R2 > R1 > r,  

 
6 6

9 2 21 2

0 1 2

4

1 2.00 10 C 1.00 10 C
(8.99 10 N m C )

4 0.500 m 1.00 m

4.50 10  V.

q q
V

R R

     
        

  

 

 

 

(i) At r = 0, the potential remains constant, 44.50 10  V.V    

 

(j) The electric field and the potential as a function of r are depicted below: 

 

 
 

67. (a) The magnitude of the electric field is 

 

  
 

8 9 2 2

4

22

0 0

3.0 10 C 8.99 10 N m C
1.2 10 N C.

4 0.15m

q
E

R



 

  
      

 

(b) V = RE = (0.15 m)(1.2  10
4
 N/C) = 1.8  10

3
 V. 

 

(c) Let the distance be x. Then 

 

V V x V
q

R x R
  




F
HG

I
KJ  b g

4

1 1
500

 
V,  
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which gives 

x
R V

V V

 




 
  



015 500

1800 500
58 10 2

.
.

m V

V V
m.

b gb g
 

 

68. The potential energy of the two-charge system is 

 

   

   

   

9 2 2 6

1 2

2 2 2 2

1 2 1 2

8.99 10 N m C 3.00 C 4.00 10 C1

4 3.50 2.00 0.500 1.50 cm

1.93 J.

q q
U

x x y y

 



    
 

      

 

 

 

Thus, –1.93 J of work is needed. 

 

69. THINK To calculate the potential, we first apply Gauss’ law to calculate the electric 

field of the charged cylinder of radius R. The Gaussian surface is a cylindrical surface 

that is concentric with the cylinder. 

 

EXPRESS We imagine a cylindrical Gaussian surface A of radius r and length h 

concentric with the cylinder. Then, by Gauss’ law, 

 

enc

0

2 ,
A

q
E dA rhE


    

  

where encq is the amount of charge enclosed by the Gaussian cylinder. Inside the charged 

cylinder ( ),r R enc 0,q   so the electric field is zero. On the other hand, outside the 

cylinder (r > R), encq h so the magnitude of the electric field is 

 

0 0

/

2 2

q h
E

r r



 
   

 

where  is the linear charge density and r is the distance from the line to the point where 

the field is measured. The potential difference between two points 1 and 2 is  

 

     
2

1
2 1 .

r

r
V r V r E r dr    

 

ANALYZE (a) The radius of the cylinder (0.020 m, the same as RB) is denoted R, and the 

field magnitude there (160 N/C) is denoted EB. From the equation above, we see that the 

electric field beyond the surface of the cylinder is inversely proportional with r: 

 

, .B
B B

R
E E r R

r
   
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Thus, if r = RC = 0.050 m, we obtain  

 

 
0.020 m

160 N/C 64 N C.
0.050 m

B
C B

C

R
E E

R

 
   

 
 

 

(b) The potential difference between VB and VC is 

 

0.050 m
ln (160 N/C)(0.020 m) ln

0.020 m

2.9V.

B

C

R
CB B

B C B B
R

B

RE R
V V dr E R

r R

   
       

  



  

 

(c) The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

cylinder: VA – VB = 0. 

 

LEARN The electric potential at a distance Br R  can be written as 

 

( ) lnB B B

B

r
V r V E R

R

 
   

 
. 

 

We see that ( )V r  decreases logarithmically with r.  

 

70. (a) We use Eq. 24-18 to find the potential: wall

R

r
V V Edr  , or 

 

 2 2

0 0

0        .
2 4

R

r

r
V V R r

 

 

 
      

 
  

 

Consequently, V = (R
2
 – r

2
)/40. 

 

(b) The value at r = 0 is 

 

Vcenter

3C m

C V m
m V.

 

 
   





11 10

4 885 10
0 05 0 7 8 10

3

12

2 4.

.
. .c h b ge j  

 

Thus, the difference is 4

center| | 7.8 10 V.V    

 

71. THINK The component of the electric field E in any direction is the negative of the 

rate at which potential changes with distance in that direction. 

 

EXPRESS From Eq. 24-30, the electric potential of a dipole at a point a distance r away 

is  
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2

0

1 cos

4

p
V

r




  

 

where p is the magnitude of the dipole moment p  and   is the angle between p  and the 

position vector of the point. The potential at infinity is taken to be zero.  

 

ANALYZE On the dipole axis  = 0 or , so |cos | = 1. Therefore, magnitude of the 

electric field is 

E r
V

r

p d

dr r

p

r
b g  






F
HG
I
KJ 4

1

22 3   
.  

 

LEARN Take the z axis to be the dipole axis. For 0r z  ( 0  ), 3

0/ 2 .E p z  On 

the other hand, for 0r z    (  ), 3

0/ 2 .E p z   

 

72. Using Eq. 24-18, we have 

 

ΔV  =  
3

42
 

A
dr

r
  =  

3 3

1 1

3 2 3

A  
 

 
= A(0.029/m

3
). 

 

73. (a) The potential on the surface is 

 

  6 9 2 2

5

0

4.0 10 C 8.99 10 N m C
3.6 10 V .

4 0.10m

q
V

R

  
   


 

 

(b) The field just outside the sphere would be 

 

E
q

R

V

R
  


 

4

36 10

010
36 10

2

5
6

 

.

.
. ,

V

m
V m  

 

which would have exceeded 3.0 MV/m. So this situation cannot occur. 

 

74. The work done is equal to the change in the (total) electric potential energy U of the 

system, where 

 3 2 1 31 2

0 12 0 23 0 134 4 4

q q q qq q
U

r r r  
    

 

and the notation r13 indicates the distance between q1 and q3 (similar definitions apply to 

r12 and r23).   
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(a) We consider the difference in U where initially r12 = b and r23 = a, and finally r12 = a 

and r23 = b  (r13 doesn’t change).  Converting the values given in the problem to SI units 

(C to C, cm to m), we obtain U =  – 24 J. 

 

(b) Now we consider the difference in U where initially r23 = a and r13 = a, and finally r23 

is again equal to a and r13 is also again equal to a  (and of course, r12 doesn’t change in 

this case).  Thus, we obtain U = 0. 

 

75. Assume the charge on Earth is distributed with spherical symmetry. If the electric 

potential is zero at infinity then at the surface of Earth it is V = q/40R, where q is the 

charge on Earth and R = 6.37  10
6
 m is the radius of Earth. The magnitude of the electric 

field at the surface is E = q/40R
2
, so  

 

V = ER = (100 V/m) (6.37  10
6
 m) = 6.4  10

8
 V. 

 

76. Using Gauss’ law, q =  nC.  Consequently,  

 
9 2 2 7

4

0

(8.99 10 N m C )(4.958 10 C)
3.71 10  V.

4 0.120 m

q
V

r

  
   


 

 

77. The potential difference is  

 

V = Es = (1.92  10
5
 N/C)(0.0150 m) = 2.90  10

3
 V. 

 

78. The charges are equidistant from the point where we are evaluating the potential — 

which is computed using Eq. 24-27 (or its integral equivalent). Equation 24-27 implicitly 

assumes V  0 as r  . Thus, we have 

 

1 1 1 1

9 2 2 12

2 3 21 1 1 1

4 4 4 4

2(8.99 10 N m C )(4.52 10 C)
0.956 V.

0.0850 m

Q Q Q Q
V

R R R R      



  
   

   

  
 

 

 

79. The electric potential energy in the presence of the dipole is 

 

 dipole 2 2

0 0

cos ( )( )cos

4 4

qp e ed
U qV

r r

 

 


    . 

 

Noting that i = f = 0º, conservation of energy leads to 

 

Kf + Uf  =  Ki + Ui        v = 
2 e

2

4o m d
 






1

25
  

1

49
  = 7.0 510  m/s . 
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80. We treat the system as a superposition of a disk of surface charge density  and 

radius R and a smaller, oppositely charged, disk of surface charge density – and radius r. 

For each of these, Eq 24-37 applies (for z > 0) 

 

V z R z z r z   


 






2 20

2 2

0

2 2e j e j.  
 

This expression does vanish as r  , as the problem requires. Substituting r = 0.200R 

and z = 2.00R and simplifying, we obtain 

 
12 2

12 2 2

2

5 5 101 (6.20 10 C/m )(0.130 m) 5 5 101

10 8.85 10 C /N m 10

1.03 10  V.

R
V













     
           

 

 

 

81. (a) When the electron is released, its energy is   

 

K + U = 3.0 eV 6.0 eV 

 

(the latter value is inferred from the graph along with the fact that U = qV and q = e).  

Because of the minus sign (of the charge) it is convenient to imagine the graph multiplied 

by a minus sign so that it represents potential energy in eV.  Thus, the 2 V value shown at 

x = 0 would become –2 eV, and the 6 V value at x = 4.5 cm becomes –6 eV, and so on.  

The total energy (3.0 eV) is constant and can then be represented on our (imagined) 

graph as a horizontal line at 3.0 V.  This intersects the potential energy plot at a point 

we recognize as the turning point.  Interpolating in the region between 1.0 cm and 4.0 cm, 

we find the turning point is at x = 1.75 cm  1.8 cm.  

 

(b) There is no turning point toward the right, so the speed there is nonzero.  Noting that 

the kinetic energy at x = 7.0 cm is  

 

K = 3.0 eV (5.0 eV) = 2.0 eV, 

 

we find the speed using energy conservation:  

 

  19

5

31

2 2.0 eV 1.60 10  J/eV2
8.4 10 m/s.

9.11 10  kge

K
v

m






   


 

 

(c) The electric field at any point P is the (negative of the) slope of the voltage graph 

evaluated at P.  Once we know the electric field, the force on the electron follows 

immediately from F qE , where q = e for the electron. In the region just to the left of 

4.0 cmx , the electric field is ˆ( 133 V/m)iE    and the magnitude of the force is 
172.1 10  NF   . 
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(d) The force points in the +x direction. 

 

(e) In the region just to the right of x = 5.0 cm, the field is E 


 = +100 V/m î  and the force 

is F 


 = ( –1.6 x 10
17 

N) î . Thus, the magnitude of the force is 171.6 10  NF   . 

 

(f) The minus sign indicates that F 


 points in the –x direction. 

 

82. (a) The potential would be 

 

    

2

0 0

6 2 9 9 2 2

4
4

4 4

4 6.37 10 m 1.0electron m 1.6 10 C electron 8.99 10 N m C

0.12V.

e e e
e e e

e e

Q R
V R k

R R

 
 

 

 

  

     

 

 

 

(b) The electric field is 

                E
V

R

e e

e

   


   

 0

8012
18 10

.
. ,

V

6.37 10 m
N C

6
 

or  8| | 1.8 10 N C.E    

 

(c) The minus sign in E indicates that 

E  is radially inward. 

 

83. (a)  Using d = 2 m, we find the potential at P: 

 
9 2 2 19

0 0 0

10

2 2 (8.99 10 N m C )(1.6 10 C)

4 4 (2 ) 4 2.00 m

7.192 10 V.

P

e e e
V

d d d  





   
   

 

 . 

 

Note that we are implicitly assuming that V  0 as r  . 

 

(b) Since U = qV , then the movable particle's contribution of the potential energy when it 

is at r =  is zero, and its contribution to Usystem when it is at P is  

 
19 10 282(1.6 10 C)(7.192 10 V) 2.30 10  JPU qV         . 

 

Thus, the work done is approximately equal to Wapp = 2.30  10
28

 J. 

 

(c) Now, combining the contribution to Usystem from part (b) and from the original pair of 

fixed charges 
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9 2 2 19 2

fixed
2 2

0

28

1 (2 )( 2 ) (8.99 10 N m C )(4)(1.60 10 C)

4 20.0 m(4.00 m) (2.00 m)

2.058 10  J

e e
U







   
 



  

 

 

we obtain 

Usystem =  Wapp + Ufixed = 2.43  10
–29

 J. 

 

84. The electric field throughout the conducting volume is zero, which implies that the 

potential there is constant and equal to the value it has on the surface of the charged 

sphere: 

 
04

A S

q
V V

R
   

 

where q = 30  10
9

 C and R = 0.030 m.  For points beyond the surface of the sphere, the 

potential follows Eq. 24-26: 

04
B

q
V

r
  

where r = 0.050 m. 

 

(a) We see that 

VS – VB  =
0

1 1

4

q

R r

 
 

 
= 3.6  10

3
 V. 

 

(b) Similarly,  

 VA – VB = 
0

1 1

4

q

R r

 
 

 
= 3.6  10

3
 V. 

 

85. We note that the net potential (due to the "fixed" charges) is zero at the first location 

("at ") being considered for the movable charge q (where q = +2e).  Thus, with D = 4.00 

m and e = 1.60  10
19

 C, we obtain 

 

 

9 2 2 19

0 0 0

10

2 2 (8.99 10 N m C )(2)(1.60 10 C)

4 (2 ) 4 4 4.00 m

7.192 10 V .

e e e
V

D D D  





    
   

 

  

 

The work required is equal to the potential energy in the final configuration:   

 

Wapp = qV = (2e)(7.192  10
10

 V) = 2.30  10
28

 J. 

 

86. Since the electric potential is a scalar quantity, this calculation is far simpler than it 

would be for the electric field.  We are able to simply take half the contribution that 
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would be obtained from a complete (whole) sphere.  If it were a whole sphere (of the 

same density) then its charge would be qwhole = 8.00 C.  Then  

 

V  =  
1

2
 Vwhole = 

1

2
  

qwhole

4o r
 =  

1

2
  

8.00 x 10
-6 

C

4o(0.15 m)
 = 2.40  10

5
 V . 

 

87. THINK The work done is equal to the change in potential energy. 

 

EXPRESS The initial potential energy of the system is 

 

 
2

0

0

2

4
i

q
U U

L
   

 

where q is the charge on each particle, L is the length of the triangle side, and U0 is the 

potential energy associated with the interaction of the two fixed charges. After moving to 

the midpoint of the line joining the two fixed charges, the final energy of the 

configuration is  
2

0

0

2

4 ( / 2)
f

q
U U

L
  . 

 

Thus, the work done by the external agent is  

 
2 2

0 0

2 2 1 2
.

4 4
f i

q q
W U U U

L L L 

 
       

 
 

 

ANALYZE Substituting the values given, we have 

 

 
2 9 2 2 2

8

0

2 2(8.99 10 N m C )(0.12 C)
1.5 10  J.

4 1.7 m

q
W

L

 
      

 

At a rate of P = 0.83  10
3 

joules per second, it would take W/P = 1.8  10
5 

seconds or 

about 2.1 days to do this amount of work. 

 

LEARN Since all three particles are positively charged, positive work is required by the 

external agent in order to bring them closer.  

 

88. (a) The charges are equal and are the same distance from C. We use the Pythagorean 

theorem to find the distance  

r d d d  2 2 2
2 2b g b g .  

 

The electric potential at C is the sum of the potential due to the individual charges but 

since they produce the same potential, it is twice that of either one: 
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    9 2 2 6

6

8.99 10 N m C 2 2 2.0 10 C2 22 2

4 4 0.020 m

2.5 10 V.

qq
V

d d 

  
  

 

    

 

(b) As you move the charge into position from far away the potential energy changes 

from zero to qV, where V is the electric potential at the final location of the charge. The 

change in the potential energy equals the work you must do to bring the charge in: 

 

  6 62.0 10 C 2.54 10 V 5.1 J.W qV       

 

(c) The work calculated in part (b) represents the potential energy of the interactions 

between the charge brought in from infinity and the other two charges. To find the total 

potential energy of the three-charge system you must add the potential energy of the 

interaction between the fixed charges. Their separation is d so this potential energy is 

q d2 4  .  The total potential energy is 

 

  
2

9 2 2 62 8.99 10 N m C 2.0 10 C
5.1 J 6.9 J.

4 0.020m

q
U W

d

  
    


 

 

89. The net potential at point P (the place where we are to place the third electron) due to 

the fixed charges is computed using Eq. 24-27 (which assumes V  0 as r  ): 

 

0 0 0

2

4 4 4
P

e e e
V

d d d  

 
    . 

 

Thus, with d = 2.00  10
6

 m and e = 1.60  10
19

 C, we find  

 
9 2 2 19

3

6

0

2 (8.99 10 N m C )(2)(1.60 10 C)
1.438 10 V .

4 2.00 10  m
P

e
V

d






  
      


 

 

Then the required “applied” work is, by Eq. 24-14, 

 

Wapp = (e) VP  = 2.30  10
22

 J. 

 

90. The particle with charge –q has both potential and kinetic energy, and both of these 

change when the radius of the orbit is changed. We first find an expression for the total 

energy in terms of the orbit radius r. The charge Q provides the centripetal force required 

for –q to move in uniform circular motion. The magnitude of the force is F = Qq/40r
2
. 

The acceleration of –q is v
2
/r, where v is its speed. Newton’s second law yields 
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2
2

2

0 0

,
4 4

qQ mv Qq
mv

r r r 
    

and the kinetic energy is 

2

0

1

2 8

Qq
K mv

r
  . 

 

The potential energy is U = –Qq/40r, and the total energy is 

 

E K U
Qq

r

Qq

r

Qq

r
     

8 4 80 0 0    
. 

 

When the orbit radius is r1 the energy is E1 = –Qq/80r1 and when it is r2 the energy is 

E2 = –Qq/80r2. The difference E2 – E1 is the work W done by an external agent to 

change the radius: 

W E E
Qq

r r

Qq

r r
    

F
HG
I
KJ  

F
HG
I
KJ2 1

2 1 1 28

1 1

8

1 1

   
.  

 

91. The initial speed vi of the electron satisfies  

 

K m v e Vi e i 1
2

2  ,  

which gives 

 

v
e V

m
i

e

 



 





2 2 160 10

911 10
148 10

19

31

7 .

.
.

 J 625 V

 kg
m s.

c hb g
 

 

92. The net electric potential at point P is the sum of those due to the six charges: 

 

   

   

156 6

2 22 21 1 0 0

16

22 22 2
0

4

10 5.00 2.00 3.00

4 4 / 2/ 2 / 2

3.00 2.00 5.00 9.4 10
        

/ 2 4 (2.54 10 )/ 2 / 2

3.34 10  V.

i
P Pi

i i i

q
V V

r dd d d d

dd d d d

 





 








     

  


     

   

 

 

 

 

93. THINK To calculate the potential at point B due to the charged ring, we note that all 

points on the ring are at the same distance from B.  

 

EXPRESS Let point B be at  (0, 0, z). The electric potential at B is given by 
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V
q

z R


4 2 2 
 

 

 where q is the charge on the ring. The potential at infinity is taken to be zero. 

 

ANALYZE With q = 16  10
–6

 C, z = 0.040 m, and R = 0.0300 m, we find the potential 

difference between points A (located at the origin) and B to be 

 

2 2
0

9 2 2 6

2 2

6

1 1

4

1 1
(8.99 10 N m C )(16.0 10 C)

0.030 m(0.030 m) (0.040 m)

1.92 10 V.

B A

q
V V

Rz R



 
   

 

 
     
  

  

 

 

LEARN In the limit ,z R  the potential approaches its “point-charge” limit: 

 

0

.
4

q
V

z
  

 

94. (a) Using Eq. 24-26, we calculate the radius r of the sphere representing the 30 V 

equipotential surface: 

 
9 2 2 8

0

(8.99 10 N m C )(1.50 10 C)
4.5m.

4 30 V

q
r

V

  
    

 

(b) If the potential were a linear function of r then it would have equally spaced 

equipotentials, but since V r1  they are spaced more and more widely apart as r 

increases. 

 

95. THINK To calculate the electric potential, we first apply Gauss’ law to calculate the 

electric field of the spherical shell. The Gaussian surface is a sphere that is concentric 

with the shell. 

 

EXPRESS At all points where there is an electric field, it is radially outward. For each 

part of the problem, use a Gaussian surface in the form of a sphere that is concentric with 

the sphere of charge and passes through the point where the electric field is to be found. 

The field is uniform on the surface, so the flux through the surface is given by 
2

enc 04 / ,E dA r E q        where r is the radius of the Gaussian surface and encq  is 

the charge enclosed. (i) In the region 1,r r  the enclosed charge is enc 0q   and therefore, 
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E = 0. (ii) In the region r1 < r < r2, the volume of the shell is 4 3 2

3

1

3b gc hr r , so the 

charge density is 

 


3

4 2

3

1

3

Q

r rc h ,  

 

where Q is the total charge on the spherical shell. Thus, the charge enclosed by the 

Gaussian surface is 

 
3 3

3 3 1
enc 1 3 3

2 1

4
.

3

r r
q r r Q

r r




  
     

   
 

 

Gauss’ law yields 

 

3 3 3 3
2 1 1

0 3 3 2 3 3
2 1 0 2 1

4 .
4

r r r rQ
r E Q E

r r r r r




  
    

   
 

 

(iii) In the region 2 ,r r  the charge enclosed is enc ,q Q  and the electric field is like that 

of a point charge: 

2

0

1
.

4

Q
E

r
  

 

ANALYZE (a) For r > r2 the field is like that of a point charge, and so is the potential: 

 

V
Q

r


1

4 0
,  

 

where the potential was taken to be zero at infinity. 

 

(b) In the region r1 < r < r2, we have  

 

3 3

1

2 3 3
0 2 1

.
4

r rQ
E

r r r




 
 

 

If Vs is the electric potential at the outer surface of the shell (r = r2) then the potential a 

distance r from the center is given by 

 

V V E dr V
Q

r r
r

r

r
dr

V
Q

r r

r r r

r

r

r

s s
r

r

r

r

s

   



F
HG
I
KJ

 


  
F
HG

I
KJ

z z4

1

4

1

2 2

0 2

3

1

3

1

3

2

0 2

3

1

3

2

2

2

1

3

1

3

2

2 2






.

 

 

The potential at the outer surface is found by placing r = r2 in the expression found in 

part (a). It is Vs = Q/40r2. We make this substitution and collect terms to find 
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V
Q

r r

r r r

r



 

F
HG

I
KJ4

1 3

2 20 2

3

1

3

2

2 2

1

3


.  

 

Since   3 4 2

3

1

3Q r rc h  this can also be written as 

 
2 32

2 1

0

3
( ) .

3 2 2

r rr
V r

r





 
   

 
 

 

(c) For 1,r r  the electric field vanishes in the cavity, so the potential is everywhere the 

same inside and has the same value as at a point on the inside surface of the shell. We put 

r = r1 in the result of part (b). After collecting terms the result is 

 

V
Q r r

r r




4

3

20

2

2

1

2

2

3

1

3

c h
c h ,  

 

or in terms of the charge density V r r 


2 0

2

2

1

2c h. 
 

(d) Using the expression for V(r) found in (b), we have 

 

 
2 2 3 2 2

2 22 1 1 2 1
1 2 1

0 1 0 0

3 3 3
( )

3 2 2 3 2 2 2

r r r r r
V r r r

r

  

  

   
         

  
 

and 

 

 
2 2 3 3

2 3 32 2 1 1
2 2 2 1

0 2 0 2 0 2 0 2 0 2

3 3 / 4
( )

3 2 2 3 3 3 4

r r r r Q Q
V r r r r

r r r r r

   

    

   
           

   
. 

 

So the solutions agree at r = r1 and at r = r2. 

 

LEARN Electric potential must be continuous at the boundaries at r = r1 and r = r2. In 

the region where the electric field is zero, no work is required to move the charge around. 

Thus, there’s no change in potential energy and the electric potential is constant. 

 

96. (a) We use Gauss’ law to find expressions for the electric field inside and outside the 

spherical charge distribution. Since the field is radial the electric potential can be written 

as an integral of the field along a sphere radius, extended to infinity. Since different 

expressions for the field apply in different regions the integral must be split into two parts, 

one from infinity to the surface of the distribution and one from the surface to a point 

inside.  
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Outside the charge distribution the magnitude of the field is E = q/40r
2 

and the 

potential is V = q/40r, where r is the distance from the center of the distribution. This is 

the same as the field and potential of a point charge at the center of the spherical 

distribution. To find an expression for the magnitude of the field inside the charge 

distribution, we use a Gaussian surface in the form of a sphere with radius r, concentric 

with the distribution. The field is normal to the Gaussian surface and its magnitude is 

uniform over it, so the electric flux through the surface is 4r
2
E. The charge enclosed is 

qr
3
/R

3
. Gauss’ law becomes 

3
2

0 3 3

0

4 .
4

qr qr
r E E

R R



  


 

 

If Vs is the potential at the surface of the distribution (r = R) then the potential at a point 

inside, a distance r from the center, is 

 

V V E dr V
q

R
r dr V

qr

R

q

R
s

R

r

s
R

r

s      z z4 8 80

3

2

0

3

0    
.  

 

The potential at the surface can be found by replacing r with R in the expression for the 

potential at points outside the distribution. It is Vs = q/40R. Thus, 

 

V
q

R

r

R R

q

R
R r  

L
NM

O
QP  

4

1

2

1

2 8
3

0

2

3

0

3

2 2

  
c h.  

 

(b) The potential difference is 

0 0 0

2 3
,

8 8 8
s c

q q q
V V V

R R R  
      

  
 

or 0| | /8V q R  . 

 

97. THINK The increase in electric potential at the surface of the copper sphere is 

proportional to the increase in electric charge.  

 

EXPRESS The electric potential at the surface of a sphere of radius R is given by 

0/ 4 ,V q R  where q is the charge on the sphere. Thus, 04 .q RV  The number of 

electrons entering the copper sphere is / ,N q e  but this must be equal to ( / 2) ,t  where 

 is the decay rate of the nickel.   

 

ANALYZE (a) With R = 0.010 m, when V = 1000 V, the net charge on the sphere is 

 

9

0 9 2 2

(0.010 m)(1000 V)
4 1.11 10 C.

8.99 10 N m C
q RV    

 
 

 

Dividing q by e yields  
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9 19 9(1.11 10 C)/(1.6 10 C) 6.95 10N        

 

electrons that entered the copper sphere.  So the time required is 

 

 
9

8

6.95 10
38 s

/ 2 (3.7 10 / s) / 2

N
t




  


. 

 

(b) The energy deposited by each electron that enters the sphere is 0E  100 keV = 1.6  

10
14

 J. Using the given heat capacity, we note that a temperature increase of T = 5.0 K 

= 5.0 ºC required  

(14 J/K)(5.0 K) 70 JE C T     

 

of energy. Dividing this by 0E  gives the number of electrons needed to enter the sphere 

(in order to achieve that temperature change): 

 

 15

14

0

70 J
4.375 10

1.6 10  J

E
N

E 
    


 

Thus, the time needed is 
15

7

8

4.375 10
2.36 10 s

/ 2 (3.7 10 / s) / 2

N
t



 
    


 

or roughly 270 days.  

 

LEARN As more electrons get into copper, more energy is deposited, and the copper 

sample gets hotter.  

 

98. (a) The potential difference is 

 
6 6

9 2 2

0 0

5

1 1 15 10  C 5.0 10  C
(8.99 10 N m C )

4 4 0.060 m 0.030 m

7.49 10  V.

Q q
V

R r 

   
       

 

 

 

 

(b) By connecting the two metal spheres with a wire, we now have one conductor, and 

any excess charge must reside on the surface of the conductor. Therefore, the charge on 

the small sphere is zero. 

 

(c) Since all the charges reside on the surface of the large sphere, we have 

 

15.0 C 5.00 C 20.0 C.Q Q q          

 

99. (a) The charge on every part of the ring is the same distance from any point P on the 

axis. This distance is r z R 2 2 , where R is the radius of the ring and z is the distance 

from the center of the ring to P. The electric potential at P is 
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2 2 2 2
0 0 0

2 2
0

1 1 1 1

4 4 4

1
.

4

dq dq
V dq

r z R z R

q

z R

  



  
 




  
 

 

(b) The electric field is along the axis and its component is given by 

 

2 2 1/ 2 2 2 3/ 2

0 0

2 2 3/ 2

0

1
( ) ( ) (2 )

4 4 2

.
4 ( )

V q q
E z R z R z

z z

q z

z R

 



    
       

   




 

 

This agrees with Eq. 23-16. 

 

100. The distance r being looked for is that where the alpha particle has (momentarily) 

zero kinetic energy.  Thus, energy conservation leads to 

 

K0 + U0 = K + U     (0.48  10
12

 J) + 
(2e)(92e)

40 r0
 = 0 + 

(2e)(92e)

40 r
   . 

 

If we set r0 =  (so U0 = 0) then we obtain r = 8.8  10
14

 m. 

 

101. (a) Let the quark-quark separation be r. To “naturally” obtain the eV unit, we only 

plug in for one of the e values involved in the computation: 

 

     
 

9 2 2 19

up up 15
0

5

4 8.99 10 N m C 1.60 10 C2 / 3 2 / 31 4

4 9 9 1.32 10 m

4.84 10 eV 0.484MeV.

e e ke
U e e

r r



 

  
  



  

 

 

(b) The total consists of all pair-wise terms: 

 

        

0

2 / 3 2 / 3 / 3 2 / 3 / 3 2 / 31
0.

4

e e e e e e
U

r r r

  
    

 
 

 

102. We imagine moving all the charges on the surface of the sphere to the center of the 

the sphere. Using Gauss’ law, we see that this would not change the electric field outside 

the sphere.  

 

The magnitude of the electric field E of the uniformly charged sphere as a function of r, 

the distance from the center of the sphere, is thus given by E(r) = q/(40r
2
) for r > R. 
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Here R is the radius of the sphere. Thus, the potential V at the surface of the sphere 

(where r = R) is given by 

 

   
   

2

2

9 8N m

C

2

2

8.99 10 1.50 10 C

4 4 0.160m

8.43 10 V.

R

r
R

q q
V R V E r dr dr

r R 







 

 
    

 

   

 

103. Since the electric potential energy is not changed by the introduction of the third 

particle, we conclude that the net electric potential evaluated at P caused by the original 

two particles must be zero: 

 1 2

0 1 0 2

0
4 4

q q

r r 
  . 

 

Setting r1 = 5d/2 and r2 = 3d /2 we obtain q1 = – 5q2/3, or 1 2/ 5/3 1.7q q   . 

 


