
1647 

 

 

Chapter 38 
 

 

1. (a) With E = hc/min = 1240 eV·nm/min = 0.6 eV, we obtain  = 2.1  10
3
 nm = 2.1 

m.  

 

(b) It is in the infrared region. 

 

2. Let 

1

2

2m v E
hc

e  photon


 

and solve for v: 

 

 

 
 

  

2

2 2

8 5

3

2 2 2

2 1240eV nm
2.998 10 m/s 8.6 10 m/s.

590nm 511 10 eV

e e e

hc hc hc
v c c

m m c m c  
  


   



 

 

Since v c ,  the nonrelativistic formula K mv 1
2

2  may be used. The mec
2
 value of 

Table 37-3 and 1240eV nmhc   are used in our calculation. 

 

3. Let R be the rate of photon emission (number of photons emitted per unit time) of the 

Sun and let E be the energy of a single photon. Then the power output of the Sun is given 

by P = RE. Now  

E = hf = hc/, 

 

where h = 6.626  10
–34

 J·s is the Planck constant, f is the frequency of the light emitted, 

and  is the wavelength. Thus P = Rhc/ and 

 

  
  

26

45

34 8

550nm 3.9 10 W
1.0 10 photons/s.

6.63 10 J s 2.998 10 m/s

P
R

hc





   

  
 

 

4. We denote the diameter of the laser beam as d. The cross-sectional area of the beam is 

A = d 
2
/4. From the formula obtained in Problem 38-3, the rate is given by 

 

 
  

   

3

22 34 8 3

21 2

4 633nm 5.0 10 W

/ 4 6.63 10 J s 2.998 10 m/s 3.5 10 m

1.7 10 photons/m s .

R P

A hc d



 



 


 

   

  
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5. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 

frequency. The wavelength  is related to the frequency by f = c, so E = hc/. Since h = 

6.626  10
–34

 J·s and c = 2.998  10
8
 m/s, 

 

hc 
  


 



 

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

Thus, 

E 
1240eV nm


.  

With  

 = (1, 650, 763.73)
–1

 m = 6.0578021  10
–7

 m = 605.78021 nm, 

 

we find the energy to be 

E
hc

 





1240

60578021
2 047

eV nm

nm
eV.

.
.  

 

6. The energy of a photon is given by E = hf, where h is the Planck constant and f is the 

frequency. The wavelength  is related to the frequency by f = c, so E = hc/. Since h = 

6.626  10
–34

 J·s and c = 2.998  10
8
 m/s, 

 

hc 
  


 



 

6 626 10 2 998 10

1602 10 10
1240

34 8

19 9

. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

Thus, 

E 
1240eV nm


.  

With 589 nm  , we obtain 

1240eV nm
2.11eV.

589nm

hc
E




    

 

7. The rate at which photons are absorbed by the detector is related to the rate of photon 

emission by the light source via 

abs
abs emit2

(0.80) .
4

A
R R

r
  

 

Given that 6 2

abs 2.00 10  mA    and 3.00 m,r   with abs 4.000 photons/s,R   we find the 

rate at which photons are emitted to be 

 

 
2 2

8

emit abs 6 2

abs

4 4 (3.00 m)
4.000 photons/s 2.83 10 photons/s

(0.80) (0.80)(2.00 10  m )

r
R R

A

 


   


. 
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Since the energy of each emitted photon is  

 

ph

1240 eV nm
2.48 eV

500nm

hc
E




   , 

 

the power output of source is 

 

 8 8 10

emit emit ph 2.83 10 photons/s (2.48 eV) 7.0 10 eV/s 1.1 10 W.P R E         

 

8. The rate at which photons are emitted from the argon laser source is given by R = 

P/Eph, where P = 1.5 W is the power of the laser beam and Eph = hc/ is the energy of 

each photon of wavelength . Since  = 84% of the energy of the laser beam falls within 

the central disk, the rate of photon absorption of the central disk is 

 

   
   

 

 
R R

P

hc




/

. .

. . /

.



084 15

6 63 10 2 998 10 515 10

33 10

34 8 9

18

b gb g
c hc h c h

W

J s m / s m

photons / s.

 

 

9. (a) We assume all the power results in photon production at the wavelength 

589 nm  . Let R be the rate of photon production and E be the energy of a single 

photon. Then,  

P = RE = Rhc/, 

 

where E = hf and f = c/ are used. Here h is the Planck constant, f is the frequency of the 

emitted light, and  is its wavelength. Thus, 

 

  

  

9

20

34 8

589 10 m 100W
2.96 10 photon/s.

6.63 10 J s 3.00 10 m/s

P
R

hc







   

  
 

 

(b) Let I be the photon flux a distance r from the source. Since photons are emitted 

uniformly in all directions, R = 4r
2
I and 

 

 

20
7

4 2

2.96 10 photon/s
4.86 10 m.

4 4 1.00 10 photon/m s

R
r

I 


   

 
 

 

(c) The photon flux is 

 

 

20
18

22 2

2.96 10 photon/s photon
5.89 10 .

4 m s4 2.00m

R
I

r 


   


 

 

10. (a) The rate at which solar energy strikes the panel is 
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P  139 2 60 361. . .kW / m m kW.2 2c hc h  

 

(b) The rate at which solar photons are absorbed by the panel is 

 

    

3

34 8 9
ph

22

3.61 10 W

6.63 10 J s 2.998 10 m/s / 550 10 m

1.00 10  photons/s.

P
R

E  


 

   

 

 

 

(c) The time in question is given by 

 

t
N

R

A 





6 02 10

100 10
60 2

23

22

.

. /
.

s
s.  

 

11. THINK The rate of photon emission is the number of photons emitted per unit time. 

 

EXPRESS Let R be the photon emission rate and E be the energy of a single photon. The 

power output of a lamp is given by P = RE, where we assume that all the power goes into 

photon production. Now, E = hf = hc/, where h is the Planck constant, f is the frequency 

of the light emitted, and  is the wavelength. Thus  

 

 
Rhc P

P R
hc


    . 

 

ANALYZE (a) The fact that R   means that the lamp that emits light with the longer 

wavelength (the 700 nm infrared lamp) emits more photons per unit time. The energy of 

each photon is less, so it must emit photons at a greater rate. 

 

(b) Let R be the rate of photon production for the 700 nm lamp. Then, 

 

  

  
21

19

700nm 400J/s
1.41 10 photon/s.

1.60 10 J/eV 1240 eV nm

P
R

hc 


   

 
 

 

LEARN With / ,P Rhc   we readily see that when the rate of photon emission is held 

constant, the shorter the wavelength, the greater the power, or rate of energy emission. 

 

12. Following Sample Problem — “Emission and absorption of light as photons,” we 

have 

   34 8

17

9

100 / s 6.63 10 J s 2.998 10 m/s
3.6 10 W.

550 10 m

Rhc
P









  
   


 

 

13. The total energy emitted by the bulb is E = 0.93Pt, where P = 60 W and  
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t = 730 h = (730 h)(3600 s/h) = 2.628  10
6 

s. 

 

The energy of each photon emitted is Eph = hc/. Therefore, the number of photons 

emitted is 

 

N
E

E

Pt

hc
  



   
 

 
ph

W s

J s m / s m

0 93 0 93 60 2 628 10

6 63 10 2 998 10 630 10
4 7 10

6

34 8 9

26.

/

. .

. . /
. .



b gb gc h
c hc h c h  

 

14. The average power output of the source is 

 

9 10

emit

7.2 nJ
3.6 nJ/s 3.6 10  J/s 2.25 10 eV/s

2 s

E
P

t


      


. 

 

Since the energy of each photon emitted is  

 

ph

1240 eV nm
2.07 eV

600nm

hc
E




   , 

 

the rate at which photons are emitted by the source is 

 
10

10emit
emit

ph

2.25 10 eV/s
1.09 10 photons/s.

2.07 eV

P
R

E


     

 

Given that the source is isotropic, and the detector (located 12.0 m away) has an 

absorbing area of 6 2

abs 2.00 10  mA    and absorbs 50% of the incident light, the rate of 

photon absorption is  

 

 
6 2

10abs
abs emit2 2

2.00 10  m
(0.50) (0.50) 1.09 10 photons/s 6.0 photons/s.

4 4 (12.0 m)

A
R R

r 


     

 

15. THINK The energy of an incident photon is E = hf, where h is the Planck constant, 

and f is the frequency of the electromagnetic radiation. 

 

EXPRESS The kinetic energy of the most energetic electron emitted is  

 

Km = E –  = (hc/) – , 

 

where  is the work function for sodium, and f = c/where  is the wavelength of the 

photon. 

 

 

The stopping potential Vstop is related to the maximum kinetic energy by eVstop = Km, so  
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eVstop = (hc/) –  

and 

stop

1240eV nm
170nm.

5.0eV 2.2eV

hc

eV


   

 
 

 

Here eVstop = 5.0 eV and hc = 1240 eV∙nm are used. 

 

LEARN The cutoff frequency for this problem is  

 

 
19

14

0 34

(2.2 eV)(1.6 10  J/eV)
5.3 10 Hz

J s
f

h





 
   

 
. 

 

16. We use Eq. 38-5 to find the maximum kinetic energy of the ejected electrons: 

 

K hfmax . . .       414 10 30 10 2 315 15eV s Hz eV = 10eV.c hc h  

 

17. The speed v of the electron satisfies  

 

K m v m c v c Ee emax / .   1
2

2 1
2

2 2c hb g photon   

 

Using Table 37-3, we find 

 

v c
E

m ce




 



 

2
2 998 10

2 580 4 50

511 10
6 76 10

2

8

3

5photon
m / s

eV eV

eV
m / s.

d i c h b g
.

. .
.  

 

18. The energy of the most energetic photon in the visible light range (with wavelength of 

about 400 nm) is about E = (1240 eV·nm/400 nm) = 3.1 eV (using the value hc = 1240 

eV·nm). Consequently, barium and lithium can be used, since their work functions are 

both lower than 3.1 eV. 

 

19. (a) We use Eq. 38-6: 

 

 
stop

1240eV nm/400nm 1.8eV/
1.3V.

hf hc
V

e e e

   
     

 

(b) The speed v of the electron satisfies  

 

K m v m c v c Ee emax / .   1
2

2 1
2

2 2c hb g photon   

 

Using Table 37-3, we find 
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 
 

 photon stop stop 8

2 3

5

2 2 2 2 1.3V
2.998 10 m/s

511 10 eV

6.8 10 m/s.

e e e

E eV eV e
v c

m m m c


    



 

 

 

20. Using the value hc = 1240 eV·nm, the number of photons emitted from the laser per 

unit time is 

 

R
P

E
 



 
 





ph

W

eV nm / 600 nm)(1.60 10 J / eV)
s,

2 00 10

1240
6 05 10

3

19

15.

(
. /  

 

of which (1.0  10
–16

)(6.05  10
15

/s) = 0.605/s actually cause photoelectric emissions. 

Thus the current is  

 

i = (0.605/s)(1.60  10
–19

 C) = 9.68  10
–20

 A. 

 

21. (a) From r = mev/eB,  the speed of the electron is v = rBe/me. Thus, 

 
2

2 2 4 2 19 2
2

max 31 19

1 1 ( ) (1.88 10 T m) (1.60 10 C)

2 2 2 2(9.11 10 kg)(1.60 10 J/eV)

3.1 keV.

e e

e e

rBe rB e
K m v m

m m

 

 

    
    

  



 

 

(b) Using the value hc = 1240 eV·nm, the work done is 

 

W E K  



 

photon

eV nm

nm
keV keV.max .

1240

71 10
310 14

3
 

 

22. We use Eq. 38-6 and the value hc = 1240 eV·nm: 

 

K E
hc hc

max

max

.    





photon

eV nm

nm

eV nm

nm
eV.

 

1240

254

1240

325
107  

 

23. THINK The kinetic energy Km of the fastest electron emitted is given by  

 

Km = hf – , 

 

where  is the work function of aluminum, and f is the frequency of the incident 

radiation. 

 

EXPRESS Since f = c/where  is the wavelength of the photon, the above expression 

can be rewritten as  

Km = (hc/) – . 
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ANALYZE (a) Thus, the kinetic energy of the fastest electron is 

 

Km 



1240

200
4 20

eV nm

nm
eV = 2.00 eV. , 

 

where we have used hc = 1240 eV·nm.  

 

(b) The slowest electron just breaks free of the surface and so has zero kinetic energy. 

 

(c) The stopping potential Vstop is given by Km = eVstop, so  

 

Vstop = Km/e = (2.00 eV)/e = 2.00 V. 

 

(d) The value of the cutoff wavelength is such that Km = 0. Thus, hc/ =  or  

 

 = hc/ = (1240 eV·nm)/(4.2 eV) = 295 nm. 

 

LEARN If the wavelength is longer than , the photon energy is less than  and a 

photon does not have sufficient energy to knock even the most energetic electron out of 

the aluminum sample. 

 

24. (a) For the first and second case (labeled 1 and 2) we have  

 

eV01 = hc/1 –  ,     eV02 = hc/2 – , 

 

from which h and  can be determined. Thus, 

 

 

       

1 2 15

1 11 1 17
1 2

1.85eV 0.820eV
4.12 10 eV s.

3.00 10 nm/s 300nm 400nm

e V V
h

c  



  

 
    

   
 

 

 

(b) The work function is 

 

2 2 1 1

1 2

3( ) (0.820 eV)(400 nm) (1.85 eV)(300 nm)
2.27 eV.

300 nm 400 nm

V V 

 

 
  

 
 

 

(c) Let  = hc/max to obtain 

max
.

 



hc



1240

2 27
545

eV nm

eV
nm.  

 

25. (a) We use the photoelectric effect equation (Eq. 38-5) in the form hc/ =  + Km. 

The work function depends only on the material and the condition of the surface, and not 

on the wavelength of the incident light. Let 1 be the first wavelength described and 2 be 

the second. Let Km1 = 0.710 eV be the maximum kinetic energy of electrons ejected by 
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light with the first wavelength, and Km2 = 1.43 eV be the maximum kinetic energy of 

electrons ejected by light with the second wavelength. Then, 

 

1 2

1 2

, .m m

hc hc
K K

 
    

 

The first equation yields  = (hc/1) – Km1. When this is used to substitute for  in the 

second equation, the result is  

 

(hc/2) = (hc/1) – Km1 + Km2. 

 

The solution for 2 is 

 

1
2

1 2 1

(1240V nm)(491nm)

( ) 1240eV nm (491nm)(1.43eV 0.710eV)

382nm.

m m

hc

hc K K

 
  

    



 

 

Here hc = 1240 eV·nm has been used.  

 

(b) The first equation displayed above yields 

 

   


 
hc

Km
1

1

1240

491
0 710 182

eV nm

nm
eV eV.. .  

 

26. To find the longest possible wavelength max (corresponding to the lowest possible 

energy) of a photon that can produce a photoelectric effect in platinum, we set Kmax = 0 in 

Eq. 38-5 and use hf = hc/. Thus hc/max = . We solve for max: 

 

max
.

 



hc



1240

532
233

eV nm

nm
nm.  

 

27. THINK The scattering between a photon and an electron initially at rest results in a 

change or photon’s wavelength, or Compton shift. 

 

EXPRESS When a photon scatters off from an electron initially at rest, the change in 

wavelength is given by  

 = (h/mc)(1 – cos ), 

 

where m is the mass of an electron and  is the scattering angle.  

 

ANALYZE (a) The Compton wavelength of the electron is h/mc = 2.43  10
–12

 m = 2.43 

pm. Therefore, we find the shift to be  

 

 = (h/mc)(1 – cos ) = (2.43 pm)(1 – cos 30°) = 0.326 pm. 
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The final wavelength is  

 

' =  +  = 2.4 pm + 0.326 pm = 2.73 pm. 

 

(b) With  = 120°,  = (2.43 pm)(1 – cos 120°) = 3.645 pm and  

 

' = 2.4 pm + 3.645 pm = 6.05 pm. 

 

LEARN The wavelength shift is greatest when  = 180°, where cos180° = –1. At this 

angle, the photon is scattered back along its initial direction of travel, and  = 2h/mc. 

 

28. (a) The rest energy of an electron is given by E = mec
2
. Thus the momentum of the 

photon in question is given by 

 
2

31 8 22(9.11 10 kg)(2.998 10 m/s) 2.73 10 kg m/s

0.511 MeV / .

e
e

m cE
p m c

c c

c

         



 

 

(b) From Eq. 38-7, 
34

12

22

6.63 10 J s
2.43 10 m=2.43 pm.

2.73 10 kg m/s

h

p







 
   

 
 

 

(c) Using Eq. 38-1, 
8

20

12

2.998 10 m/s
1.24 10 Hz.

2.43 10 m

c
f

 


   


 

 

29. (a) The x-ray frequency is 

 
8

18

12

2.998 10 m/s
8.57 10 Hz.

35.0 10 m

c
f

 


   


 

 

(b) The x-ray photon energy is 

 

E hf      ( . .414 10 355 1015 4eV s)(8.57 10 Hz) eV.18  

 

(c) From Eq. 38-7, 

 
34

23

12

6.63 10 J s
1.89 10 kg m/s 35.4 keV / .

35.0 10 m

h
p c






 
     
 

 

 

30. The (1 – cos ) factor in Eq. 38-11 is largest when  = 180°. Thus, using Table 37-3, 

we obtain 
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max 2

1240MeV fm
(1 cos180 ) (1 ( 1)) 2.64 fm

938MeVp

hc

m c


         

 

where we have used the value hc = 1240 eV·nm =1240 MeV·fm. 

 

31. If E is the original energy of the photon and E' is the energy after scattering, then the 

fractional energy loss is 

E E E

E E



 

  
 


 

 

using the result from Sample Problem – “Compton scattering of light by electrons.” Thus 

 

/ 0.75
3 300 %.

1 / 1 0.75

E E

E E





 
   

 
 

 

A 300% increase in the wavelength leads to a 75% decrease in the energy of the photon. 

 

32. (a) Equation 38-11 yields 

 

 
h

m ce

( ( . .1 2 43 4 86     cos ) pm)(1 cos180 ) pm.  

 

(b) Using the value hc = 1240 eV·nm, the change in photon energy is 

 

1 1.(1240 eV nm) 40.6 keV.
0.01 nm 4.86 pm 0.01 nm

hc hc
E

 
       

   
 

 

(c) From conservation of energy, K = – E = 40.6 keV. 

 

(d) The electron will move straight ahead after the collision, since it has acquired some of 

the forward linear momentum from the photon. Thus, the angle between +x and the 

direction of the electron’s motion is zero. 

 

33. (a) The fractional change is 

 

1

( / 1
1 1

/

1 1
.

( )(1 cos ) 1C

E hc

E hc

  
 

      

     

       
           

      

   
    

 

 

If  = 3.0 cm = 3.0  10
10

 pm and  = 90°, the result is 
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11 9

10 1

1
8.1 10 8.1 10  %.

(3.0 10 pm/2.43pm)(1 cos90 ) 1

E

E

 




    

   
 

 

(b) Now  = 500 nm = 5.00  10
5
 pm and  = 90°, so 

 

6 4

5 1

1
4.9 10 4.9 10  %.

(5.00 10 pm/2.43pm)(1 cos90 ) 1

E

E

 




    

   
 

 

(c) With  = 25 pm and  = 90°, we find 

 

2

1

1
8.9 10 8.9 %.

(25pm/2.43pm)(1 cos90 ) 1

E

E






   

  
 

(d) In this case,  

 

 = hc/E = 1240 nm·eV/1.0 MeV = 1.24  10
–3

 nm = 1.24 pm, 

so 

1

1
0.66 66 %.

(1.24pm/2.43pm)(1 cos90 ) 1

E

E 


  

  
 

 

(e) From the calculation above, we see that the shorter the wavelength the greater the 

fractional energy change for the photon as a result of the Compton scattering. Since E/E 

is virtually zero for microwave and visible light, the Compton effect is significant only in 

the x-ray to gamma ray range of the electromagnetic spectrum. 

 

34. The initial energy of the photon is (using hc = 1240 eV·nm) 

 

51240eV nm
4.13 10 eV

0.00300 nm

hc
E




    . 

 

Using Eq. 38-11 (applied to an electron), the Compton shift is given by 

 

   
2 3

1240eV nm
1 cos 1 cos90.0 2.43 pm

511 10 eVe e e

h h hc

m c m c m c



        


 

 

Therefore, the new photon wavelength is  

 

' = 3.00 pm + 2.43 pm = 5.43 pm. 

 

Consequently, the new photon energy is 

 

51240eV nm
2.28 10 eV

0.00543nm

hc
E


    


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By energy conservation, then, the kinetic energy of the electron must be equal to  

 

 5 5 5 144.13 10 2.28 10 eV 1.85 10 eV 3.0 10  JeK E E E             . 

 

35. (a) Since the mass of an electron is m = 9.109  10
–31

 kg, its Compton wavelength is 

 
34

12

31 8

6.626 10 J s
2.426 10 m 2.43 pm.

(9.109 10 kg)(2.998 10 m/s)
C

h

mc







 
    

 
 

 

(b) Since the mass of a proton is m = 1.673  10
–27

 kg, its Compton wavelength is 

 
34

15

27 8

6.626 10 J s
1.321 10 m 1.32 fm.

(1.673 10 kg)(2.998 10 m/s)
C






 
   

 
 

 

(c) We note that hc = 1240 eV·nm, which gives E = (1240 eV·nm)/, where E is the 

energy and  is the wavelength. Thus for the electron,  

 

E = (1240 eV·nm)/(2.426  10
–3

 nm) = 5.11  10
5
 eV = 0.511 MeV. 

 

(d) For the proton,  

 

E = (1240 eV·nm)/(1.321  10
–6

 nm) = 9.39  10
8
 eV = 939 MeV. 

 

36. (a) Using the value hc = 1240 eV·nm, we find 

 

 
hc

E



  1240

0511
2 43 10 2 433nm eV

MeV
nm pm.

.
. .  

 

(b) Now, Eq. 38-11 leads to 

 

(1 cos ) 2.43pm (2.43pm)(1 cos90.0 )

4.86pm.

e

h

m c
              



 

 

(c) The scattered photons have energy equal to 

 

2.43 pm
(0.511 MeV) 0.255 MeV.

4.86 pm
E E





  
     

   
 

 

37. (a) From Eq. 38-11,  

(1 cos )
e

h

m c
   . 
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In this case  = 180° (so cos  = –1), and the change in wavelength for the photon is 

given by  = 2h/mec. The energy E' of the scattered photon (with initial energy E = hc/) 

is then 

21 / 1 (2 / )( / ) 1 2 /

50.0keV
41.8keV .

1 2(50.0keV)/0.511MeV

e e

hc E E E
E

h m c E hc E m c   
   

   

 


 

 

(b) From conservation of energy the kinetic energy K of the electron is given by  

 

K = E – E' = 50.0 keV – 41.8 keV = 8.2 keV. 

 

38. Referring to Sample Problem — “Compton scattering of light by electrons,” we see 

that the fractional change in photon energy is 

 

n ( / )(1 cos )
.

( / ) ( / )(1 cos )

E E h mc

E hc E h mc





  
 
  

 

 

Energy conservation demands that E – E' = K, the kinetic energy of the electron. In the 

maximal case,  = 180°, and we find 

 

( / )(1 cos180 ) 2 /
.

( / ) ( / )(1 cos180 ) ( / ) (2 / )

K h mc h mc

E hc E h mc hc E h mc

 
 

   
 

 

Multiplying both sides by E and simplifying the fraction on the right-hand side leads to 

 

K E
mc

c E mc

E

mc E




F
HG

I
KJ  

2

2 2

2

2

/

/ / /
.  

 

39. The magnitude of the fractional energy change for the photon is given by 

 

ph

ph

( / 1

/

E hc

E hc

 
  

      

        
         

    
 

 

where  = 0.10. Thus  = /(1 – ). We substitute this expression for  in Eq. 38-11 

and solve for cos : 
2

ph

( )
cos 1 1

(1 ) (1 )

(0.10)(511 keV)
1 0.716 .

(1 0.10)(200keV)

mc mc mc

h h E

 
 

 
     

 

  

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This leads to an angle of  = 44°. 

 

40. The initial wavelength of the photon is (using hc = 1240 eV·nm) 

 

1240eV nm
0.07086 nm

17500eV

hc

E



    

 

or 70.86 pm. The maximum Compton shift occurs for  = 180°, in which case Eq. 38-11 

(applied to an electron) yields 

 

2 3

1240eV nm
(1 cos180 ) (1 ( 1)) 0.00485 nm

511 10 eVe

hc

m c


   
          

  
 

 

where Table 37-3 is used. Therefore, the new photon wavelength is  

 

' = 0.07086 nm + 0.00485 nm = 0.0757 nm. 

 

Consequently, the new photon energy is 

 

41240eV nm
1.64 10 eV 16.4 keV .

0.0757nm

hc
E




     


 

 

By energy conservation, then, the kinetic energy of the electron must equal  

 

E' – E = 17.5 keV – 16.4 keV = 1.1 keV. 

 

41. (a) From Eq. 38-11 

(1 cos ) (2.43pm)(1 cos90 ) 2.43pm .
e

h

m c
         

 

(b) The fractional shift should be interpreted as  divided by the original wavelength: 

 

62.425pm
4.11 10 .

590nm






    

 

(c) The change in energy for a photon with  = 590 nm is given by 

 
15 8

ph 2 2

6

(4.14 10 eV s)(2.998 10 m/s)(2.43pm)

(590nm)

8.67 10 eV .

hc hc
E



 





    
       

 

  

 

 

(d) For an x-ray photon of energy Eph = 50 keV,  remains the same (2.43 pm), since it 

is independent of Eph.  
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(e) The fractional change in wavelength is now 

 
3

2

15 8

ph

(50 10 eV)(2.43pm)
9.78 10 .

/ (4.14 10 eV s)(2.998 10 m/s)hc E

 







  
   

  
 

 

(f) The change in photon energy is now 

 

ph ph

1 1

1

hc
E hc E

 

      

     
         

       
 

 

where  = /. With Eph = 50 keV and  = 9.78  10
–2

 , we obtain Eph =  –4.45 keV. 

(Note that in this case   0.1 is not close enough to zero so the approximation Eph  

hc/2
 is not as accurate as in the first case, in which  = 4.12  10

–6
. In fact if one were 

to use this approximation here, one would get Eph  –4.89 keV, which does not amount 

to a satisfactory approximation.) 

 

42. (a) Using Wien’s law, max 2898 m K,T    we obtain 

 

max

2898 m K 2898 m K
0.50 m 500 nm

5800 KT

 
 

 
    . 

 

(b) The electromagnetic wave is in the visible spectrum.  

 

(c) If max 1.06 mm 1060 m,    then 
max

2898 m K 2898 m K
2.73 K

1060 m
T

 

 

 
   . 

 

43. (a) Using Wien’s law, the wavelength that corresponds to thermal radiation maximum 

is 

4 10

max 7

2898 m K 2898 m K
2.9 10 m 2.9 10 m

1.0 10 KT

 
   

     


. 

 

(b) The wave is in the x-ray region of the electromagnetic spectrum. 

 

(c) Using Wien’s law, the wavelength that corresponds to thermal radiation maximum is 

 

2 8

max 5

2898 m K 2898 m K
2.9 10 m 2.9 10 m

1.0 10 KT

 
   

     


 

 

(d) The wave is in the ultraviolet region of the electromagnetic spectrum. 

 

44. (a) The intensity per unit length according to the classical radiation law shown in Eq. 

38-13 is 
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4

2
C

ckT
I




  

 

On the other hand, Planck’s radiation law (Eq. 38-14) gives 

 
2

5 /

2 1

1
P hc kT

c h
I

e 







. 

 

The ratio of the two expressions can be written as 

 

   / 1
1 1hc kT xC

P

I kT
e e

I hc x


     

 

where / .x hc kT  For T = 200 K, and 400 nm,   

 
34 8

9 23

(6.626 10 J s)(2.998 10 m/s)
17.98,

(400 10 m)(1.38 10 J/K)(2000 K)

hc
x

kT



 

  
  

 
 

 

and the ratio of the intensities is  17.98 61
1 3.6 10

17.98

C

P

I
e

I
    . 

 

(b) For 200 m,   we have  

 
34 8

6 23

(6.626 10 J s)(2.998 10 m/s)
0.03596,

(200 10 m)(1.38 10 J/K)(2000 K)

hc
x

kT



 

  
  

 
 

 

and the ratio of the intensities is  

 

 0.035961
1 1.02

0.03596

C

P

I
e

I
   . 

 

(c) The agreement is better at longer wavelength, with / 1.C PI I   

 

45. (a) With 98.6 F 37 C 310 K,T      we use Wien’s law and find the wavelength that 

corresponds to spectral radiancy maximum to be 

 

max

2898 m K 2898 m K
9.35 m

310 KT

 
 

 
   . 

 

(b) With 9.35 m,   and T = 310 K, the spectral radiancy is 
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2

5 /

1
8 2 34 34 8

6 5 6 23

7 3

2 1
( )

1

2 (2.998 10 m/s) (6.626 10 J s) (6.626 10 J s)(2.998 10 m/s)
exp

(9.35 10 m) (9.35 10 m)(1.38 10 J/K)(310 K)

3.688 10 W/m

hc kT

c h
S

e 









 

  




       
   

    

 

 

For small range of wavelength, the radiated power may be approximated as 

 
7 3 4 2 9 5( ) (3.688 10 W/m )(4 10 m )(10 m) 1.475 10 W.P S A            

 

(c) The energy carried by each photon is 

 
34 8

20

6

(6.626 10 J s)(2.998 10 m/s)
2.1246 10 J

9.35 10 m

hc
hf








  
    


 

 

Writing ( / ) ,P dN dt   we find the rate to be 

 
5

14

20

1.475 10 W
6.94 10 photons/s

2.1246 10 J

dN P

dt 






   


. 

 

(d) If 500 nm,   and T = 310 K, the spectral radiancy is 

 
2

5 /

1
8 2 34 34 8

9 5 9 23

25 3

2 1
( )

1

2 (2.998 10 m/s) (6.626 10 J s) (6.626 10 J s)(2.998 10 m/s)
exp

(500 10 m) (500 10 m)(1.38 10 J/K)(310 K)

5.95 10 W/m

hc kT

c h
S

e 









 

  






       
   

    

 

 

For small range of wavelength, the radiated power may be approximated as 

 
25 3 4 2 9 37( ) (5.95 10 W/m )(4 10 m )(10 m) 2.38 10 W.P S A             

 

(e) The energy carried by each photon is 

 
34 8

19

9

(6.626 10 J s)(2.998 10 m/s)
3.97 10 J

500 10 m

hc
hf








  
    


 

 

The corresponding photon emission rate is 
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5
19

19

2.38 10 W
5.9 10 photons/s

3.97 10 J

dN P

dt 







   


 

 

46. (a) Using Table 37-3 and the value hc = 1240 eV·nm, we obtain 

 

2

1240eV nm
0.0388nm.

2 2(511000eV)(1000eV)2e e

h h hc

p m K m c K


       

 

(b) A photon’s de Broglie wavelength is equal to its familiar wave-relationship value. 

Using the value hc = 1240 eV·nm, 

 

1240eV nm
1.24nm .

1.00keV

hc

E



    

 

(c) The neutron mass may be found in Appendix B. Using the conversion from electron-

volts to Joules, we obtain 

 
34

13

27 16

6.63 10 J s
9.06 10 m.

2 2(1.675 10 kg)(1.6 10 J)n

h

m K





 

 
   

 
 

 

47. THINK The de Broglie wavelength of the electron is given by  = h/p, where p is the 

momentum of the electron. 

 

EXPRESS The momentum of the electron can be written as  

 

 2 2 ,e e ep m v m K m eV    

 

where V is the accelerating potential and e is the fundamental charge. Thus, 

 

.
2 e

h h

p m eV
    

 

ANALYZE With V = 25.0 kV, we obtain 

 
34

31 19 3

12

J s

2 2(9.109 10 kg)(1.602 10 C)(25.0 10 V)

7.75 10 m 7.75pm.

e

h

m eV



 



 
  

  

  

 

 

LEARN The wavelength is of the same order as the Compton wavelength of the electron. 

Increasing the potential difference V would make the wavelength even smaller. 

 



CHAPTER 38 1666 

48. The same resolution requires the same wavelength, and since the wavelength and 

particle momentum are related by p = h/, we see that the same particle momentum is 

required. The momentum of a 100 keV photon is  

 

p = E/c = (100  10
3
 eV)(1.60  10

–19
 J/eV)/(3.00  10

8
 m/s) = 5.33  10

–23
 kg·m/s. 

 

This is also the magnitude of the momentum of the electron. The kinetic energy of the 

electron is 

K
p

m
 

 


 






2 23

2

31

15

2

533 10

2 911 10
156 10

.

.
.

kg m / s

kg
J.

c h
c h  

 

The accelerating potential is 

 

V
K

e
 




 





156 10

160 10
9 76 10

15

19

3.

.
.

J

C
V.  

 

49. THINK The de Broglie wavelength of the sodium ion is given by  = h/p, where p is 

the momentum of the ion. 

 

EXPRESS The kinetic energy acquired is K = qV, where q is the charge on an ion and V 

is the accelerating potential. Thus, the momentum of an ion is 2 ,p mK and the 

corresponding de Broglie wavelength is .
2

h h

p mK
    

 

ANALYZE (a) The kinetic energy of the ion is  

 

K = qV = (1.60  10
–19

 C)(300 V) = 4.80  10
–17

 J. 

 

The mass of a single sodium atom is, from Appendix F,  

 

m = (22.9898 g/mol)/(6.02  10
23

 atom/mol) = 3.819  10
–23

 g = 3.819  10
–26

 kg. 

 

Thus, the momentum of a sodium ion is 

 

p mK        2 2 3819 10 4 80 10 191 1026 17 21. . .kg J kg m / s.c hc h  

 

(b) The de Broglie wavelength is 

 
34

13

21

6.63 10 J s
3.46 10 m.

1.91 10 kg m/s

h

p






 
    

 
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LEARN The greater the potential difference, the greater the kinetic energy and 

momentum, and hence, the smaller the de Broglie wavelength.  

 

50. (a) We need to use the relativistic formula  

 

 
2 2 2/ / /ep E c m c E c K c     

 2since .eE m c  So 

 

8

9

1240eV nm
2.5 10 nm 0.025 fm.

50 10 eV

h hc

p K
 
     


 

 

(b) With 5.0 fmR , we obtain 2/ 2.0 10R    .  

 

51. THINK The de Broglie wavelength of a particle is given by  = h/p, where p is the 

momentum of the particle. 

 

EXPRESS Let K be the kinetic energy of the electron, in units of electron volts (eV). 

Since 2 / 2 ,K p m  the electron momentum is 2 .p mK  Thus, the de Broglie 

wavelength is 

 
34 9 1/2

31 19

1/2

J s 1.226 10 m eV

2 2(9.109 10 kg)(1.602 10 J/eV)

1.226 nm eV
.

h h

p mK KK

K

 

 

   
    

 




 

 

ANALYZE With  = 590 nm, the above equation can be inverted to give  

 

K 
F

HG
I
KJ 

F
HG

I
KJ   1226 1226

590
4 32 10

2 2

6. .
.

nm eV nm eV

nm
eV.

1/2 1/2


 

 

LEARN The analytical expression shows that the kinetic energy is proportional to 1/
2
. 

This is so because 2 ,K p  while 1/ .p   

 

52. Using Eq. 37-8, we find the Lorentz factor to be  

 

 
2 2

1 1
7.0888

1 ( / ) 1 (0.9900)v c
   

 
. 

 

With p mv  (Eq. 37-41), the de Broglie wavelength of the protons is 
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34

16

27 8

6.63 10  J s
1.89 10  m

(7.0888)(1.67 10 kg)(0.99 3.00 10 m/s)

h h

p mv









 
    

  
. 

 

The vertical distance between the second interference minimum and the center point is  

 

 
2

1 3
1

2 2

L L
y

d d

  
   
 

 

 

where L is the perpendicular distance between the slits and the screen. Therefore, the 

angle between the center of the pattern and the second minimum is given by 

 

 2 3
tan

2

y

L d


   . 

Since d , tan  , and we obtain 

 

 
16

8 6

9

3 3(1.89 10  m)
7.07 10 rad (4.0 10 )

2 2(4.00 10  m)d





 




      


. 

 

53. (a) The momentum of the photon is given by p = E/c, where E is its energy. Its 

wavelength is 

1240eV nm
1240 nm.

1.00eV

h hc

p E



     

 

(b) The momentum of the electron is given by p mK 2 ,  where K is its kinetic energy 

and m is its mass. Its wavelength is 

  
h

p

h

mK2
.  

 

If K is given in electron volts, then 

 
34 9 1/2 1/2

31 19

J s 1.226 10 m eV 1.226nm eV
.

2(9.109 10 kg)(1.602 10 J/eV) K KK


 

 

    
  

 
 

 

For 1.00 eVK  , we have 
1/21.226nm eV

1.23 nm.
1.00eV




   

(c) For the photon, 

6

9

1240eV nm
1.24 10 nm 1.24 fm.

1.00 10 eV

hc

E
 
    


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(d) Relativity theory must be used to calculate the wavelength for the electron. According 

to Eq. 38-51, the momentum p and kinetic energy K are related by  

 

(pc)
2
 = K

2
 + 2Kmc

2
. 

Thus, 

    
2

2 2 9 9 6

9

2 1.00 10 eV 2 1.00 10 eV 0.511 10 eV

1.00 10 eV.

pc K Kmc      

 

 

 

The wavelength is 

6

9

1240eV nm
1.24 10 nm 1.24 fm.

1.00 10 eV

h hc

p pc
 
     


 

 

54. (a) The momentum of the electron is  

 
34

24

9

6.63 10 J s
3.3 10 kg m/s.

0.20 10 m

h
p








 
    


 

 

(b) The momentum of the photon is the same as that of the electron: 
243.3 10 kg m/s.p     

 

(c) The kinetic energy of the electron is 

 

 
 

2
242

18

31

3.3 10 kg m/s
6.0 10 J 38 eV.

2 2 9.11 10 kg
e

e

p
K

m







 
    


 

 

(d) The kinetic energy of the photon is 

 

  24 8 16

ph 3.3 10 kg m/s 2.998 10 m/s 9.9 10 J 6.2 keV.K pc           

 

55. (a) Setting    h p h E c m ce/ / / ,b g2 2 2  we solve for K = E – mec
2
:  

 

 
22

22 4 2

3

1240eV nm
0.511MeV 0.511MeV

10 10 nm

0.015 MeV 15 keV.

e e

hc
K m c m c



  
       

    

 

 

 

(b) Using the value 1240eV nmhc   

 

5

3

1240eV nm
1.2 10 eV 120 keV.

10 10 nm

hc
E

 


    


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(c) The electron microscope is more suitable, as the required energy of the electrons is 

much less than that of the photons. 

 

56. (a) Since K m c 7 5 4 9322. ,MeV << MeV b g  we may use the nonrelativistic 

formula p m K 2  .  Using Eq. 38-43 (and noting that 1240 eV·nm = 1240 MeV·fm), 

we obtain 

 

   2

1240MeV fm
5.2fm.

2 4u 931.5MeV/u 7.5MeV2

h hc

p m c K




     

 

(b) Since   52. fm << 30fm,  to a fairly good approximation, the wave nature of the  

particle does not need to be taken into consideration. 

 

57. The wavelength associated with the unknown particle is  

 

,p

p p p

h h

p m v
    

 

where pp is its momentum, mp is its mass, and vp is its speed. The classical relationship pp 

= mpvp was used. Similarly, the wavelength associated with the electron is e = h/(meve), 

where me is its mass and ve is its speed. The ratio of the wavelengths is  

 

p/e = (meve)/(mpvp), 

so 

 

31
27

4

9.109 10 kg
1.675 10 kg.

3 1.813 10

e e
p e

p p

v
m m

v











   


 

 

According to Appendix B, this is the mass of a neutron. 

 

58. (a) We use the value 1240nm eVhc  : 

 

photon

1240nm eV
1.24keV

1.00nm

hc
E




   . 

 

(b) For the electron, we have 

 

   

 

22 2
2

2

/ / 1 1240eV nm
1.50 eV.

2 2 2 2 0.511MeV 1.00nme e e

h hcp
K

m m m c

   
     

 
 

 

(c) In this case, we find 
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9

photon 6

1240nm eV
1.24 10 eV 1.24 GeV.

1.00 10 nm
E




   


 

 

(d) For the electron (recognizing that 1240 eV·nm = 1240 MeV·fm) 

 

K p c m c m c hc m c m ce e e e     


F

HG
I
KJ  



2 2 2
2

2 2 2
2

2

2

21240

100
0511 0511

c h b g c h

b g

/

.
. .



MeV fm

fm
MeV MeV

= 1.24 10 MeV = 1.24GeV.3

 

 

We note that at short  (large K) the kinetic energy of the electron, calculated with the 

relativistic formula, is about the same as that of the photon. This is expected since now K 

 E  pc for the electron, which is the same as E = pc for the photon. 

 

59. (a) We solve v from  = h/p = h/(mpv): 

 

  

34
6

27 12

6.626 10 J s
3.96 10 m/s.

1.6705 10 kg 0.100 10 mp

h
v

m



 

 
   

  
 

 

(b) We set eV K m vp  1
2

2  and solve for the voltage: 

 

  
 

2
27 62

4

19

1.6705 10 kg 3.96 10 m/s
8.18 10 V 81.8 kV.

2 2 1.60 10 C

pm v
V

e





 
    


 

 

60. The wave function is now given by 

 

( , ) .( )x t e i kx t   
0  

 

This function describes a plane matter wave traveling in the negative x direction. An 

example of the actual particles that fit this description is a free electron with linear 

momentum 

p hk ( / )2 i  and kinetic energy  

 
2 2 2

22 8e e

p h k
K

m m
 


 . 

 

61. THINK In this problem we solve a special case of the Schrödinger’s equation where 

the potential energy is 0( ) constant.U x U     

 

EXPRESS For U = U0, Schrödinger’s equation becomes 
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2 2

02 2

8
[ ] 0.

d m
E U

dx h





    

We substitute   0e
ikx .   

 

ANALYZE The second derivative is 
2

2 2

02
.ikxd

k e k
dx


      The result is 

 
2

2

02

8
[ ] 0.

m
k E U

h
 


     

Solving for k, we obtain 

 
2

0 02

8 2
[ ] 2 [ ].

m
k E U m E U

h h

 
     

 

LEARN Another way to realize this is to note that with a constant potential energy 

0( ) ,U x U  we can simply redefine the total energy as 0 ,E E U    and the 

Schrödinger’s equation looks just like the free-particle case: 

 
2 2

2 2

8
0.

d mE

dx h

 



   

 

The solution is 0 exp( ),ik x    where  

 
2

2

02

8 2 2
2 2 ( ) .

mE
k k mE m E U

h h h

  
       

 

62. We plug Eq. 38-17 into Eq. 38-16, and note that 

 

d

dx

d

dx
Ae Be ikAe ikBeikx ikx ikx ikx

    c h .  

 

Also, 

d

dx

d

dx
ikAe ikBe k Ae k Beikx ikx ikx ikx

2

2

2 2
    c h .  

Thus, 

d

dx
k k Ae k Be k Ae Beikx ikx ikx ikx

2

2

2 2 2 2 0


      c h .  

 

63. (a) Using Euler’s formula e
i

 = cos  + i sin we rewrite (x) as 
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       0 0 0 0cos sin cos sin ,ikxx e kx i kx kx i kx a ib            

 

where a =0 cos kx and b = 0 sin kx are both real quantities. 

 

(b) The time-dependent wave function is 

 

   

   

  ( , ) ( )

[ )] [ sin )]

( )x t x e e e e

kx t i kx t

i t ikx i t i kx t  

   

  

0 0

0 0cos( ( .
 

 

64. THINK The angular wave number k is related to the wavelength  by k = 2/



EXPRESS The wavelength is related to the particle momentum p by  = h/p, so k = 

2p/h. Now, the kinetic energy K and the momentum are related by K = p
2
/2m, where m 

is the mass of the particle.  

 

ANALYZE Thus, we have p mK 2  and 

 

2 2 2
.

p mK
k

h h

  




    

 

LEARN The expression obtained above applies to the case of a free particle only. In the 

presence of interaction, the potential energy is nonzero, and the functional form of k will 

change. For example, as shown in Problem 38-57, when 0( ) ,U x U the angular wave 

number becomes 

0

2
2 ( ) .k m E U

h


   

 

65. (a) The product *nn can be rewritten as 

 

nn a ib a ib a ib a i b a ib a ib

a iba iab ib ib a b

            

      

b gb g b gc h b gb g
b gb g2 2 2 ,

 

 

which is always real since both a and b are real. 

 

(b) Straightforward manipulation gives 

 

   

2

2 2 2 2 2 2 2 2 2 2

| ( )( ) | | ( ) | | ( ) ( ) |

.

nm a ib c id ac iad ibc i bd ac bd i ad bc

ac bd ad bc a c b d a d b c

           

       
 

 

However, since  
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n m a ib c id a b c d

a c b d a d b c

     

   

2 2 2 2

2 2 2 2 2 2 2 2 ,

 

 

we conclude that |nm| = |n| |m|. 

 

66. (a) The wave function is now given by 

 

( , ) ( ).( ) ( )x t e e e e ei kx t i kx t i t ikx ikx          
0 0  

Thus, 
2 2 2 2

2 2

0 0 0

2 2 2 2

0 0

2

0

| ( , ) | ( )

              | (cos sin ) (cos sin ) | 4 (cos )

              2 (1 cos2 ).

i t ikx ikx i t ikx ikx ikx ikxx t e e e e e e e e

kx i kx kx i kx kx

kx

   

 



          

    

 

 

 

(b) Consider two plane matter waves, each with the same amplitude  0 2/  and 

traveling in opposite directions along the x axis. The combined wave  is a standing 

wave: 

 
( ) ( )

0 0 0 0( , ) ( ) (2 cos ) .i kx t i kx t ikx ikx i t i tx t e e e e e kx e                  

 

Thus, the squared amplitude of the matter wave is 

 

| ( , )| ( cos ) ( ), x t kx e kxi t2

0

2
2

0

22 2 1    cos2  

 

which is shown to the right. 

 

(c) We set  x t kx, cosb g b g2

0

22 1 2 0    to  

obtain cos(2kx) = –1. This gives 

 

   
2

2 2 2 1 0,1, 2, 3,kx n n





 
     

 
 

 

We solve for x: 

x n 
1

4
2 1b g .  

 

(d) The most probable positions for finding the particle are where    , 1 cos2x t kx    

reaches its maximum. Thus cos 2kx = 1, or 
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 
2

2 2 2 , 0,1, 2, 3,kx n n





 
   

 
 

We solve for x and find x n
1

2
   

 

67. If the momentum is measured at the same time as the position, then 

 




p
x

 
 

  


 6 63 10

2 50
21 10

34
24.

. .
J s

pm
kg m s

b g  

 

68. (a) Using the value 1240nm eVhc  , we have 

 

3

1240nm eV
124keV .

10.0 10 nm

hc
E

 


  


 

 

(b) The kinetic energy gained by the electron is equal to the energy decrease of the 

photon: 

 

    
10.0pm

1 cos 2.43pm 1 cos180

1 1

1

124keV

1 1

40.5keV.

C

hc hc E
E hc

E




   

      
           

           

 
 



 

 

(c) It is impossible to “view” an atomic electron with such a high-energy photon, because 

with the energy imparted to the electron the photon would have knocked the electron out 

of its orbit. 

 

69. We use the uncertainty relationship  x p   . Letting x = , the de Broglie 

wavelength, we solve for the minimum uncertainty in p: 

 

2 2

h p
p

x  
   


 

 

where the de Broglie relationship p = h/ is used. We use 1/2 = 0.080 to obtain p = 

0.080p. We would expect the measured value of the momentum to lie between 0.92p and 

1.08p. Measured values of zero, 0.5p, and 2p would all be surprising. 

 

70. (a) The potential energy of the electron is ( )( 200 V) 200 eV,bU qV e      so its 

kinetic energy is 

 500 eV 200 eV 300 eV.bK E U      
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(b) Using non-relativistic regime approximation, 2 21
2

/ 2 ,K mv p m   we find the 

momentum of the electron to be 

 

 31 19 242 2(9.11 10 kg)(300 eV)(1.6 10 J/eV) 9.35 10 kg m/sp mK           

 

(c) The speed of the electron is 

 
19

7

31

2 2(300 eV)(1.6 10 J/eV)
1.03 10 m/s

9.11 10 kg

K
v

m






   


. 

 

(d) The corresponding de Broglie wavelength is 

 
34

11

24

J s
7.08 10 m

9.35 10 kg m/s

h

p







 
   

 
. 

 

(e) The angular wave number is 

 

10 1

11

2 2
8.87 10 m

7.08 10 m
k

 






   


. 

  
71. (a) The angular wave number in region 1 is 

 

31 19

34

11 1

2 2
2 2(9.11 10 kg)(800 eV)(1.6 10 J/eV)

6.626 10 J s

1.45 10  m

k mE
h

   





   
 

 

 

 

(b) The angular wave number in region 2 is 

 

31 19

34

10 1

2 2
2 ( ) 2(9.11 10 kg)(800 eV 200 eV)(1.6 10 J/eV)

6.626 10 J s

7.24 10  m
2

b bk m E U
h

k

   





     
 

  

 

(c) The wave functions in the two regions can be written as 

 

 1 2( ) , ( ) bik xikx ikxx Ae Be x Ce     

 

Matching the boundary conditions leads to 

 

b

A B C

Ak Bk Ck

 

 
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Since / 2,bk k the above equations can be solved to give ( / ) 1/3B A   and 

( / ) 4 /3.C A   The reflection coefficient is 

 

 
2

2

| | 1
0.111

| | 9

B
R

A
   . 

 

(d) With 5

0 5.00 10N    electrons in the incident beam, the number reflected is 

 

5 4

0

1
(5.00 10 ) 5.56 10

9
RN RN

 
     

 
. 

 

72. (a)  The angular wave number in region 1 is given by 

 
31 7

11 1

34

2 2 2 2 2 (9.11 10 kg)(1.60 10 m/s)
1.38 10 m

( / ) J s

p mv
k

h p h h

    








 
      

 
 

 

(b) The energy of the electron in region 1 is 

 

 2 31 7 2 161 1
(9.11 10 kg)(1.60 10 m/s) 1.17 10 J 728.8 eV.

2 2
E K mv           

 

 In region 2 where V = 500 V, the kinetic energy of the electron is  

 

728.8 eV 500 eV 228.8 eV.b bK E U      

 

and the corresponding angular wave number is 

 

31 19

34

10 1

2 2 2
2 ( ) 2 2(9.11 10 kg)(228.8 eV)(1.6 10 J/eV)

6.626 10 J s

7.74 10  m

b b bk m E U mK
h h

    





     
 

 
 

(c) The wave functions in the two regions can be written as 

 

 1 2( ) , ( ) bik xikx ikxx Ae Be x Ce     

 

Matching the boundary conditions leads to 

 

b

A B C

Ak Bk Ck

 

 
 

 

Solving for B and C in terms of A gives 
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1 / 2

,
1 / 1 /

b

b b

k kB C

A k k A k k


 

 
. 

 

With 10 1 11 1/ (7.74 10  m ) /(1.38 10  m ) 0.56,bk k      we find the reflection coefficient to 

be  
2 22

2

1 /| | 1 0.56
0.0794

| | 1 / 1 0.56

b

b

k kB
R

A k k

   
      

   
 

 

(d) With 9

0 3.00 10N    electrons in the incident beam, the number reflected is 

 

  9 8

0 0.0794 (3.00 10 ) 2.38 10RN RN     . 

 

73. The energy of the electron in region 1 is 

 

 2 31 2 251 1
(9.11 10 kg)(900m/s) 3.69 10 J 2.306 eV.

2 2
E K mv          

 

The angular wave number in region 1 is  

 
31

6 1

34

2 2 2 2 2 (9.11 10 kg)(900m/s)
7.77 10 m

( / ) J s

p mv
k

h p h h

    









      

 
 

 

 In region 2 where V = 1.25 V, the kinetic energy of the electron is  

 

2.306 eV 1.25 eV 1.056 eV.b bK E U         

 

and the corresponding angular wave number is 

 

31 25

34

6 1

2 2 2
2 ( ) 2 2(9.11 10 kg)(1.056 eV)(1.6 10 J/ eV)

6.626 10 J s

5.258 10  m

b b bk m E U mK
h h

  
  





     
 

 
 

The ratio of the two wave numbers is 6 1 6 1/ (5.258 10  m ) /(7.77 10  m ) 0.6767.bk k       

The reflection coefficient is 

 
2 22

2

1 /| | 1 0.6767
0.0372

| | 1 / 1 0.6767

b

b

k kB
R

A k k

   
      

   
, 

 

which leads to the following transmission coefficient:  

 

1 1 0.0372 0.9628T R     . 
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Thus, we find the current on the other side of the step boundary to be  

 

 0 0.9628 (5.00 mA) 4.81 mAtI TI   . 

74. With 

 2

2

2

8
exp 2 ,

bbL
m U E

T e L
h


  
   
 
 

 

we have 

 

  

 

22
1240eV nm ln 0.0011 ln 1

6.0eV
2 4 2 0.511MeV 4 0.70nm

5.1eV.

b

h T
E U

m L 

  
      

   



 

 

75. (a) The transmission coefficient T for a particle of mass m and energy E that is 

incident on a barrier of height Ub and width L is given by 

 
2 ,bLT e  

where 

 2

2

8
.

bm U E
b

h

 
  

For the proton, we have 

 

   

 

2 27 13

2
34

14 1

8 1.6726 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

5.8082 10 m .

b

 





   


 

 

 

 

This gives   14 1 155.8082 10 m 10 10 m 5.8082,bL      and 

 
2(5.8082) 69.02 10 .T e     

 

The value of b was computed to a greater number of significant digits than usual because 

an exponential is quite sensitive to the value of the exponent.  

 

(b) Mechanical energy is conserved. Before the proton reaches the barrier, it has a kinetic 

energy of 3.0 MeV and a potential energy of zero. After passing through the barrier, the 

proton again has a potential energy of zero, thus a kinetic energy of 3.0 MeV. 

 

(c) Energy is also conserved for the reflection process. After reflection, the proton has a 

potential energy of zero, and thus a kinetic energy of 3.0 MeV. 

 

(d) The mass of a deuteron is 2.0141 u = 3.3454  10
–27

 kg, so 
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   

 

2 27 13

2
34

14 1

8 3.3454 10 kg 10MeV 3.0MeV 1.6022 10 J MeV

6.6261 10 J s

8.2143 10 m .

b

 





   


 

 

 

 

This gives   14 1 158.2143 10 m 10 10 m 8.2143,bL      and 2(8.2143) 87.33 10 .T e     

 

(e) As in the case of a proton, mechanical energy is conserved. Before the deuteron 

reaches the barrier, it has a kinetic energy of 3.0 MeV and a potential energy of zero. 

After passing through the barrier, the deuteron again has a potential energy of zero, thus a 

kinetic energy of 3.0 MeV. 

 

(f) Energy is also conserved for the reflection process. After reflection, the deuteron has a 

potential energy of zero, and thus a kinetic energy of 3.0 MeV. 

 

76. (a) The rate at which incident protons arrive at the barrier is  

 
19 211.0kA 1.60 10 C 6.25 10 sn     . 

 

Letting nTt = 1, we find the waiting time t: 

 

 
 

 
  

2
1

2

21

111 104

81
exp 2

2 0.70nm1
exp 8 938MeV 6.0eV 5.0eV

6.25 10 s 1240eV nm

3.37 10 s 10 y,

p bm U E
t nT L

n h


  
  
 
 

  
   

    

  

 

 

which is much longer than the age of the universe. 

 

(b) Replacing the mass of the proton with that of the electron, we obtain the 

corresponding waiting time for an electron: 

 

 
 

 
  

1

2

21

19

81
exp 2

2 0.70nm1
exp 8 0.511MeV 6.0eV 5.0eV

6.25 10 s 1240eV nm

2.1 10 s.

e bm U E
t nT L

n h






  
  
  

  
   

    

 
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The enormous difference between the two waiting times is the result of the difference 

between the masses of the two kinds of particles. 

 

77. THINK Even though ,bE U  barrier tunneling can still take place quantum 

mechanically with finite probability. 

 

EXPRESS If m is the mass of the particle and E is its energy, then the transmission 

coefficient for a barrier of height Ub and width L is given by 2 ,bLT e  where 

 

 2

2

8
.

bm U E
b

h

 
  

 

If the change Ub in Ub is small (as it is), the change in the transmission coefficient is 

given by 

2 .b b

b b

dT db
T U LT U

dU dU
       

Now, 

 

 

 

22

2 2

81 8 1
.

2 22

b

b b bb

m U Edb m b

dU h U E h U EU E

 
  

 
 

Thus, 

.b

b

U
T LTb

U E


  


 

ANALYZE (a) With 

 

   

 

2 31 19

9 1

2
34

8 9.11 10 kg 6.8 eV 5.1 eV 1.6022 10 J eV
6.67 10 m ,

6.6261 10 J s
b

 





   
  

 
 

 

we have 9 1 12 1(6.67 10 m )(750 10 m ) 5.0,bL        and 

 

 
  0.010 6.8eV

5.0 0.20 .
6.8eV 5.1eV

b

b

UT
bL

T U E


     

 
 

 

There is a 20% decrease in the transmission coefficient. 

 

(b) The change in the transmission coefficient is given by 

 

22 2bLdT
T L be L bT L

dL

          

and 
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   9 1 122 2 6.67 10 m 0.010 750 10 m 0.10 .
T

b L
T

 
          

 

There is a 10% decrease in the transmission coefficient. 

 

(c) The change in the transmission coefficient is given by 

 

22 2 .bLdT db db
T E Le E LT E

dE dE dE

          

 

Now,  2b bdb dE db dU b U E     , so 

 

 
  0.010 5.1eV

5.0 0.15 .
6.8eV 5.1eVb

T E
bL

T U E

 
  

 
 

 

There is a 15% increase in the transmission coefficient. 

 

LEARN Increasing the barrier height or the barrier thickness reduces the probability of 

transmission, while increasing the kinetic energy of the electron increases the probability.  

 

78. The energy of the electron in region 1 is 

 

 2 31 2 251 1
(9.11 10 kg)(1200 m/s) 6.56 10 J 4.0995 eV.

2 2
E K mv          

 

The angular wave number in region 1 is  

 
31

7 1

34

2 2 2 2 2 (9.11 10 kg)(1200 m/s)
1.036 10 m

( / ) J s

p mv
k

h p h h

    









      

 
 

 

The transmission coefficient for a barrier of height Ub and width L is given by 

 
2 ,bLT e  

where 

     

 

2 31 252

22 34

6 1

8 9.11 10 kg 4.719 eV 4.0995 eV 1.6022 10 J eV8

6.6261 10 J s

4.0298 10 m .

bm U E
b

h

   





    
 

 

 

 

Thus,  
6 1 9 1 1.612exp( 2 ) exp 2(4.0298 10 m )(200 10 m ) 0.1995,T bL e              

and the current transmitted is 
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 0 0.1995 (9.00 mA) 1.795 mAtI TI   . 

 

79. (a) Since p p p px y x y   0 0,   . Thus from Eq. 38-20 both x and y are 

infinite. It is therefore impossible to assign a y or z coordinate to the position of an 

electron. 

 

(b) Since it is independent of y and z the wave function (x) should describe a plane 

wave that extends infinitely in both the y and z directions. Also from Fig. 38-12 we see 

that |(x)|
2
 extends infinitely along the x axis. Thus the matter wave described by (x) 

extends throughout the entire three-dimensional space. 

 

80. Using the value 1240eV nmhc  , we obtain 

 

6

7

1240eV nm
5.9 10 eV 5.9 eV.

21 10 nm

hc
E 




    


 

 

81. We substitute the classical relationship between momentum p and velocity v, v = p/m 

into the classical definition of kinetic energy, K mv 1
2

2  to obtain K = p
2
/2m. Here m is 

the mass of an electron. Thus p mK 2 . The relationship between the momentum and 

the de Broglie wavelength  is  = h/p, where h is the Planck constant. Thus, 

 

.
2

h

mK
   

If K is given in electron volts, then 

 
34 9 1/2

31 19

1/2

J s 1.226 10 m eV

2(9.109 10 kg)(1.602 10 J/eV)

1.226nm eV
.

KK

K


 

 

   
 

 




 

 

82. We rewrite Eq. 38-9 as 

 

h

m

h

m

v

v c 
 

'
cos

( / )
cos , 

1 2
 

and Eq. 38-10 as 

2
sin sin .

1 ( / )

h v

m v c
 




 
 

 

We square both equations and add up the two sides: 
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2 2 2 2

2

1 1 1
cos sin ,

1 ( / )

h v

m v c
 

  

      
        

         

 

 

where we use sin
2
  + cos

2
  = 1 to eliminate . Now the right-hand side can be written as 

 

v

v c
c

v c

2

2

2

21
1

1

1
  



L
NM

O
QP( / ) ( / )

,  

so 
2 2 2

2

1 1 1 1
cos sin 1 .

1 ( / )

h

v c mc
 

  

      
         

         

 

 

Now we rewrite Eq. 38-8 as 

2

1 1 1
1 .

1 ( / )

h

mc v c 

 
   

  
 

 

If we square this, then it can be directly compared with the previous equation we obtained 

for [1 – (v/c)
2
]

–1
. This yields 

 
2 2 2 2

1 1 1 1 1
1 cos sin 1 .

h h

mc mc
 

    

         
                           

 

 

We have so far eliminated  and v. Working out the squares on both sides and noting that 

sin
2
 + cos

2
  = 1, we get 

(1 cos ) .
h

mc
        

 

83. (a) The average kinetic energy is 

 

  23 21 23 3
1.38 10  J/K 300K 6.21 10 J 3.88 10 eV.

2 2
K kT           

 

(b) The de Broglie wavelength is 

 

  

34
10

27 21

6.63 10 J s
1.46 10 m.

2 2 1.675 10 kg 6.21 10 Jn

h

m K





 

 
   

 
 

 

84. (a) The average de Broglie wavelength is 
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avg

avg avg

eV nm

3 4 MeV eV / K K

m = 73pm.

   






 





h

p

h
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(b) The average separation is 

  23

3
avg 53 3

1.38 10 J/K 300K1 1
3.4nm.

1.01 10 Pa/
d

n p kT


   


 

 

(c) Yes, since avg avg.d   

 

85. (a) We calculate frequencies from the wavelengths (expressed in SI units) using Eq. 

38-1. Our plot of the points and the line that gives the least squares fit to the data is 

shown below. The vertical axis is in volts and the horizontal axis, when multiplied by 

10
14

, gives the frequencies in Hertz. 

 

From our least squares fit procedure, we determine the slope to be 4.14  10
–15

 V·s, 

which, upon multiplying by e, gives 4.14  10
–15

 eV·s. The result is in very good 

agreement with the value given in Eq. 38-3. 

 

 
 

(b) Our least squares fit procedure can also determine the y-intercept for that line. The y-

intercept is the negative of the photoelectric work function. In this way, we find  =  

2.31 eV. 

 

86. We note that  

| | ( ) ( ) .e e e e eikx ikx ikx ikx ikx2 1     

 

Referring to Eq. 38-14, we see therefore that | | | | . 2 2   
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87. From Sample Problem — “Compton scattering of light by electrons,” we have 

 

2

( / )(1 cos )
(1 cos )

E h mc hf

E mc

 


  

  
   

 
 

 

where we use the fact that  +  = ' = c/f '. 

 

88. The de Broglie wavelength for the bullet is 

 
34

35

3

6.63 10 J.s
1.7 10 m .

(40 10 kg)(1000m/s)

h h

p mv








    


 

89. (a) Since  

Eph = h/ = 1240 eV·nm/680 nm = 1.82 eV <  = 2.28 eV, 

 

there is no photoelectric emission.  

 

(b) The cutoff wavelength is the longest wavelength of photons that will cause 

photoelectric emission. In sodium, this is given by Eph = hc/max = , or  

 

max = hc/ = (1240 eV·nm)/2.28 eV = 544 nm. 

 

(c) This corresponds to the color green. 

 

90. THINK We apply Heisenberg’s uncertainty principle to calculate the uncertainty in 

position.  

 

EXPRESS The uncertainty principle states that  x p   , where x and p represent the 

intrinsic uncertainties in measuring the position and momentum, respectively. The 

uncertainty in the momentum is  

 

p = m v = (0.50 kg)(1.0 m/s) = 0.50 kg m/s,  

 

where v is the uncertainty in the velocity.  

 

ANALYZE Solving the uncertainty relationship  x p    for the minimum uncertainty 

in the coordinate x, we obtain 

 

 
0.60J s

0.19m.
2 0.50kg m s

x
p


   

  
 

 

LEARN Heisenberg’s uncertainty principle implies that it is impossible to 

simultaneously measure a particle’s position and momentum with infinite accuracy.  

 


