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Chapter 27 
 

 

1. THINK The circuit consists of two batteries and two resistors. We apply Kirchhoff’s 

loop rule to solve for the current. 

 

EXPRESS Let i be the current in the circuit and take it to be positive if it is to the left in 

R1. Kirchhoff’s loop rule gives  

1 – iR2 – iR1 – 2 = 0. 

 

For parts (b) and (c), we note that if i is the current in a resistor R, then the power 

dissipated by that resistor is given by 2P i R . 

 

ANALYZE (a) We solve for i: 
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A positive value is obtained, so the current is counterclockwise around the circuit. 

 

(b) For R1, the dissipation rate is P1 = 2

1i R  (0.50 A)
2
(4.0 ) = 1.0 W.  

 

(c) For R2, the rate is P2 = 2

2i R   (0.50 A)
2
 (8.0 ) = 2.0 W. 

 

If i is the current in a battery with emf , then the battery supplies energy at the rate P = 

i provided the current and emf are in the same direction. On the other hand, the battery 

absorbs energy at the rate P = i  if the current and emf are in opposite directions.  

 

(d) For 1, P1 = 1i   (0.50 A)(12 V) = 6.0 W. 

 

(e) For 2, P2 = 2i   (0.50 A)(6.0 V) = 3.0 W.  

 

(f) In battery 1 the current is in the same direction as the emf. Therefore, this battery 

supplies energy to the circuit; the battery is discharging.  

 

(g) The current in battery 2 is opposite the direction of the emf, so this battery absorbs 

energy from the circuit. It is charging. 

 

LEARN Multiplying the equation obtained from Kirchhoff’s loop rule by idt  leads to 

the “energy-method” equation discussed in Section 27-4: 
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 2 2

1 1 2 2 0.i dt i R dt i R dt i dt      

 

The first term represents the rate of work done by battery 1, the second and third terms 

the thermal energies that appear in resistors R1 and R2, and the last term the work done on 

battery 2.  

 

2. The current in the circuit is  

 

i = (150 V – 50 V)/(3.0  + 2.0 ) = 20 A. 

 

So from VQ + 150 V – (2.0 )i = VP, we get  

 

VQ = 100 V + (2.0 )(20 A) –150 V = –10 V. 

 

3. (a) The potential difference is V =  + ir = 12 V + (50 A)(0.040 ) = 14 V. 

 

(b) P = i
2
r = (50 A)

2
(0.040 ) = 1.0×10

2
 W. 

 

(c) P' = iV = (50 A)(12 V) = 6.0×10
2
 W. 

 

(d) In this case V =  – ir = 12 V – (50 A)(0.040 ) = 10 V. 

 

(e) Pr = i
2
r =(50 A)

2
(0.040 ) = 1.00

2
 W. 

 

4. (a) The loop rule leads to a voltage-drop across resistor 3 equal to 5.0 V (since the total 

drop along the upper branch must be 12 V).  The current there is consequently  

i = (5.0 V)/(200 ) = 25 mA.  Then the resistance of resistor 1 must be (2.0 V)/i  = 80 . 

 

(b) Resistor 2 has the same voltage-drop as resistor 3; its resistance is 200 . 

 

5. The chemical energy of the battery is reduced by E = q, where q is the charge that 

passes through in time t = 6.0 min, and  is the emf of the battery. If i is the current, 

then q = i t and  

 

E = i t = (5.0 A)(6.0 V) (6.0 min) (60 s/min) = 1.1  10
4
 J. 

 

We note the conversion of time from minutes to seconds. 

 

6. (a) The cost is (100 W · 8.0 h/2.0 W · h) ($0.80) = $3.2 0
2
. 

 

(b) The cost is (100 W · 8.0 h/10
3
 W · h) ($0.06) = $0.048 = 4.8 cents. 

 

7. (a) The energy transferred is 
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(b) The amount of thermal energy generated is 

 

  


F
HG
I
KJ 



F
HG

I
KJ U i Rt

r R
Rt2

2 2

2 0

50
50 2 0 60 67

 .

.
( . ) ( . min) (

V

1.0
s / min) J.

 
  

 

(c) The difference between U and U', which is equal to 13 J, is the thermal energy that is 

generated in the battery due to its internal resistance. 

 

8. If P is the rate at which the battery delivers energy and t is the time, then E = P t is 

the energy delivered in time t. If q is the charge that passes through the battery in time 

t and  is the emf of the battery, then E = q. Equating the two expressions for E and 

solving for t, we obtain 

(120A h)(12.0V)
14.4 h.

100W

q
t

P

 
     

 

9. (a) The work done by the battery relates to the potential energy change: 

 

 12.0V 12.0 eV.q V eV e     

 

(b) P = iV = neV = (3.40  10
18

/s)(1.60  10
–19

 C)(12.0 V) = 6.53 W. 

 

10. (a) We solve i = (2 – 1)/(r1 + r2 + R) for R: 

 

R
i

r r


  



   



 2 1
1 2 3

230 2 0
30 30 9 9 10

. .
. . . .

V V

1.0 10 A
    

 

(b) P = i
2
R = (1.0  10

–3
 A)

2
(9.9  10

2
 ) = 9.9  10

–4
 W. 

 

11. THINK As shown in Fig. 27-29, the circuit contains an emf device X. How it is 

connected to the rest of the circuit can be deduced from the power dissipated and the 

potential drop across it. 

 

EXPRESS The power absorbed by a circuit element is given by P = iV, where i is the 

current and V is the potential difference across the element. The end-to-end potential 

difference is given by  

VA – VB = +iR + , 
 

where  is the emf of device X and is taken to be positive if it is to the left in the diagram. 

 

ANALYZE (a) The potential difference between A and B is 



CHAPTER 27 1176 

 

V
P

i
  

50

10
50

W

A
V.

.
 

 

Since the energy of the charge decreases, point A is at a higher potential than point B; that 

is, VA – VB = 50 V. 

 

(b) From the equation above, we find the emf of device X to be 

 

 = VA – VB – iR = 50 V – (1.0 A)(2.0 ) = 48 V. 

 

(c) A positive value was obtained for , so it is toward the left. The negative terminal is at 

B. 

 

LEARN Writing the potential difference as ,A BV iR V    we see that our result is 

consistent with the resistance and emf rules. Namely, starting at point A, the change in 

potential is iR  for a move through a resistance R in the direction of the current, and the 

change in potential is   for a move through an emf device in the opposite direction of 

the emf arrow (which points from negative to positive terminals).   

 

12. (a) For each wire, Rwire = L/A where A = r
2
.  Consequently, we have  

 

Rwire =  (1.69  10
8

m )(0.200 m)/(0.00100 m)
2
 = 0.0011 . 

 

The total resistive load on the battery is therefore  

 

totR = 2Rwire + R =0.0011 6.00  . 

 

Dividing this into the battery emf gives the current  

 

 
tot

12.0 V
1.9993 A

6.0022
i

R


  


. 

 

The voltage across the R = 6.00 resistor is therefore  

 

 V iR  (1.9993 A)(6.00 ) = 11.996 V  12.0 V. 

 

(b) Similarly, we find the voltage-drop across each wire to be  

 

wire wireV iR  (1.9993 A)(0.0011 ) = 2.15 mV. 

 

(c) P = i
2
R = (1.9993 A)(6.00 )

2
 = 23.98 W  24.0 W. 

 

(d) Similarly, we find the power dissipated in each wire to be 4.30 mW. 
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13. (a) We denote L = 10 km and  = 13 /km. Measured from the east end we have  

 

R1 = 100  = 2(L – x) + R, 

 

and measured from the west end R2 = 200  = 2x + R. Thus,  

 

x
R R L




 


 2 1

4 2

200 100

4 13

10

2
6 9



 

 km

km
km.b g .  

(b) Also, we obtain 

 

R
R R

L


 


 1 2

2

100 200

2
13 10 20

 
 km kmb gb g . 

 

14. (a) Here we denote the battery emf’s as V1 and V2 .  The loop rule gives 

 

V2 – ir2 + V1 – ir1 – iR  = 0      2 1

1 2

V V
i

r r R




 
  . 

 

The terminal voltage of battery 1 is V1T and (see Fig. 27-4(a)) is easily seen to be equal to 

V1 ir1 ; similarly for battery 2.  Thus,  

 

V1T  = V1  –
1 2 1

1 2

( )r V V

r r R



 
,  V2T  = V2 – 1 2 1

1 2

( )r V V

r r R



 
  . 

 

The problem tells us that V1 and V2 each equal 1.20 V.  From the graph in Fig. 27-32(b) 

we see that V2T  = 0 and V1T  = 0.40 V for R = 0.10 .  This supplies us (in view of the 

above relations for terminal voltages) with simultaneous equations, which, when solved, 

lead to r1 = 0.20 . 

 

(b) The simultaneous solution also gives r2 = 0.30 . 

 

15. Let the emf be V. Then V = iR = i'(R + R'), where i = 5.0 A, i' = 4.0 A, and R' = 2.0 . 

We solve for R: 

(4.0 A)(2.0 )
8.0 .

5.0 A 4.0 A

i R
R

i i

  
   

 
 

 

16. (a) Let the emf of the solar cell be  and the output voltage be V. Thus, 

 

V ir
V

R
r   

F
HG
I
KJ   

for both cases. Numerically, we get  
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0.10 V =  – (0.10 V/500 )r 

   0.15 V =  – (0.15 V/1000 )r. 

We solve for  and r.   

 

(a) r = 1.00
3
 . 

 

(b)  = 0.30 V. 

 

(c) The efficiency is 

 

     

2
3

2 3 2
received

/ 0.15V
2.3 10 0.23%.

1000 5.0cm 2.0 10 W/cm

V R

P




   

 
 

 

17. THINK A zero terminal-to-terminal potential difference implies that the emf of the 

battery is equal to the voltage drop across its internal resistance, that is, .ir   

 

EXPRESS To be as general as possible, we refer to the individual emf’s as 1 and 2 and 

wait until the latter steps to equate them (1 = 2 = ). The batteries are placed in series in 

such a way that their voltages add; that is, they do not “oppose” each other. The total 

resistance in the circuit is therefore Rtotal = R + r1 + r2 (where the problem tells us r1 > r2), 

and the “net emf” in the circuit is 1 + 2. Since battery 1 has the higher internal resistance, 

it is the one capable of having a zero terminal voltage, as the computation in part (a) 

shows. 

 

ANALYZE (a) The current in the circuit is 

 

i
r r R




 

 1 2

1 2

,  

 

and the requirement of zero terminal voltage leads to 1 1ir  , or 

 

2 1 1 2

1

(12.0 V)(0.016 ) (12.0 V)(0.012 )
0.0040 

12.0 V

r r
R

 



   
    . 

 

Note that R = r1 – r2 when we set 1 = 2.  

 

(b) As mentioned above, this occurs in battery 1.  

 

LEARN If we assume the potential difference across battery 2 to be zero and repeat the 

calculation above, we would find R = r2 – r1 < 0, which is physically impossible. Thus, 

only the potential difference across the battery with the larger internal resistance can be 

made zero with suitable choice of R. 

 

18. The currents i1, i2 and i3 are obtained from Eqs. 27-18 through 27-20: 
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1 2 3 2 3
1

1 2 2 3 1 3

1 3 2 1 2
2

1 2 2 3 1 3

( ) (4.0V)(10 5.0 ) (1.0V)(5.0 )
0.275 A,

(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

( ) (4.0 V)(5.0 ) (1.0 V)(10 5.0 )

(10 )(10 ) (10 )(5.0 ) (10 )(5.0 )

R R R
i

R R R R R R

R R R
i

R R R R R R

 

 

     
  

         

     
  

         

3 2 1

0.025 A,

0.025A 0.275A 0.250A .i i i     

 

 

Vd – Vc can now be calculated by taking various paths. Two examples: from Vd – i2R2 = 

Vc we get  

Vd – Vc = i2R2 = (0.0250 A) (10 ) = +0.25 V; 

 

from Vd + i3R3 + 2 = Vc we get  

 

Vd – Vc = i3R3 – 2 = – (– 0.250 A) (5.0 ) – 1.0 V = +0.25 V. 

 

19. (a) Since Req < R, the two resistors (R = 12.0  and Rx) must be connected in parallel: 

 

R
R R

R R

R

R

x

x

x

x

eq  





300
12 0

12 0
.

.

.
.





b g
 

 

We solve for Rx: Rx = ReqR/(R – Req) = (3.00 )(12.0 )/(12.0  – 3.00 ) = 4.00 . 

 

(b) As stated above, the resistors must be connected in parallel. 

 

20. Let the resistances of the two resistors be R1 and R2, with R1 < R2. From the 

statements of the problem, we have 

 

R1R2/(R1 + R2) = 3.0  and R1 + R2 = 16 . 

 

So R1 and R2 must be 4.0  and 12 , respectively. 

 

(a) The smaller resistance is R1 = 4.0 



(b) The larger resistance is R2 = 12  

 

21. The potential difference across each resistor is V = 25.0 V. Since the resistors are 

identical, the current in each one is  

 

i = V/R = (25.0 V)/(18.0 ) = 1.39 A. 
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The total current through the battery is then itotal = 4(1.39 A) = 5.56 A. One might 

alternatively use the idea of equivalent resistance; for four identical resistors in parallel 

the equivalent resistance is given by 

1 1 4

R R Req

  . 

 

When a potential difference of 25.0 V is applied to the equivalent resistor, the current 

through it is the same as the total current through the four resistors in parallel. Thus  

 

itotal = V/Req = 4V/R = 4(25.0 V)/(18.0 ) = 5.56 A. 

 

22. (a) Req (FH) = (10.0 )(10.0 )(5.00 )/[(10.0 )(10.0 ) + 2(10.0 )(5.00 )] = 

2.50 . 

 

(b) Req (FG) = (5.00 ) R/(R + 5.00 ), where  

 

R = 5.00  + (5.00 )(10.0 )/(5.00  + 10.0 ) = 8.33 . 

 

So Req (FG) = (5.00 )(8.33 )/(5.00  + 8.33 ) = 3.13 . 

 

23. Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 be the 

current in R2 and take it to be positive if it is upward.  

 

(a) When the loop rule is applied to the lower loop, the result is 

 

2 1 1 0i R   . 

The equation yields 

i
R

1
2

1

50
0 050  

 .
.

 V

100
 A.


 

 

(b) When it is applied to the upper loop, the result is 

 

  1 2 3 2 2 0   i R . 

The equation gives 

1 2 3
2

2

6.0 V 5.0 V 4.0 V
0.060 A

50
i

R

     
   


, 

 

or 2| | 0.060 A.i  The negative sign indicates that the current in R2 is actually downward.  

 

(c) If Vb is the potential at point b, then the potential at point a is Va = Vb + 3 + 2, so  

 

Va – Vb = 3 + 2 = 4.0 V + 5.0 V = 9.0 V. 

 

24. We note that two resistors in parallel, R1 and R2, are equivalent to 
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1 2
12

12 1 2 1 2

1 1 1
.

R R
R

R R R R R
   


 

 

This situation consists of a parallel pair that are then in series with a single R3 = 2.50  

resistor. Thus, the situation has an equivalent resistance of 

 

eq 3 12

(4.00 )(4.00 )
2.50 4.50 .

4.00 4.00
R R R

 
     

 
 

 

25. THINK The resistance of a copper wire varies with its cross-sectional area, or its 

diameter.  

 

EXPRESS Let r be the resistance of each of the narrow wires. Since they are in parallel 

the equivalent resistance eqR  of the composite is given by 

 

eq

1 9
,

R r
  

 

or Req = r/9. Now each thin wire has a resistance 24 / ,r d  where  is the resistivity 

of copper, and A = d
2
/4 is the cross-sectional area of a single thin wire. On the other 

hand, the resistance of the thick wire of diameter D is 24 / ,R D  where the cross-

sectional area is D
2
/4.  

 

ANALYZE If the single thick wire is to have the same resistance as the composite of 9 

thin wires, eq ,R R  then 

 
2 2

4 4
.

D d

 


 
 

Solving for D, we obtain D = 3d. 

 

LEARN The equivalent resistance eqR  is smaller than r by a factor of 9. Since 

21/ 1/ ,r A d  increasing the diameter of the wire threefold will also reduce the 

resistance by a factor of 9.  

 

26. The part of R0 connected in parallel with R is given by R1 = R0x/L, where L = 10 cm. 

The voltage difference across R is then VR = R'/Req, where R' = RR1/(R + R1) and  

 

Req = R0(1 – x/L) + R'. 

Thus, 

 

   

 

 

2 22
1 1 0

2
2

0 1 1
0

1001
,

1 100 10

R
R

RR R R R x RV
P

R R R x L RR R R R R x x

  
         
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where x is measured in cm. 

 

27. Since the potential differences across the two paths are the same, 
1 2V V  (

1V  for the 

left path, and 
2V  for the right path), we have 

1 1 2 2i R i R , where 1 2 5000 Ai i i   . With 

/R L A  (see Eq. 26-16), the above equation can be rewritten as 

  

1 2 2 1( / )i d i h i i d h   . 

 

With / 0.400d h  , we get 
1 3571Ai   and 

2 1429 Ai  . Thus, the current through the 

person is 
1 3571Ai  , or approximately 3.6 kA . 

 

28. Line 1 has slope R1 = 6.0 k.  Line 2 has slope R2 = 4.0 k.  Line 3 has slope R3 = 

2.0 k.  The parallel pair equivalence is R12 = R1R2/(R1+R2) = 2.4 k.  That in series with 

R3 gives an equivalence of  

 

123 12 3 2.4 k 2.0 k 4.4 k .R R R       

 

The current through the battery is therefore 
123/i R  (6 V)/(4.4 k) and the voltage 

drop across R3 is (6 V)(2 k)/(4.4 k) = 2.73 V. Subtracting this (because of the loop 

rule) from the battery voltage leaves us with the voltage across R2.  Then Ohm’s law 

gives the current through R2: (6 V – 2.73 V)/(4 k) = 0.82 mA. 

 

29. (a)  The parallel set of three identical R2 = 18  resistors reduce to R = 6.0 , which 

is now in series with the R1 = 6.0  resistor at the top right, so that the total resistive load 

across the battery is R' = R1 + R = 12 .  Thus, the current through R' is (12V)/R' = 1.0 A, 

which is the current through R.  By symmetry, we see one-third of that passes through 

any one of those 18  resistors; therefore, i1 = 0.333 A. 

 

(b) The direction of  i1 is clearly rightward. 

 

(c) We use Eq. 26-27:  P = i
2
R' = (1.0 A)

2
(12 ) = 12 W.  Thus, in 60 s, the energy 

dissipated is (12 J/s)(60 s) = 720 J. 

 

30. Using the junction rule (i3 = i1 + i2) we write two loop rule equations: 

 

10.0 V – i1R1 – (i1 + i2) R3 = 0 
 

5.00 V – i2R2 – (i1 + i2) R3 = 0. 

 

(a) Solving, we find i2 = 0, and 

 

(b) i3 = i1 + i2 = 1.25 A (downward, as was assumed in writing the equations as we did). 
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31. THINK This problem involves a multi-loop circuit. We first simplify the circuit by 

finding the equivalent resistance. We then apply Kirchhoff’s loop rule to calculate the 

current in the loop, and the potentials at various points in the circuit.   

 

EXPRESS We first reduce the parallel pair of identical 2.0- resistors (on the right side) 

to R' = 1.0 , and we reduce the series pair of identical 2.0- resistors (on the upper left 

side) to R'' = 4.0 . With R denoting the 2.0- resistor at the bottom (between V2 and V1), 

we now have three resistors in series which are equivalent to  

 

eq 7.0R R R R       

 

across which the voltage is 2 1   = 7.0 V (by the loop rule, this is 12 V – 5.0 V), 

implying that the current is  

 2 1

eq

7.0 V
1.0 A

7.0
i

R

 
  


. 

 

The direction of i is upward in the right-hand emf device. Knowing i allows us to solve 

for V1 and V2.  

 

ANALYZE (a) The voltage across R' is (1.0 A)(1.0 ) = 1.0 V, which means that 

(examining the right side of the circuit) the voltage difference between ground and V1 is 

12 V – 1.0 V = 11 V. Noting the orientation of the battery, we conclude that 1 11 VV  . 

 

(b) The voltage across R'' is (1.0 A)(4.0 ) = 4.0 V, which means that (examining the left 

side of the circuit) the voltage difference between ground and V2 is 5.0 V + 4.0 V = 9.0 V. 

Noting the orientation of the battery, we conclude V2 = –9.0 V.  

 

LEARN The potential difference between points 1 and 2 is  

 

 2 1 9.0 V ( 11.0 V) 2.0 V,V V       

 

which is equal to (1.0 A)(2.0 ) 2.0 V.iR     

 

32. (a) For typing convenience, we denote the emf of battery 2 as V2 and the emf of 

battery 1 as V1.   The loop rule (examining the left-hand loop) gives V2 + i1 R1  – V1 = 0.  

Since V1 is held constant while V2 and i1 vary, we see that this expression (for large 

enough V2) will result in a negative value for i1, so the downward sloping line (the line 

that is dashed in Fig. 27-43(b)) must represent i1.  It appears to be zero when V2 = 6 V.  

With i1  = 0, our loop rule gives V1 = V2, which implies that V1 = 6.0 V. 

 

(b) At V2 = 2 V (in the graph) it appears that i1 = 0.2 A.  Now our loop rule equation (with 

the conclusion about V1 found in part (a)) gives R1 = 20 . 
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(c) Looking at the point where the upward-sloping i2 line crosses the axis (at V2 = 4 V), 

we note that i1 = 0.1 A there and that the loop rule around the right-hand loop should give 

 

V1 – i1 R1 = i1 R2 

 

when  i1 = 0.1 A  and i2 = 0. This leads directly to R2 = 40 . 

 

33. First, we note in V4, that the voltage across R4 is equal to the sum of the voltages 

across R5 and R6:  

V4 = i6(R5 +R6)= (1.40 A)(8.00  + 4.00 ) = 16.8 V. 

 

The current through R4 is then equal to i4 = V4/R4 = 16.8 V/(16.0 ) = 1.05 A. 

 

By the junction rule, the current in R2 is  

 

i2 = i4 + i6 =1.05 A + 1.40 A = 2.45 A, 

 

so its voltage is V2 = (2.00 )(2.45 A) = 4.90 V. 

 

The loop rule tells us the voltage across R3 is V3 = V2 + V4 = 21.7 V (implying that the 

current through it is i3 = V3/(2.00 ) = 10.85 A). 

 

The junction rule now gives the current in R1 as  

 

i1 = i2 + i3 = 2.45 A + 10.85 A = 13.3 A, 

 

implying that the voltage across it is V1 = (13.3 A)(2.00 ) = 26.6 V. Therefore, by the 

loop rule,  

 = V1 + V3 = 26.6 V + 21.7 V = 48.3 V. 

 

34. (a) By the loop rule, it remains the same.  This question is aimed at student 

conceptualization of voltage; many students apparently confuse the concepts of voltage 

and current and speak of “voltage going through” a resistor – which would be difficult to 

rectify with the conclusion of this problem. 

 

(b) The loop rule still applies, of course, but (by the junction rule and Ohm’s law) the 

voltages across R1 and R3 (which were the same when the switch was open) are no longer 

equal.  More current is now being supplied by the battery, which means more current is in 

R3, implying its voltage drop has increased (in magnitude).  Thus, by the loop rule (since 

the battery voltage has not changed) the voltage across R1 has decreased a corresponding 

amount.  When the switch was open, the voltage across R1 was 6.0 V (easily seen from 

symmetry considerations).  With the switch closed, R1 and R2 are equivalent (by Eq. 27-

24) to 3.0 , which means the total load on the battery is 9.0 .  The current therefore is 

1.33 A, which implies that the voltage drop across R3 is 8.0 V.  The loop rule then tells us 

that the voltage drop across R1 is 12 V – 8.0 V = 4.0 V.  This is a decrease of 2.0 volts 

from the value it had when the switch was open. 
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35. (a) The symmetry of the problem allows us to use i2 as the current in both of the R2 

resistors and i1 for the R1 resistors. We see from the junction rule that i3 = i1 – i2. There 

are only two independent loop rule equations: 

 

 
2 2 1 1

1 1 1 2 3

0

2 0

i R i R

i R i i R





  

   
 

 

where in the latter equation, a zigzag path through the bridge has been taken. Solving, we 

find i1 = 0.002625 A, i2 = 0.00225 A and i3 = i1 – i2 = 0.000375 A. Therefore,  

 

VA – VB = i1R1 = 5.25 V. 

 

(b) It follows also that VB – VC = i3R3 = 1.50 V. 

 

(c) We find VC – VD = i1R1 = 5.25 V. 

 

(d) Finally, VA – VC = i2R2 = 6.75 V. 

 

36. (a) Using the junction rule (i1 = i2 + i3) we write two loop rule equations: 

 





1 2 2 2 3 1

2 3 3 2 3 1

0

0

   

   

i R i i R

i R i i R

b g
b g .

 

 

Solving, we find i2 = 0.0109 A (rightward, as was assumed in writing the equations as we 

did), i3 = 0.0273 A (leftward), and i1 = i2 + i3 = 0.0382 A (downward). 

 

(b) The direction is downward. See the results in part (a). 

 

(c) i2 = 0.0109 A . See the results in part (a). 

 

(d) The direction is rightward. See the results in part (a). 

 

(e) i3 = 0.0273 A. See the results in part (a). 

 

(f) The direction is leftward. See the results in part (a). 

 

(g) The voltage across R1 equals VA: (0.0382 A)(100 ) = +3.82 V. 

 

37. The voltage difference across R3 is V3 = R' /(R' + 2.00 ), where  

 

R' = (5.00 R)/(5.00  + R3). 

Thus, 
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  

 

 

22 2
2 2

3
3

3 3 3 3 3

2

3

2.00 5.001 1
1

2.00 1 2.00 5.00

RV R
P

R R R R R R R

f R

  





     
        

          



 

 

where we use the equivalence symbol  to define the expression f(R3). To maximize P3 

we need to minimize the expression f(R3). We set 

 

  2
3

2

3 3

4.00 49
0

25

df R

dR R


     

 

to obtain   2

3 4.00 25 49= 1.43 .R     

 

38. (a) The voltage across R3 = 6.0  is V3 = iR3= (6.0 A)(6.0 ) = 36 V.  Now, the 

voltage across R1 = 2.0  is  

(VA – VB) – V3 = 78  36 = 42 V, 

 

which implies the current is i1 = (42 V)/(2.0 ) = 21 A.  By the junction rule, then, the 

current in R2 = 4.0  is  

i2 = i1 i  = 21 A  6.0 A = 15 A. 

 

The total power dissipated by the resistors is (using Eq. 26-27) 

 
2

1i (2.0 ) + 2

2i (4.0 ) + 2i (6.0 ) = 1998 W    2.0 kW. 

 

By contrast, the power supplied (externally) to this section is PA = iA (VA  VB) where iA = 

i1 = 21 A.  Thus, PA = 1638 W.  Therefore, the "Box" must be providing energy. 

 

(b) The rate of supplying energy is (1998  1638 )W = 3.6×10
2
 W. 

 

39. (a) The batteries are identical and, because they are connected in parallel, the 

potential differences across them are the same. This means the currents in them are the 

same. Let i be the current in either battery and take it to be positive to the left. According 

to the junction rule the current in R is 2i and it is positive to the right. The loop rule 

applied to either loop containing a battery and R yields 

 

2 0 .
2

ir iR i
r R


     


 

 

The power dissipated in R is 
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P i R
R

r R
 


( )

( )
.2

4

2

2
2

2


 

 

We find the maximum by setting the derivative with respect to R equal to zero. The 

derivative is 

dP

dR r R

R

r R

r R

r R












4

2

16

2

4 2

2

2

3

2

3

2

3

  

( ) ( )

( )

( )
.  

 

The derivative vanishes (and P is a maximum) if R = r/2. With r = 0.300 , we have 

0.150 R  .  

 

(b) We substitute R = r/2 into P = 42R/(r + 2R)
2
 to obtain 

 
2 2 2

max 2

4 ( / 2) (12.0 V)
240 W.

[ 2( / 2)] 2 2(0.300 )

r
P

r r r

 
   

 
 

 

40. (a) By symmetry, when the two batteries are connected in parallel the current i going 

through either one is the same. So from  = ir + (2i)R with r = 0.200  and R = 2.00r, we 

get  

 
2 2(12.0V)

2 24.0 A.
2 0.200 2(0.400 )

Ri i
r R


   

  
 

 

(b) When connected in series 2 – iRr – iRr – iRR = 0, or iR = 2/(2r + R). The result is 

 

2 2(12.0V)
2 30.0 A.

2 2(0.200 ) 0.400
Ri i

r R


   

   
 

 

(c) They are in series arrangement, since R > r. 

 

(d) If R = r/2.00, then for parallel connection, 

 

2 2(12.0V)
2 60.0 A.

2 0.200 2(0.100 )
Ri i

r R


   

  
 

 

(e) For series connection, we have  

 

2 2(12.0V)
2 48.0 A.

2 2(0.200 ) 0.100
Ri i

r R


   

   
 

 

(f) They are in parallel arrangement, since R < r. 
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41. We first find the currents. Let i1 be the current in R1 and take it to be positive if it is to 

the right. Let i2 be the current in R2 and take it to be positive if it is to the left. Let i3 be 

the current in R3 and take it to be positive if it is upward. The junction rule produces 

 

i i i1 2 3 0   .  

 

The loop rule applied to the left-hand loop produces 

 

1 1 1 3 3 0i R i R     

 

and applied to the right-hand loop produces 

 

2 2 2 3 3 0.i R i R     

 

We substitute i3 = –i2 – i1, from the first equation, into the other two to obtain 

 

1 1 1 2 3 1 3 0i R i R i R      

and 

2 2 2 2 3 1 3 0.i R i R i R      

 

Solving the above equations yield 

 

1 2 3 2 3
1

1 2 1 3 2 3

( ) (3.00 V)(2.00 5.00 ) (1.00 V)(5.00 )
0.421 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R R
i

R R R R R R

      
  

         

 

 

2 1 3 1 3
2

1 2 1 3 2 3

( ) (1.00 V)(4.00 5.00 ) (3.00 V)(5.00 )
0.158 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R R
i

R R R R R R

      
   

         

 

 

2 1 1 2
3

1 2 1 3 2 3

(1.00 V)(4.00 ) (3.00 V)(2.00 )
0.263 A.

(4.00 )(2.00 ) (4.00 )(5.00 ) (2.00 )(5.00 )

R R
i

R R R R R R

    
     

         

 

Note that the current i3 in R3 is actually downward and the current i2 in R2 is to the right. 

The current i1 in R1 is to the right.  

 

(a) The power dissipated in R1 is    
22

1 1 1 0.421A 4.00 0.709W.P i R     

 

(b) The power dissipated in R2 is 2 2

2 2 2 ( 0.158A) (2.00 ) 0.0499W 0.050 W.P i R       

 

(c) The power dissipated in R3 is    
22

3 3 3 0.263A 5.00 0.346W.P i R      
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(d) The power supplied by 1 is i31 = (0.421 A)(3.00 V) = 1.26 W. 

 

(e) The power “supplied” by 2 is i22 = (–0.158 A)(1.00 V) = –0.158 W. The negative 

sign indicates that 2 is actually absorbing energy from the circuit. 

 

42. The equivalent resistance in Fig. 27-52 (with n parallel resistors) is  

 

 
eq

1R n
R R R

n n

 
    

 
 . 

 

The current in the battery in this case should be  

 

battery battery

eq 1
n

V Vn
i

R n R
 


. 

 

If there were n +1 parallel resistors, then  

 

battery battery

1

eq

1

2
n

V Vn
i

R n R



 


 . 

 

For the relative increase to be 0.0125 ( = 1/80 ), we require 

 

in+ 1 – in
 in 

 =  
 in+ 1 

 in 
  – 1 =  

( 1) /( 2)
1

/( 1)

n n

n n

 



 =  

1

80
  . 

 

This leads to the second-degree equation  n
2
 + 2n – 80  = (n + 10)(n – 8) = 0. 

 

Clearly the only physically interesting solution to this is n = 8. Thus, there are eight 

resistors in parallel (as well as that resistor in series shown toward the bottom) in Fig. 27-

52. 

 

43. Let the resistors be divided into groups of n resistors each, with all the resistors in the 

same group connected in series. Suppose there are m such groups that are connected in 

parallel with each other. Let R be the resistance of any one of the resistors. Then the 

equivalent resistance of any group is nR, and Req, the equivalent resistance of the whole 

array, satisfies 

1 1

1R nR

m

nR

m

eq

  .  

 

Since the problem requires Req = 10  = R, we must select n = m. Next we make use of 

Eq. 27-16. We note that the current is the same in every resistor and there are n · m = n
2
 

resistors, so the maximum total power that can be dissipated is Ptotal = n
2
P, where 

1.0 WP  is the maximum power that can be dissipated by any one of the resistors. The 
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problem demands Ptotal  5.0P, so n
2
 must be at least as large as 5.0. Since n must be an 

integer, the smallest it can be is 3. The least number of resistors is n
2
 = 9. 

 

44. (a) Resistors R2, R3, and R4 are in parallel. By finding a common denominator and 

simplifying, the equation 1/R = 1/R2 + 1/R3 + 1/R4 gives an equivalent resistance of 

 

2 3 4

2 3 2 4 3 4

(50.0 )(50.0 )(75.0 )

(50.0 )(50.0 ) (50.0 )(75.0 ) (50.0 )(75.0 )

18.8 .

R R R
R

R R R R R R

  
 

         

 

 

 

Thus, considering the series contribution of resistor R1, the equivalent resistance for the 

network is Req = R1 + R = 100  + 18.8  = 118.8  119 . 

 

(b) i1 = /Req = 6.0 V/(118.8 ) = 5.05  10
–2

 A.  

 

(c) i2 = ( – V1)/R2 = ( – i1R1)/R2 = [6.0V – (5.05  10
–2

 A)(100)]/50  = 1.90  10
–2

 A.  

 

(d) i3 = ( – V1)/R3 = i2R2/R3 = (1.90  10
–2

 A)(50.0 /50.0 ) = 1.90  10
–2

 A.  

 

(e) i4 = i1 – i2 – i3 = 5.05  10
–2

 A – 2(1.90  10
–2

 A) = 1.25  10
–2

 A. 

 

45. (a) We note that the R1 resistors occur in series pairs, contributing net resistance 2R1 

in each branch where they appear. Since 2 = 3 and R2 = 2R1, from symmetry we know 

that the currents through 2 and 3 are the same: i2 = i3 = i. Therefore, the current through 

1 is i1 = 2i. Then from Vb – Va = 2 – iR2 = 1 + (2R1)(2i) we get 

 

 
2 1

1 2

4.0V 2.0V
0.33A.

4 4 1.0 2.0
i

R R

  
  

   
 

 

Therefore, the current through 1 is i1 = 2i = 0.67 A. 

 

(b) The direction of i1 is downward.  

 

(c) The current through 2 is i2 = 0.33 A. 

 

(d) The direction of i2 is upward. 

 

(e) From part (a), we have i3 = i2 = 0.33 A. 

 

(f) The direction of i3 is also upward. 

 

(g) Va – Vb = –iR2 + 2 = –(0.333 A)(2.0 ) + 4.0 V = 3.3 V. 
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46. (a) When R3 = 0 all the current passes through R1 and R3 and avoids R2 altogether.  

Since that value of the current (through the battery) is 0.006 A (see Fig. 27-55(b)) for R3 

= 0 then (using Ohm’s law)  

 

R1 = (12 V)/(0.006 A) = 2.010
3 
. 

 

(b) When R3 =   all the current passes through R1 and R2 and avoids R3 altogether.  Since 

that value of the current (through the battery) is 0.002 A (stated in problem) for R3 =  

then (using Ohm’s law)  

 

R2 = (12 V)/(0.002 A) – R1 = 4.010
3
 . 

 

47. THINK The copper wire and the aluminum sheath are connected in parallel, so the 

potential difference is the same for them.  

 

EXPRESS Since the potential difference is the product of the current and the resistance, 

iCRC = iARA, where iC is the current in the copper, iA is the current in the aluminum, RC is 

the resistance of the copper, and RA is the resistance of the aluminum. The resistance of 

either component is given by R = L/A, where  is the resistivity, L is the length, and A is 

the cross-sectional area. The resistance of the copper wire is RC = CL/a
2
, and the 

resistance of the aluminum sheath is RA = AL/(b
2
 – a

2
). We substitute these expressions 

into iCRC = iARA, and cancel the common factors L and  to obtain 

 

2 2 2
.C C A Ai i

a b a

 



 

 

We solve this equation simultaneously with i = iC + iA, where i is the total current. We 

find 

i
r i

r r r
C

C C

A C C C A


 

2

2 2 2



 c h  

and 

i
r r i

r r r
A

A C C

A C C C A




 

2 2

2 2 2

c h
c h



 
.  

 

ANALYZE (a) The denominators are the same and each has the value 

 

       

   

2 2
2 2 2 3 3 8

2
3 8

15 3

0.380 10 m 0.250 10 m 1.69 10 m

0.250 10 m 2.75 10 m

3.10 10 m .

C Ab a a    

 



        
  

   

  

 

Thus, 
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iC 
  

 


 



0 250 10 2 75 10 2 00

310 10
111

3
2

8

15

. . .

.
.

m m A

m
A

3

c h c hb g


. 

 

(b) Similarly, 

 

       
2 2

3 3 8

15 3

0.380 10 m 0.250 10 m 1.69 10 m 2.00A
0.893A.

3.10 10 m
Ai

  



     
   

 
 

 

(c) Consider the copper wire. If V is the potential difference, then the current is given by 

V = iCRC = iCCL/a
2
, so the length of the composite wire is 

 

L
a V

iC C

 


 






 2 3
2

8

0 250 10 12 0

111 169 10
126



b gc h b g
b gc h

. .

. .

m V

A m
m.


 

 

LEARN The potential difference can also be written as V = iARA = iAAL/(b
2
 – a

2
). Thus,  

 

 

  

3 2 3 22 2

8

(0.380 10 m) (0.250 10 m) 12.0 V)
126 m,

0.893 A 2.75 10 mA A

b a V
L

i





 



        
 

 

 

in agreement with the result found in (c). 

 

48. (a) We use P = 2/Req, where 

 

  

      
eq

12.0 4.00
7.00 .

12.0 4.0 12.0 4.00

R
R

R R

 
 

     
 

 

Put P = 60.0 W and  = 24.0 V and solve for R: R = 19.5 . 

 

(b) Since P  Req, we must minimize Req, which means R = 0. 

 

(c) Now we must maximize Req, or set R = . 

 

 

(d) Since Req, min = 7.00 , Pmax = 2/Req, min = (24.0 V)
2
/7.00  = 82.3 W. 

 

(e) Since Req, max = 7.00  + (12.0 )(4.00 )/(12.0  + 4.00 ) = 10.0 , 

 

Pmin = 2/Req, max = (24.0 V)
2
/10.0  = 57.6 W. 

 

49. (a) The current in R1 is given by 
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i
R R R R R

1

1 2 3 2 3

50

4 0 6 0 4 0 6 0
114

 


 




/

.

( . ) ( . ) / ( . . )
.b g

V

2.0
A.

    
 

 

Thus, 

i
V

R

i R

R
3

1

3

1 1

3

50 114 2 0

6 0
0 45










  . ( . ( . )

.
.

V A)
A.




 

 

(b) We simply interchange subscripts 1 and 3 in the equation above. Now 

 

        3

3 2 1 2 1

5.0V
0.6818A

/ 6.0 2.0 4.0 / 2.0 4.0
i

R R R R R


  

      
 

and 

i1
50 0 6818

2 0
0 45




. .

.
.

V A 6.0
A,

b gb g


 

the same as before. 

 

50. Note that there is no voltage drop across the ammeter. Thus, the currents in the 

bottom resistors are the same, which we call i (so the current through the battery is 2i and 

the voltage drop across each of the bottom resistors is iR). The resistor network can be 

reduced to an equivalence of 

R
R R

R R

R R

R R
Req 







2

2

7

6

b gb g b gb g
 

 

which means that we can determine the current through the battery (and also through 

each of the bottom resistors): 

eq eq

3
2 .

2 2(7 / 6) 7
i i

R R R R

   
      

 

By the loop rule (going around the left loop, which includes the battery, resistor 2R, and 

one of the bottom resistors), we have 

 

 2 22 0 .
2

R R

iR
i R iR i

R





      

 

Substituting i = 3/7R, this gives i2R = 2/7R. The difference between i2R and i is the 

current through the ammeter. Thus, 

 

ammeter
ammeter 2

3 2 1
      0.143.

7 7 7 / 7
R

i
i i i

R R R R

  


         

 

51. Since the current in the ammeter is i, the voltmeter reading is  

 

V’ =V+ i RA= i (R + RA), 
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or R = /V i  – RA = R' – RA, where /R V i   is the apparent reading of the resistance. 

Now, from the lower loop of the circuit diagram, the current through the voltmeter is 

eq 0/( )Vi R R  , where 

  

    
eq

eq

300 85.0 3.001 1 1
    68.0 .

300 85.0 3.00

V A

V A V A

R R R
R

R R R R R R R

   
      

     
 

 

The voltmeter reading is then  

 

 
eq

eq

eq 0

(12.0 V)(68.0 )
4.86 V.

68.0 100
V

R
V i R

R R

 
   

  
 

(a) The ammeter reading is  

 

4.86 V
0.0552 A.

85.0 3.00A

V
i

R R


  

  
 

 

(b) As shown above, the voltmeter reading is 4.86 V.V    

 

(c) /R V i   = 4.86 V/(5.52  10
–2

 A) = 88.0 . 

 

(d) Since AR R R  , if RA is decreased, the difference between R  and R decreases. In 

fact, when RA = 0, .R R    

 

52. (a) Since i = /(r + Rext) and imax = /r, we have Rext = R(imax/i – 1) where r = 1.50 

V/1.00 mA = 1.50  10
3
 . Thus,  

 

 3 4

ext (1.5 10 )(1/ 0.100 1) 1.35 10R        . 

 

(b) 3 3

ext (1.5 10 )(1/ 0.500 1) 1.5 10R        . 

 

(c) 3

ext (1.5 10 )(1/ 0.900 1) 167R       . 

 

(d) Since r = 20.0  + R, R = 1.50  10
3
  – 20.0  = 1.48  10

3
 . 

 

53. The current in R2 is i. Let i1 be the current in R1 and take it to be downward. 

According to the junction rule the current in the voltmeter is i – i1 and it is downward. We 

apply the loop rule to the left-hand loop: 

 

    iR i R ir2 1 1 0.  

 

Similarly, applying the loop rule to the right-hand loop gives 
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i R i i RV1 1 1 0  b g .  

The second equation yields 

i
R R

R
iV

V


1

1.  

We substitute this into the first equation to obtain 

 

 
 

 
R r R R

R
i R i

V

V

2 1

1 1 1 0
b gb g

.  

This has the solution 

i
R

R r R R R R

V

V V

1

2 1 1


  



b gb g .  

 

The reading on the voltmeter is 

 

   

     

     

3

1
1 1 3 3

2 1 1

3.0V 5.0 10 250

300 100 250 5.0 10 250 5.0 10

1.12 V.

V

V V

R R
i R

R r R R R R

   
 

           



 

The current in the absence of the voltmeter can be obtained by taking the limit as RV 

becomes infinitely large. Then 

 

  
1

1 1

1 2

3.0V 250
1.15V.

250 300 100

R
i R

R R r

 
  

    
 

 

The fractional error is (1.12 – 1.15)/(1.15) = –0.030, or –3.0%. 

 

54. (a)  = V + ir = 12 V + (10.0 A) (0.0500 ) = 12.5 V. 

 

(b) Now  = V' + (imotor + 8.00 A)r, where  

 

V' = i'ARlight = (8.00 A) (12.0 V/10 A) = 9.60 V.  

Therefore, 

motor

12.5V 9.60V
8.00A 8.00A 50.0A.

0.0500

V
i

r

  
    


 

 

55. Let i1 be the current in R1 and R2, and take it to be positive if it is toward point a in R1. 

Let i2 be the current in Rs and Rx, and take it to be positive if it is toward b in Rs. The loop 

rule yields (R1 + R2)i1 – (Rx + Rs)i2 = 0. Since points a and b are at the same potential, 

i1R1 = i2Rs. The second equation gives i2 = i1R1/Rs, which is substituted into the first 

equation to obtain 
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    21
1 2 1 1

1

.s
x s x

s

R RR
R R i R R i R

R R
      

 

56. The currents in R and RV are i and i' – i, respectively. Since V = iR = (i' – i)RV we 

have, by dividing both sides by V, 1 = (i' /V – i/V)RV = (1/R' – 1/R)RV. Thus, 

 

1 1 1
    .V

V V

RR
R

R R R R R
   

 
 

 

The equivalent resistance of the circuit is 
eq 0 0

V
A A

V

RR
R R R R R R

R R
     


. 

 

(a) The ammeter reading is 

 

       eq 0

2

12.0V

3.00 100 300 85.0 300 85.0

7.09 10 A.

A V V

i
R R R R R R R

 



   
        

 

 

 

(b) The voltmeter reading is  

 

V = – i' (RA + R0) = 12.0 V – (0.0709 A) (103.00 ) = 4.70 V. 

 

(c) The apparent resistance is R' = V/i' = 4.70 V/(7.09  10
–2

 A) = 66.3 .  

 

(d) If RV is increased, the difference between R and R  decreases. In fact, R R  as 

VR  . 

 

57. Here we denote the battery emf as V.  Then the requirement stated in the problem that 

the resistor voltage be equal to the capacitor voltage becomes iR = Vcap, or 

 

Ve
t /RC

 = V(1  e
t/RC

) 

 

where Eqs. 27-34 and 27-35 have been used.  This leads to t = RC ln2, or  t =  0.208 ms. 

 

58. (a)  = RC = (1.40  10
6
 )(1.80  10

–6
 F) = 2.52 s. 

 

(b) qo = C = (12.0 V)(1.80  F) = 21.6 C. 

 

(c) The time t satisfies q = q0(1 – e
–t/RC

), or 

 

 0

0

21.6 C
ln 2.52s ln 3.40s.

21.6 C 16.0 C

q
t RC

q q



 

   
     

   
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59. THINK We have an RC circuit that is being charged. When fully charged, the charge 

on the capacitor is equal to .C   

 

EXPRESS During charging, the charge on the positive plate of the capacitor is given by 

 

q C e t   1c h,  

 

where C is the capacitance,  is applied emf, and  = RC is the capacitive time constant. 

The equilibrium charge is qeq = C, so we require q = 0.99qeq = 0.99C.  
 

ANALYZE The time required to reach 99% of its final charge is given by 

 

099 1. .  e t   
 

Thus, e t  001. .  Taking the natural logarithm of both sides, we obtain t/ = – ln 0.01 = 

4.61 or t = 4.61. 
 

LEARN The corresponding current in a charging capacitor is given by 

 

.tdq
i e

dt R

    

 

The current has an initial value / R  but decays exponentially to zero as the capacitor 

becomes fully charged. The plots of q(t) and i(t) are shown in Fig. 27-16 of the text.  

 

60. (a) We use q = q0e
–t/

, or t =  ln (q0/q), where  = RC is the capacitive time constant. 

Thus,  

0 1/3
1/3

0

3
ln ln 0.41 0.41.

2 / 3 2

q t
t

q
  



   
       

  
 

 

(b) 0 2/3
2/3

0

ln ln3 1.1 1.1.
/ 3

q t
t

q
  



 
     

 
 

 

61. (a) The voltage difference V across the capacitor is V(t) = (1 – e
–t/RC

). At t = 1.30 s 

we have V(t) = 5.00 V, so 5.00 V = (12.0 V)(1 – e
–1.30 s/RC

), which gives  

 

 = (1.30  s)/ln(12/7) = 2.41 s. 

 

(b) The capacitance is C = /R = (2.41 s)/(15.0 k = 161 pF. 

 

62. The time it takes for the voltage difference across the capacitor to reach VL is given 

by V eL

t RC   1c h . We solve for R: 
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R
t

C VL





 

 
ln

.

. ln . . .
.

 b g c h b g
0500

0150 10 950 950 72 0
2 35 10

6

6s

F V V V
  

 

where we used t = 0.500 s given (implicitly) in the problem. 

 

63. THINK We have a multi-loop circuit with a capacitor that’s being charged. Since at t 

= 0 the capacitor is completely uncharged, the current in the capacitor branch is as it 

would be if the capacitor were replaced by a wire.  

 

EXPRESS Let i1 be the current in R1 and take it to be positive if it is to the right. Let i2 

be the current in R2 and take it to be positive if it is downward. Let i3 be the current in R3 

and take it to be positive if it is downward. The junction rule produces 
1 2 3,i i i   the loop 

rule applied to the left-hand loop produces 

 

1 1 2 2 0,i R i R     

 

and the loop rule applied to the right-hand loop produces 

 

2 2 3 3 0.i R i R   

 

Since the resistances are all the same we can simplify the mathematics by replacing R1, 

R2, and R3 with R.  

 

ANALYZE (a) Solving the three simultaneous equations, we find 

 

i
R

1

3

6

32

3

2 12 10

3 0 73 10
11 10 




   .

.
.

V
A

c h
c h , 

 

(b) 
 

3
4

2 6

1.2 10 V
5.5 10 A,

3 3 0.73 10
i

R

 
   

 
  

 

(c) and 4

3 2 5.5 10 A.i i     

 

At t =  the capacitor is fully charged and the current in the capacitor branch is 0. Thus, 

i1 = i2, and the loop rule yields 1 1 1 2 0.i R i R     

 

(d) The solution is 
 

3
4

1 6

1.2 10 V
8.2 10 A

2 2 0.73 10
i

R

 
   

 
 

(e) and 4

2 1 8.2 10 A.i i     

 

(f) As stated before, the current in the capacitor branch is i3 = 0. 
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We take the upper plate of the capacitor to be positive. This is consistent with current 

flowing into that plate. The junction equation is i1 = i2 + i3, and the loop equations are 

 

1 2

3 2

0

0.

i R i R

q
i R i R

C

   

   
 

 

We use the first equation to substitute for i1 in the second and obtain  

 

 – 2i2R – i3R = 0. 

 

Thus i2 = ( – i3R)/2R. We substitute this expression into the third equation above to 

obtain  

–(q/C) – (i3R) + (/2) – (i3R/2) = 0. 

 

Now we replace i3 with dq/dt to obtain 

 

3
.

2 2

R dq q

dt C


   

 

This is just like the equation for an RC series circuit, except that the time constant is  = 

3RC/2 and the impressed potential difference is /2. The solution is 

 

 2 31 .
2

t RCC
q e

    

The current in the capacitor branch is 

2 3

3( ) .
3

t RCdq
i t e

dt R

    

 

The current in the center branch is 

 

 2 3 2 33
2 ( ) 3

2 2 2 6 6

t RC t RCi
i t e e

R R R R

           

 

and the potential difference across R2 is  2 3

2 2( ) 3 .
6

t RCV t i R e
     

 

(g) For 2 30, 1t RCt e   and   3 2

2 3 1.2 10 V 3 4.0 10 VV      . 

 

(h) For 2 3, 0t RCt e   and  3 2

2 2 1.2 20 V 2 6.0 10 VV      . 

 

(i) A plot of V2 as a function of time is shown in the following graph. 
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LEARN A capacitor that is being charged initially behaves like an ordinary connecting 

wire relative to the charging current. However, a long time later after it’s fully charged, it 

acts like a broken wire. 

 

64. (a) The potential difference V across the plates of a capacitor is related to the charge q 

on the positive plate by V = q/C, where C is capacitance. Since the charge on a 

discharging capacitor is given by q = q0 e
–t/

, this means V = V0 e
–t/

 where V0 is the initial 

potential difference. We solve for the time constant  by dividing by V0 and taking the 

natural logarithm: 

     
t

V Vln

s

ln V V
s.

0

10 0

100 100
217b g b g b g

.

.
.    

 

(b) At t = 17.0 s, t/ = (17.0 s)/(2.17 s) = 7.83, so 

 

V V e et     

0

7 83 2100 396 10 V Vb g . . .  

 

65. In the steady state situation, the capacitor voltage will equal the voltage across R2 = 

15 k: 

 0 2

1 2

20.0V
15.0 k 12.0V.

10.0 k 15.0 k
V R

R R

  
    

   
 

 

Now, multiplying Eq. 27-39 by the capacitance leads to V = V0e
–t/RC

 describing the 

voltage across the capacitor (and across R2 = 15.0 k) after the switch is opened (at t = 0). 

Thus, with t = 0.00400 s, we obtain 

 

V e 
  

12 616
0 004 15000 0 4 10 6b g b ge j. .

. V.  

 

Therefore, using Ohm’s law, the current through R2 is 6.16/15000 = 4.11  10
–4

 A. 
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66. We apply Eq. 27-39 to each capacitor, demand their initial charges are in a ratio of 

3:2 as described in the problem, and solve for the time. With 

 
6 4

1 1 1

6 5

2 2 2

(20.0 )(5.00 10 F) 1.00 10 s

(10.0 )(8.00 10 F) 8.00 10 s ,

R C

R C





 

 

     

     
 

 

we obtain 

 4

1 1 4 1 4 1

2 1

ln(3/ 2) ln(3/ 2)
1.62 10 s

1.25 10 s 1.00 10 s
t

 



   
   

   
. 

 

67. The potential difference across the capacitor varies as a function of time t as 
/

0( ) t RCV t V e . Using V = V0/4 at t = 2.0 s, we find 

 

R
t

C V V
 


 

ln

s

2.0 10 F ln40
6

52 0
7 2 10b g c h

.
. .  

 

68. (a) The initial energy stored in a capacitor is given by 2

0 / 2 ,CU q C where C is the 

capacitance and q0 is the initial charge on one plate. Thus 

 

q CUC0

6 32 2 10 10 050 10 10     . . .F J C .c hb g  

 

(b) The charge as a function of time is given by q q e t 

0

 , where  is the capacitive time 

constant. The current is the derivative of the charge 

 

0 ,tqdq
i e

dt





   

 

and the initial current is i0 = q0/. The time constant is  

 

RC     6 61.0 10 F 1.0 10 1.0 s    . 

 

Thus i0

3 310 10 10 10 10    . . .C s Ac h b g . 

 

(c) We substitute 0

tq q e   into VC = q/C to obtain 

 

 
3

1.0 s 3 1.00

6

1.0 10 C
1.0 10 V ,

1.0 10 F

t t t

C

q
V e e e

C




  



 
    

 
 

 

where t is measured in seconds.  
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(d) We substitute i q e t 

0  b g  into VR = iR to obtain  

 

  
 

3 6

1.0 s 3 1.00
1.0 10 C 1.0 10

1.0 10 V ,
1.0s

t t t

R

q R
V e e e





  
  

     

 

where t is measured in seconds. 

 

(e) We substitute  i q e t 

0  b g  into P i R 2  to obtain 

 

   
 

 

2
3 62

2 2 1.0 s 2.00

22

1.0 10 C 1.0 10
1.0 W ,

1.0s

t t tq R
P e e e





  
  

    

 

where t is again measured in seconds. 

 

69. (a) The charge on the positive plate of the capacitor is given by 

 

q C e t   1c h,  

 

where  is the emf of the battery, C is the capacitance, and  is the time constant. The 

value of  is  

 = RC = (3.00  10
6
 )(1.00  10

–6
 F) = 3.00 s. 

 

At t = 1.00 s, t/ = (1.00 s)/(3.00 s) = 0.333 and the rate at which the charge is increasing 

is 

  6

0.333 7
1.00 10 F 4.00V

9.55 10 C s.
3.00s

tdq C
e e

dt







  


     

 

(b) The energy stored in the capacitor is given by 
2

,
2

C

q
U

C
  and its rate of change is 

 

dU

dt

q

C

dq

dt

C  .  

Now 

q C e et          1 100 10 4 00 1 113 106 0 333 6c h c hb gc h. . ..V C,  

 

so 

 
6

7 6

6

1.13 10 C
9.55 10 C s 1.08 10 W.

1.00 10 F

CdU q dq

dt C dt


 



 
     

 
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(c) The rate at which energy is being dissipated in the resistor is given by P = i
2
R. The 

current is 9.55  10
–7

 A, so 

 

P      9 55 10 300 10 2 74 107
2

6 6. . .A W.c h c h  

 

(d) The rate at which energy is delivered by the battery is 

 

i     9 55 10 4 00 382 107 6. . .A V W.c hb g  

 

The energy delivered by the battery is either stored in the capacitor or dissipated in the 

resistor. Conservation of energy requires that i = (q/C) (dq/dt) + i
2
R. Except for some 

round-off error the numerical results support the conservation principle. 

 

70. (a) From symmetry we see that the current through the top set of batteries (i) is the 

same as the current through the second set. This implies that the current through the R = 

4.0  resistor at the bottom is iR = 2i. Thus, with r denoting the internal resistance of each 

battery (equal to 4.0 ) and  denoting the 20 V emf, we consider one loop equation (the 

outer loop), proceeding counterclockwise: 

 

3 2 0   ir i Rb g b g .  

 

This yields i = 3.0 A. Consequently, iR = 6.0 A. 

 

(b) The terminal voltage of each battery is  – ir = 8.0 V. 

 

(c) Using Eq. 27-17, we obtain P = i = (3)(20) = 60 W. 

 

(d) Using Eq. 26-27, we have P = i
2
r = 36 W. 

 

71. (a) If S1 is closed, and S2 and S3 are open, then  ia = /2R1 = 120 V/40.0  = 3.00 A. 

 

(b) If S3 is open while S1 and S2 remain closed, then   

 

Req = R1 + R1 (R1 + R2) /(2R1 + R2) = 20.0  + (20.0 )  (30.0 )/(50.0 ) = 32.0 , 

 

so ia = /Req = 120 V/32.0  = 3.75 A. 

 

(c) If all three switches S1, S2, and S3 are closed, then Req = R1 + R1 R'/(R1 + R') where  

 

R' = R2 + R1 (R1 + R2)/(2R1 + R2) = 22.0 , 

that is,  

Req = 20.0  + (20.0 ) (22.0 )/(20.0  + 22.0 ) = 30.5 , 

 

so ia = /Req = 120 V/30.5  = 3.94 A. 
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72. (a)  The four resistors R1, R2, R3, and R4 on the left reduce to  

 

 3 41 2
eq 12 34

1 2 3 4

7.0 3.0 10
R RR R

R R R
R R R R

       
 

. 

 

With 30 V  across Req the current there is i2 = 3.0 A. 

 

(b) The three resistors on the right reduce to  

 

5 6
eq 56 7 7

5 6

(6.0 )(2.0 )
1.5 3.0

6.0 2.0

R R
R R R R

R R

 
        

  
. 

 

With 30 V   across eqR the current there is i4 = 10 A. 

 

(c) By the junction rule, i1 = i2 + i4 = 13 A. 

 

(d) By symmetry, i3 = 
1

2 i2 = 1.5 A. 

 

(e) By the loop rule (proceeding clockwise), 

 

30V – i4(1.5 ) – i5(2.0 )  =  0 

 

readily yields i5 = 7.5 A. 

 

73. THINK Since the wires are connected in series, the current is the same in both wires. 

 

EXPRESS Let i be the current in the wires and V be the applied potential difference. 

Using Kirchhoff’s loop rule, we have 0.A BV iR iR    Thus, the current is 

/( ),A Bi V R R   and the corresponding current density is  

 

.
A B

i V
J

A R R
 


 

 

 ANALYZE (a) For wire A, the magnitude of the current density vector is 

 

   

 

  
2

3
1 2

27

4 60.0V4

0.127 0.729 2.60 10 m

1.32 10 A m .

A

A B

i V V
J

A R R A R R D  
   

     

 

 

 

(b) The potential difference across wire A is 
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VA = iRA = V RA/(RA + RB) = (60.0 V)(0.127 )/(0.127  + 0.729 ) = 8.90 V. 

 

(c) The resistivity of wire A is  

 
2 3 2

8(0.127 )(2.60 10 m)
1.69 10 m .

4 4(40.0m)

A A
A

A A

R A R D

L L

 



 

       

 

So wire A is made of copper. 

 

(d) Since wire B has the same length and diameter as wire A, and the currents are the 

same, we have
271.32 10 A m .B AJ J    

 

(e) The potential difference across wire B is VB = V – VA = 60.0 V – 8.9 V = 51.1 V. 

 

(f) The resistivity of wire B is 

 
2 3 2

8(0.729 )(2.60 10 m)
9.68 10 m

4 4(40.0m)

B B
B

B B

R A R D

L L

 



 

      , 

 

so wire B is made of iron. 

 

LEARN Resistance R is the property of an object (depending on quantities such as L and 

A), while resistivity is a property of the material itself. Knowing the value of  allows us 

to deduce what material the wire is made of.   

 

74. The resistor by the letter i is above three other resistors; together, these four resistors 

are equivalent to a resistor R = 10  (with current i). As if we were presented with a 

maze, we find a path through R that passes through any number of batteries (10, it turns 

out) but no other resistors, which — as in any good maze — winds “all over the place.” 

Some of the ten batteries are opposing each other (particularly the ones along the outside), 

so that their net emf is only  = 40 V.  

 

(a) The current through R is then i = /R = 4.0 A. 

 

(b) The direction is upward in the figure. 

 

75. (a) In the process described in the problem, no charge is gained or lost. Thus, q = 

constant. Hence,  

  31
1 1 2 2 2 1

2

150
200 3.0 10 V.

10

C
q CV C V V V

C

 
       

 
 

 

(b) Equation 27-39, with  = RC, describes not only the discharging of q but also of V. 

Thus, 
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   9 120
0

3000
ln 300 10 10 10 F ln

100

t V
V V e t RC

V

    
         

  
 

 

which yields t = 10 s. This is a longer time than most people are inclined to wait before 

going on to their next task (such as handling the sensitive electronic equipment). 

 

(c) We solve  V V e t RC 

0 for R with the new values V0 = 1400 V and t = 0.30 s. Thus, 

 

R
t

C V V
 


 

ln

.

ln
. .

0
12

100 30

10 10 1400 100
11 10b g c h b g

s

F
  

 

76. (a)  We reduce the parallel pair of resistors (at the bottom of the figure) to a single R’ 

=1.00  resistor and then reduce it with its series ‘partner’ (at the lower left of the figure) 

to obtain an equivalence of R= 2.00  +1.00 =3.00 .  It is clear that the current 

through R  is the i1 we are solving for.  Now, we employ the loop rule, choose a path 

that includes R  and all the batteries (proceeding clockwise).  Thus, assuming i1 goes 

leftward through R , we have 

 

5.00 V + 20.0 V 10.0 V  i1R”  = 0 

 

which yields i1 = 5.00 A. 

 

(b) Since i1 is positive, our assumption regarding its direction (leftward) was correct. 

 

(c) Since the current through the 1 = 20.0 V battery is “forward”, battery 1 is supplying 

energy. 

 

(d) The rate is P1 = (5.00 A)(20.0 V) = 100 W.  

 

(e) Reducing the parallel pair (which are in parallel to the 2 = 10.0 V battery) to a single 

R' = 1.00  resistor (and thus with current i' = (10.0 V)/(1.00 ) = 10.0 A downward 

through it), we see that the current through the battery (by the junction rule) must be i = i' 

 i1 = 5.00 A upward (which is the "forward" direction for that battery). Thus, battery 2 is 

supplying energy. 

 

(f) Using Eq. 27-17, we obtain P2 = 50.0 W.  

 

(g) The set of resistors that are in parallel with the 3 = 5 V battery is reduced to R= 

0.800  (accounting for the fact that two of those resistors are actually reduced in series, 

first, before the parallel reduction is made), which has current i''’ = (5.00 V)/(0.800 ) = 

6.25 A downward through it.  Thus, the current through the battery (by the junction rule) 

must be i = i''’ + i1 = 11.25 A upward (which is the "forward" direction for that battery). 

Thus, battery 3 is supplying energy. 
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(h) Equation 27-17 leads to P3 = 56.3 W.  

 

77. THINK The silicon resistor and the iron resistor are connected in series. Both 

resistors are temperature-dependent, but we want the combination to be independent of 

temperature. 

 

EXPRESS We denote silicon with subscript s and iron with i. Let T0 = 20°. The 

resistances of the two resistors can be written as 

 

           0 0 0 01 , 1s s s i i iR T R T T T R T R T T T             . 

 

The resistors are in series connection so  

 

             

         

0 0 0 0

0 0 0 0 0

1 1

.

s i s s i i

s i s s i i

R T R T R T R T T T R T T T

R T R T R T R T T T

 

 

             

      

 

 

Now, if ( )R T is to be temperature-independent, we must require that Rs(T0)s + Ri(T0)i 

= 0. Also note that Rs(T0) + Ri(T0) = R = 1000 .  

 

ANALYZE (a) We solve for Rs(T0) and Ri(T0) to obtain 

 

 
   3

0 3 3

1000 6.5 10 / K
85.0 .

(6.5 10 / K) ( 70 10 / K)

i
s

i s

R
R T



 



 

 
   

    
 

 

(b) Similarly, Ri(T0) = 1000  – 85.0  = 915 . 

 

LEARN The temperature independence of the combined resistor was possible because i 

and s, the temperature coefficients of resistivity of the two materials have opposite signs, 

so their temperature dependences can cancel.  

 

78. The current in the ammeter is given by  

 

iA = /(r + R1 + R2 + RA). 

 

The current in R1 and R2 without the ammeter is i = /(r + R1 + R2). The percent error is 

then 

1 2

1 2 1 2

0.10
1

2.0 5.0 4.0 0.10

0.90%.

A A

A A

i i r R R Ri

i i r R R R r R R R

   
    

         



 

 

79. THINK As the capacitor in an RC circuit is being charged, some energy supplied by 

the emf device also goes to the resistor as thermal energy.   
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EXPRESS The charge q on the capacitor as a function of time is q(t) = (C)(1 – e
–t/RC

), 

so the charging current is i(t) = dq/dt = (/R)e
–t/RC

. The rate at which the emf device 

supplies energy is .P i dt   

 

ANALYZE (a) The energy supplied by the emf is then 

 
2

2

0 0 0
2t RC

CU P dt i dt e dt C U
R




 

  
        

 

where U CC 
1

2

2  is the energy stored in the capacitor. 

 

(b) By directly integrating i
2
R we obtain 

 

U i Rdt
R

e dt CR

t RC  
 zz 2

2
2

00

21

2


 .  

 

LEARN Half of the energy supplied by the emf device is stored in the capacitor as 

electrical energy, while the other half is dissipated in the resistor as thermal energy.  

 

80. In the steady state situation, there is no current going to the capacitors, so the resistors 

all have the same current.  By the loop rule, 

 

20.0 V  =  (5.00 )i + (10.0 )i + (15.0 )i 

 

which yields i = 
2

3 A.  Consequently, the voltage across the R1 = 5.00  resistor is (5.00 

)(2/3 A) = 10/3 V, and is equal to the voltage V1 across the C1 = 5.00 F capacitor.  

Using Eq. 26-22, we find the stored energy on that capacitor: 

 

 

2

2 6 5

1 1 1

1 1 10
(5.00 10  F) V 2.78 10  J

2 2 3
U CV   

     
 

. 

 

Similarly, the voltage across the R2 = 10.0  resistor is (10.0 )(2/3 A) = 20/3 V and is 

equal to the voltage V2 across the C2 = 10.0 F capacitor. Hence, 

 
2

2 6 5

2 2 2

1 1 20
(10.0 10  F) V 2.22 10  J

2 2 3
U C V   

     
 

 

 

Therefore, the total capacitor energy is U1  + U2  = 2.50  10
4

 J. 

 

81. The potential difference across R2 is 
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V iR
R

R R R
2 2

2

1 2 3

12 4 0

30 4 0 50
4 0 

 


 


 V
V.

b gb g.

. . .
.



  
 

 

82. From Va – 1 = Vc – ir1 – iR and i = (1 – 2)/(R + r1 + r2), we get 

 

 1 2
1 1 1 1

1 2

( )

4.4V 2.1V
4.4V (2.3 5.5 )

5.5 1.8 2.3

2.5V.

a cV V i r R r R
R r r

 
 

 
       

  

 
    

   



 

 

83. THINK The time constant in an RC circuit is ,RC   where R is the resistance and 

C is the capacitance. A greater value of  means a longer discharging time. 

 

EXPRESS The potential difference across the capacitor varies as a function of time t as 

/

0( ) ,tV t V e   where .RC   Thus, 
 0

.
ln

t
R

C V V
  

 

ANALYZE (a) Then, for the smaller time interval tmin = 10.0 s 

 

   
min

10.0 s
24.8 .

0.220 F ln 5.00 0.800
R




    

 

(b) Similarly, for the larger time interval tmax = 6.00 ms, 

 

   

3
4

max

6.00 10 s
1.49 10 .

0.220 F ln 5.00 V 0.800 V
R




     

 

LEARN The two extrema of the resistances are related by  

 

max max

min min

.
R t

R t
  

 

The larger the value of R for a given capacitance, the longer the discharging time. 

 

84. (a) Since   2

tank 140 , 12V 10 140 8.0 10 AR i        . 

 

(b) Now, Rtank = (140  + 20 )/2 = 80 , so i = 12 V/(10  + 80 ) = 0.13 A. 

 

(c) When full, Rtank = 20  so i = 12 V/(10  + 20 ) = 0.40 A. 
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85. THINK One of the three parts could be defective: the battery, the motor, or the cable. 

 

EXPRESS All three circuit elements are connected in series, so the current is the same in 

all of them. The battery is discharging, so the potential drop across the terminals is 

battery ,V ir   where  is the emf and r is the internal resistance. On the other hand, the 

resistances in the cable and the motor are 
cable cable /R V i  and motor motor / ,R V i  respectively. 

 

ANALYZE The internal resistance of the battery is  

 

 
battery 12 V 11.4 V

0.012
50 A

V
r

i

  
     

  

which is less than 0.020 . So the battery is OK. For the motor, we have 

 

motor
motor

11.4 V 3.0 V
0.17

50 A

V
R

i


     

 

which is less than 0.20 . So the motor is OK. Now, the resistance of the cable is 

 

cable
cable

3.0 V
0.060

50 A

V
R

i
     

 

which is greater than 0.040 . So the cable is defective. 

 

LEARN In this exercise, we see that a defective component has a resistance outside its 

the range of acceptance. 

 

86. When connected in series, the rate at which electric energy dissipates is Ps = 2
/(R1 + 

R2). When connected in parallel, the corresponding rate is Pp = 2
(R1 + R2)/R1R2. Letting 

Pp/Ps = 5, we get (R1 + R2)
2
/R1R2 = 5, where R1 = 100 . We solve for R2: R2 = 38  or 

260 . 

 

(a) Thus, the smaller value of R2 is 38 



(b) The larger value of R2 is 260  

 

87. When S is open for a long time, the charge on C is qi = 2C. When S is closed for a 

long time, the current i in R1 and R2 is  

 

i = (2 – 1)/(R1 + R2) = (3.0 V – 1.0 V)/(0.20  + 0.40 ) = 3.33 A. 

 

The voltage difference V across the capacitor is then  
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V = 2 – iR2 = 3.0 V – (3.33 A) (0.40 ) = 1.67 V. 

 

Thus the final charge on C is qf = VC. So the change in the charge on the capacitor is  

 

q = qf – qi = (V – 2)C = (1.67 V – 3.0 V) (10  F) = – 13  C. 

 

88. Using the junction and the loop rules, we have 

 

 

1 1 3 3

1 1 2 2

2 3 1

20.0 0

20.0 50 0

i R i R

i R i R

i i i

  

   

 

 

 

Requiring no current through the battery 1 means that i1= 0, or i2 = i3. Solving the above 

equations with 1 10.0R    and 
2 20.0R   , we obtain  

 

 3
1 3

3

40 3 40
0      13.3

20 3 3

R
i R

R


     


. 

 

89. The bottom two resistors are in parallel, equivalent to a 2.0R resistance.  This, then, is 

in series with resistor R on the right, so that their equivalence is R' = 3.0R.  Now, near the 

top left are two resistors (2.0R and 4.0R) that are in series, equivalent to R'' = 6.0R.  

Finally, R' and R'' are in parallel, so the net equivalence is 

 

Req = 
(R') (R'')

R' + R''
 = 2.0R = 20  

 

where in the final step we use the fact that R = 10 . 

 

90. (a) Using Eq. 27-4, we take the derivative of the power P = i
2
R with respect to R and 

set the result equal to zero: 

 

dP

dR

d

dR

R

R r

r R

R r




F
HG

I
KJ 






 2

2

2

3
0

( )

( )

( )
 

 

which clearly has the solution R = r. 

 

(b) When R = r, the power dissipated in the external resistor equals 

 

P
R

R r r
R r

max
( )

.






 2

2

2

4
 

 

91. (a)  We analyze the lower left loop and find  
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i1 = 1/R = (12.0 V)/(4.00 ) = 3.00 A. 

 

(b) The direction of  i1 is downward. 

 

(c) Letting R = 4.00 , we apply the loop rule to the tall rectangular loop in the center of 

the figure (proceeding clockwise): 

 

      2
2 1 2 2 0

2

i
i R i R R i R

 
         

 
. 

 

Using the result from part (a), we find i2 = 1.60 A. 

 

(d) The direction of  i2 is downward (as was assumed in writing the equation as we did). 

 

(e) Battery 1 is supplying this power since the current is in the "forward" direction 

through the battery. 

 

(f) We apply Eq. 27-17: The current through the 1 = 12.0 V battery is, by the junction 

rule, 3.00 A + 1.60 A = 4.60 A and  

 

P = (4.60 A)(12.0 V) = 55.2 W. 

 

(g) Battery 2 is supplying this power since the current is in the "forward" direction 

through the battery. 

 

(h) P = i2(4.00 V) = 6.40 W. 

 

92. The equivalent resistance of the series pair of R3 = R4 = 2.0 is R34= 4.0 , and the 

equivalent resistance of the parallel pair of R1 = R2 = 4.0 is R12= 2.0 . Since the 

voltage across R34 must equal that across R12:  

 

34 12 34 34 12 12 34 12

1
          

2
V V i R i R i i      

 

This relation, plus the junction rule condition 12 34 6.00 A,I i i    leads to the solution 

12 4.0 Ai  . It is clear by symmetry that 1 12 / 2 2.00 Ai i  . 

 

93. (a) From P = V 
2
/R we find V PR  10 010 10W V.b gb g. .  

 

(b) From i = V/R = ( – V)/r we find 

 

 
1.5V 1.0V

0.10 0.050 .
1.0V

V
r R

V

    
      

   
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94. (a) Req(AB) = 20.0 /3 = 6.67  (three 20.0  resistors in parallel). 

 

(b) Req(AC) = 20.0 /3 = 6.67  (three 20.0  resistors in parallel). 

 

(c) Req(BC) = 0 (as B and C are connected by a conducting wire). 

 

95. The maximum power output is (120 V)(15 A) = 1800 W. Since 1800 W/500 W = 3.6, 

the maximum number of 500 W lamps allowed is 3. 

 

96. Here we denote the battery emf as V.  Eq. 27-30 leads to 

 

 
6

6

12 V 8.0 10  C
2.50 A.

4.0 (4.0 )(4.0 10 F)

q
i

R RC

 




    

  
 

 

97. THINK To calculate the current in the resistor R, we first find the equivalent 

resistance of the N batteries. 

 

EXPRESS When all the batteries are connected in parallel, the emf is  and the 

equivalent resistance is parallel / ,R R r N  so the current is  

 parallel

parallel

.
/

N
i

R R r N NR r

  
  

 
 

 

Similarly, when all the batteries are connected in series, the total emf is N and the 

equivalent resistance is 
series .R R Nr  Therefore,  

 

series

series

.
N N

i
R R Nr

 
 


 

 

ANALYZE Comparing the two expressions, we see that the two currents paralleli  and seriesi  

are equal if ,R r with  

parallel series .
( 1)

N
i i

N r


 


 

 

LEARN In general, the current difference is 

 

parallel series

( 1)( )
.

( )( )

N N N N r R
i i

NR r R Nr NR r R Nr

    
   

   
 

If R > r, then parallel series.i i  

 

98. THINK The rate of energy supplied by the battery is .i  So we first calculate the 

current in the circuit.  
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EXPRESS With R2 and R3 in parallel, and the combination in series with R1, the 

equivalent resistance for the circuit is 

 

 2 3 1 2 1 3 2 3
eq 1

2 3 2 3

R R R R R R R R
R R

R R R R

 
  

 
 

and the current is  

2 3

eq 1 2 1 3 2 3

( )
.

R R
i

R R R R R R R

 
 

 
 

 

The rate at which the battery supplies energy is  

 
2

2 3

1 2 1 3 2 3

( )
.

R R
P i

R R R R R R





 

 
 

  

To find the value of R3 that maximizes P, we differentiate P with respect to R3. 

 

ANALYZE (a) With a little algebra, we find 

 
2 2

2

2

3 1 2 1 3 2 3

.
( )

RdP

dR R R R R R R


 

 
 

 

The derivative is negative for all positive value of R3. Thus, we see that P is maximized 

when R3 = 0. 

  

(b) With the value of R3 set to zero, we obtain 
2 2

1

(12.0 V)
14.4 W.

10.0
P

R


  


 

 

LEARN Mathematically speaking, the function P is a monotonically decreasing function 

of R3 (as well as R2 and R1), so P is a maximum at R3 = 0.  

 

99. THINK A capacitor that is being charged initially behaves like an ordinary 

connecting wire relative to the charging current. 

 

EXPRESS The capacitor is initially uncharged. So immediately after the switch is closed, 

by the Kirchhoff’s loop rule, there is zero voltage (at t = 0) across the R2 = 10 k resistor, 

and that  = 30 V is across the R1 =20 k resistor.  

 

ANALYZE (a) By Ohm’s law, the initial current in R1 is 

 

i10 =  / R1 = (30 V)/(20 k) = 1.5  10
–3

 A. 

 

(b) Similarly, the initial current in R2 is i20 = 0. 
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(c) As t   the current to the capacitor reduces to zero and the R1 = 20 k and R2 = 10 

k resistors behave more like a series pair (having the same current), equivalent to  

 

Req = R1 + R2 = 30 k. 

 

The current through them, then, at long times, is  

 

i = /Req = (30 V)/(30 k) = 1.0  10
–3

 A. 

 

LEARN A long time later after a capacitor is being fully charged, it acts like a broken 

wire. 

 

100. (a)  Reducing the bottom two series resistors to a single R’ = 4.00  (with current i1 

through it), we see we can make a path (for use with the loop rule) that passes through R, 

the 4 = 5.00 V battery,  the 1 = 20.0 V battery, and the 3 = 5.00 V.  This leads to 

 

i1 = 1 3 4 20.0 V 5.00 V 5.00 V

40.0R

     


 
 = 

30.0 V

 4.0 
 =  7.50 A. 

 

(b) The direction of i1 is leftward. 

 

(c) The voltage across the bottom series pair is i1R’ = 30.0 V.  This must be the same as 

the voltage across the two resistors directly above them, one of which has current i2 

through it and the other (by symmetry) has current 
1

2 i2 through it.  Therefore, 

 

30.0 V = i2 (2.00 ) + 
1

2 i2 (2.00 ) 

 

which leads to i2 = (30.0 V)/(3.00 ) = 10.0 A. 

 

(d) The direction of  i2 is also leftward. 

 

(e) We use Eq. 27-17:  P4 = (i1 + i2)4 = (7.50 A 10.0 A)(5.00 V)   87.5 W. 

 

(f) The energy is being supplied to the circuit since the current is in the "forward" 

direction through the battery. 

 

101. Consider the lowest branch with the two resistors R4 = 3.00  and R5 = 5.00 . The 

voltage difference across R5 is 

 

  5
5 5

4 5

120V 5.00
7.50V.

3.00 5.00

R
V i R

R R

 
   

  
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102. (a) Here we denote the battery emf as V.  See Fig. 27-4(a): VT  = V ir. 

 

(b) Doing a least squares fit for the VT  versus i values listed, we obtain  

 

VT = 13.61  0.0599i 

which implies V = 13.6 V. 

 

(c) It also implies the internal resistance is 0.060 . 

 

103. (a) The loop rule (proceeding counterclockwise around the right loop) leads to 2 – 

i1R1 = 0 (where i1 was assumed downward). This yields i1 = 0.0600 A. 

 

(b) The direction of i1 is downward. 

 

(c) The loop rule (counterclockwise around the left loop) gives 

 

     1 1 1 2 2 0i R i R       

 

where i2 has been assumed leftward. This yields i3 = 0.180 A. 

 

(d) A positive value of i3 implies that our assumption on the direction is correct, i.e., it 

flows leftward. 

 

(e) The junction rule tells us that the current through the 12 V battery is 0.180 + 0.0600 = 

0.240 A. 

 

(f) The direction is upward. 

 

104. (a) Since P = 2/Req, the higher the power rating the smaller the value of Req. To 

achieve this, we can let the low position connect to the larger resistance (R1), middle 

position connect to the smaller resistance (R2), and the high position connect to both of 

them in parallel. 

 

(b) For P = 300 W, Req = R1R2/(R1 + R2) = (144 )R2/(144  + R2) = (120 V)
2
/(300 W). 

We obtain R2 = 72 . 

 

(c) For P = 100 W, Req = R1 = 2/P = (120 V)
2
/100 W = 144 ;  

 

105. (a) The six resistors to the left of 1 = 16 V battery can be reduced to a single resistor 

R = 8.0 , through which the current must be iR = 1/R = 2.0 A. Now, by the loop rule, 

the current through the 3.0  and 1.0  resistors at the upper right corner is 

 

 



i

16 0 8 0

10
2 0

. .

.
.

V V

3.0
A

 
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in a direction that is “backward” relative to the 2 = 8.0 V battery. Thus, by the junction 

rule, i i iR1 4 0    . A . 

 

(b) The direction of i1 is upward (that is, in the “forward” direction relative to 1). 

 

(c) The current i2 derives from a succession of symmetric splittings of iR (reversing the 

procedure of reducing those six resistors to find R in part (a)). We find 

 

2

1 1
0. 50A

2 2
Ri i

 
  

 
. 

 

(d) The direction of i2 is clearly downward. 

 

(e) Using our conclusion from part (a) in Eq. 27-17, we have  

 

P = i11 = (4.0 A)(16 V) = 64 W. 

 

(f) Using results from part (a) in Eq. 27-17, we obtain P = i'2 = (2.0 A)(8.0 V) = 16 W. 

 

(g) Energy is being supplied in battery 1. 

 

(h) Energy is being absorbed in battery 2. 

 

 

 

 


