Chapter 33

1. Since AA< A, we find Af is equal to

_cAZ_ (3.0x10° m/s)(0.0100x10°° m)

A(£)~ L s =7.49x10° Hz.
)2 (632.8x10™° m)
2. (a) The frequency of the radiation is
8
_C__ 30xd0mis o g0t

C
X (LOx10°)(64 x10° m)
(b) The period of the radiation is

1l 55— 3min32s

f 47x10°Hz

3. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm.

(b) Similarly, the larger wavelength is approximately 610 nm.

(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm.

(d) Using the result in (c), we have

¢ _3.00x10°m/s

— =5.41x10"Hz .
A 555 nm

(e) The period is T = 1/f = (5.41 x 10" Hz) ' = 1.85 x 10 s,

4. In air, light travels at roughly ¢ = 3.0 x 10% m/s. Therefore, for t = 1.0 ns, we have a

distance of
d=ct=(30x10° m/s)(1.0x107° s) =0.30 m.

5. THINK The frequency of oscillation of the current in the LC circuit of the generator is
f =1/27+vLC, where C is the capacitance and L is the inductance. This frequency is the

same as the frequency of an electromagnetic wave.

EXPRESS If f is the frequency and A is the wavelength of an electromagnetic wave, then

fA =c. Thus,

1409
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=C.
21+ LC
ANALYZE The solution for L is
A2 (550x10°° m)’

== - =500x10""H.
An°CC”  4n®(17x1072F)(2.998 x 10° m/s)

This is exceedingly small.

LEARN The frequency is

8
_30A0MS g 45 g0 1z

oG
A 550x10°m

The EM wave is in the visible spectrum.

6. The emitted wavelength is

z:%: 277¢/LC = 27(2.99810° m/s)\/(0.253><10‘6 H)(25.0x10 “F) =474 m.

7. The intensity is the average of the Poynting vector:

2 (30x10° m/s)(LOx 107 T)
|=savg=CBm=( <10 m/s)10 : ) 120w
2y 2(126x10°H/ m)

8. The intensity of the signal at Proxima Centauri is

6
1= 10x10°W S =48x10° W/,

4nr® 4 (43ly)(9.46x10° m/ly)

9. If P is the power and At is the time interval of one pulse, then the energy in a pulse is
E = PAt = (100x 10" W)(10x10° s) =10x 10°J.
10. (a) Setting v = ¢ in the wave relation kv = & = 24f, we find f = 1.91 x 10® Hz.

(0) Erms = EnA2 = Bn/cy2 = 18.2 V/m.

(©) 1 = (Exms)*/C1o = 0.878 W/m?.
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11. (a) The amplitude of the magnetic field is

B, =En__ 20VIM 67 10°T~6.7x10°T.
c 2.998x10°m/s

(b) Since the E-wave oscillates in the z direction and travels in the x direction, we have B
=B, =0. So, the oscillation of the magnetic field is parallel to the y axis.

(c) The direction (+x) of the electromagnetic wave propagation is determined by ExB. If
the electric field points in +z, then the magnetic field must point in the —y direction.

With Sl units understood, we may write

B, =B, COS{ﬂ'XlOlS (t—

= (6.7x10°*) cos {10%@ —%ﬂ

12. (a) The amplitude of the magnetic field in the wave is

zﬂ _ 2.0cos [lol%(t _ X/c)]

C 3.0x108

B, = En__S00VIM 67 1007,
c 2998x10°m/s

(b) The intensity is the average of the Poynting vector:

E (500V/m)’

| = m__

Sag = = - : =331x107°W/m?,
21,¢  2(4mx107 T-m/A)(2.998x10° m/s)

13. (@) We use | = EZ /2 uqc to calculate Ep:

E, =21, =[2(4n 107 T-m/ A)(140 x 10° W/ m*)(2.998 x 10° m/s)
=103x10°V/m.

(b) The magnetic field amplitude is therefore

4
g - En_ 103x10 s\”m —343x10°T.
c 2998x10°m/s
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14. From the equation immediately preceding Eq. 33-12, we see that the maximum value
of oB/at is B, . We can relate By, to the intensity:

B _ E. _ NEAg

m k)

C C

and relate the intensity to the power P (and distance r) using Eq. 33-27. Finally, we
relate o to wavelength A using @ = kc = 2zc/A. Putting all this together, we obtain

[@j ﬂ/z"op 27C _ 3 44x10° Ts.
Ot ) ex 4rzc Ar

15. (a) The average rate of energy flow per unit area, or intensity, is related to the electric
field amplitude En by | =EZ/2u,c, S0

E, = V241,01 = [2(47x107 H/m)(2.998 x10° m/s) (10 x 10° W/ m?)
=87x102V/m.

(b) The amplitude of the magnetic field is given by

2
g, = En  87X10°VIM _,q 1007
c 2998x10°m/s

(c) At a distance r from the transmitter, the intensity is | =P/2nrr?, where P is the power
of the transmitter over the hemisphere having a surface area 2zr?. Thus

P=27r"1 =22(10x10°m)" (10x10°W/m?)=6.3x10°W.
16. (a) The power received is

7(300 m)? /4

P, =(1.0x10™ W) -=1.4x102W.
4m(6.37x10°m)
(b) The power of the source would be
-12
P=4z7r2| =47z[(2.2x10“ ly)(9.46x10" m/Iy)T 1010 "W ~ |=1.1x10° W.
47(6.37x10°m)

17. (a) The magnetic field amplitude of the wave is
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=En__20VIM ___gg 007,
cC 2998x10°m/s

(b) The intensity is

2 2
|=En o (20v/m) ~53x10° W/ m?,
2, 2(4nx107 T-m/A)(2.998x10° m/s)

(c) The power of the source is
P =4nr’l,,, =4n(10m)’ (5.3x10° W/m*) =6.7 W.

18. Equation 33-27 suggests that the slope in an intensity versus inverse-square-distance
graph (1 plotted versus r ) is P/4z. We estimate the slope to be about 20 (in SI units),
which means the power is P = 47(30) ~ 2.5 x10° W.

19. THINK The plasma completely reflects all the energy incident on it, so the radiation
pressure is given by p, = 2l/c, where | is the intensity.

EXPRESS The intensity is | = P/A, where P is the power and A is the area intercepted by
the radiation.

ANALYZE Thus, the radiation pressure is

ol 2P 2(1.5x10°W)

pr=—=—=

= 7
c Ac (1.00x10°m?) (2.998><108m/5)_1'0><10 Pa.

LEARN In the case of total absorption, the radiation pressure would be p, =1/c, a
factor of 2 smaller than the case of total reflection.

20. (a) The radiation pressure produces a force equal to

3 2 6,\2
F.=p, @Rj):&) (nRj)=n<1'4X102\;\g;nxl)og6r:ZX1o m) =6.0x10°N.

(b) The gravitational pull of the Sun on the Earth is

GM.M, (6:67x107*N-m*/kg®) (2.0x10*kg) (5.98x10*kg)

F =
o dg (1.5x10m)’

=3.6x10%N,
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which is much greater than F,.

21. Since the surface is perfectly absorbing, the radiation pressure is given by p, = I/c,
where | is the intensity. Since the bulb radiates uniformly in all directions, the intensity a
distance r from it is given by | = P/4zr?, where P is the power of the bulb. Thus

P S00W

p=—p = . =59x107° Pa.
Anrc  4m(1.5 m) (2.998x10°m/s)
22. The radiation pressure is
2
o, =1 = LOW/M 45 10%pa

c  2998x10°m/s

23. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be
equal to the magnitude of the pull of gravity (mg). For a sphere, the “projected” area
(which is a factor in Eq. 33-32) is that of a circle A = zr” (not the entire surface area of
the sphere) and the volume (needed because the mass is given by the density multiplied
by the volume: m = pV) is V = 4r®/3. Finally, the intensity is related to the power P of
the light source and another area factor 4zR? given by Eq. 33-27. In this way, with
p=1.9x10* kg/m?, equating the forces leads to

Arrig

P:47zRZC(p )%:4.68xloﬂw.

r

(b) Any chance disturbance could move the sphere from being directly above the source,
and then the two force vectors would no longer be along the same axis.

24. We require Fgry = Fr Or
mM, 2IA

G -
d2 C

and solve for the area A:

A_ CGMM, _ (667 x10™ N-m?®/kg?)(1500 kg)(1.99 x 10% kg)(2.998x10° m/s)
21d2 2(140x10° W/ m?*)(150x 10" m)®

=95x10°> m* =095 km’.

25. THINK In this problem we relate radiation pressure to energy density in the incident
beam.
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EXPRESS Let f be the fraction of the incident beam intensity that is reflected. The
fraction absorbed is 1 —f. The reflected portion exerts a radiation pressure of

2f1,
r = C
and the absorbed portion exerts a radiation pressure of

1- 1)l
o - =Dy
c
where |y is the incident intensity. The factor 2 enters the first expression because the

momentum of the reflected portion is reversed. The total radiation pressure is the sum of
the two contributions:

Do = P, + P, = 21, +@A- )1, _ @+ )l .

c c
ANALYZE To relate the intensity and energy density, we consider a tube with length 7
and cross-sectional area A, lying with its axis along the propagation direction of an
electromagnetic wave. The electromagnetic energy inside is U =uA/, where u is the
energy density. All this energy passes through the end in time t = ¢/ c, so the intensity is

_U _uAlc _
At Al

Thus u = I/c. The intensity and energy density are positive, regardless of the propagation
direction. For the partially reflected and partially absorbed wave, the intensity just outside
the surface is

I = |0+f|0:(1+f)|0,

where the first term is associated with the incident beam and the second is associated with
the reflected beam. Consequently, the energy density is

| _ @+ )1,

C C

the same as radiation pressure.

LEARN In the case of total reflection, f = 1, and p,,, = p, =2l,/c. On the other hand,
the energy density is u=1/c=2I,/c, which is the same as p,,,. Similarly, for total
absorption, f = 0, p,, =p,=1,/C, and since |1 =1,, we have u=1/c=1,/c, which
again is the same as p,.,-

26. The mass of the cylinder is m= p(zD*/4)H, where D is the diameter of the cylinder.
Since it is in equilibrium
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2 2
Fnetzmg_FranD gp_[ﬂ-D ](£]=0
4 4 C

We solve for H:

21 ( 2P j 1
H: =
gcp (nD?*/4)gcp
2(4.60W)

" [(2.60x10° m)?/4](9.8m/s?)(3.0x10° m/s)(1.20x10°kg/m®)
—4.91x107 m.

27. THINK Electromagnetic waves travel at speed of light, and carry both linear
momentum and energy.

EXPRESS The speed of the electromagnetic wave is ¢ = Af, where A is the wavelength
and f is the frequency of the wave. The angular frequency is o =2=f, and the angular
wave number is k =27/ 4. The magnetic field amplitude is related to the electric field
amplitude by B, = E_ /c. The intensity of the wave is given by Eq. 33-26:

I:iErzms: :

=3
Cthy 2C44,

ANALYZE (a) With A = 3.0 m, the frequency of the wave is

c 2998x10° m/s

= =10x10° Hz.
A 30m

f =

(b) From the value of f obtained in (a), we find the angular frequency to be
o =2nf =21(1.0x10° Hz) =6.3x10° rad/s.
(c) The corresponding angular wave number is

k_Z_Tc_ 27
A 3.0m

=21rad/m.

(d) With En, = 300 V/m, the magnetic field amplitude is

B, =tm—_ 300VIM___, 4 0¢T.
c 2.998x10°m/s
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(e) Since E is in the positive y direction, B must be in the positive z direction so that
their cross product E x B points in the positive x direction (the direction of propagation).

(f) The intensity of the wave is

E2 (300V/m)?

= = =119W/m? ~1.2x10°>W/m?Z.
2u,c  2(47 %107 H/m)(2.998x10° m/s)

(9) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is
delivered to it is I/c, so

dp _ 1A _ (119 W/m*)(2.0 m?)

=80x10" N.
dt ¢ 2998x10° m/s 8

(h) The radiation pressure is

_dp/dt 80x107 N

_40x10” Pa,
=" 20 m? 8

LEARN The energy density is given by

2
=t o HOWMT 4 60x107 Jimd
c 2.998x10° m/s

which is the same as the radiation pressure p;.
28. (a) Assuming complete absorption, the radiation pressure is

3 2
1 _14x10 \BN/m — 4.7x10° N/m?.
c 30x10°m/s

(b) We compare values by setting up a ratio:

P, _47x10°N/m’

= =4.7x107",
p, 10x10°N/m?

29. THINK The laser beam carries both energy and momentum. The total momentum of
the spaceship and light is conserved.

EXPRESS If the beam carries energy U away from the spaceship, then it also carries
momentum p = U/c away. By momentum conservation, this is the magnitude of the
momentum acquired by the spaceship. If P is the power of the laser, then the energy
carried away in time tis U = Pt.
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ANALYZE We note that there are 86400 seconds in a day. Thus, p = Pt/c and, if m is
mass of the spaceship, its speed is

3
v=£=ﬂ= (10510 W)(8640085) =19x10° m/s.
m mc (1L5x10° kg)(2.998 x10° m/s)

LEARN As expected, the speed of the spaceship is proportional to the power of the laser
beam.

30. (a) We note that the cross-section area of the beam is zd %4, where d is the diameter
of the spot (d = 2.004). The beam intensity is

P 500x10°W

l=——= — =397 x10° W/ n?.
md* /4 7 (200)(633x10°m) /4

(b) The radiation pressure is

9 2
o 1 _dradtwimt oo

"¢ 2998x10°m/s

(c) In computing the corresponding force, we can use the power and intensity to eliminate
the area (mentioned in part (a)). We obtain

=167x10"" N.

. =[ﬂ2j r:(p) r=(5.oox10-3w)(13.2pa)

|4 n 3.97x10° W/ m?

(d) The acceleration of the sphere is

F F 6(167 x10™ N)

aAa=—= =
m p(rd®/6) 7w(5.00x10° kg/m*)[(2.00)(633x10° m)]*
=314x10° m/s°.

31. We shall assume that the Sun is far enough from the particle to act as an isotropic
point source of light.

(@) The forces that act on the dust particle are the radially outward radiation force Ifr and

the radially inward (toward the Sun) gravitational force Ifg . Using Egs. 33-32 and 33-27,
the radiation force can be written as
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F:ﬂz P, 7z'R2=PSR2
2 ¢ 4r’c

"¢ dar

where R is the radius of the particle, and A= zR? is the cross-sectional area. On the other
hand, the gravitational force on the particle is given by Newton’s law of gravitation (Eq.
13-1):

_ GM,m _GM,p(4zR*/3) 4zGM,pR®

F
r? r? 3r?

g

where m= p(47R*/3) is the mass of the particle. When the two forces balance, the
particle travels in a straight path. The condition that F, = F, implies

PR’  47GM,pR’
4ric 3r?

which can be solved to give

Ao 3R _ 3(3.9x10% W)
167cpGM,  167(3x10° m/s)(3.5x10° kg/m®)(6.67x10™" m*/kg-s*)(1.99x10% kg)
=1.7x107" m.

(b) Since F, varies with R® and F, varies with R?, if the radius R is larger, then F>F,
and the path will be curved toward the Sun (like path 3).

32. After passing through the first polarizer the initial intensity lp reduces by a factor of
1/2. After passing through the second one it is further reduced by a factor of cos® (7 —
6, — &) = cos® (6, + &). Finally, after passing through the third one it is again reduced by
a factor of cos” (z— 6 — 6s) = cos” (6 + 6). Therefore,

|
! =% cos® (6, +6,)cos? (6, +6,) :% cos?®(50°+50°) cos? (50°+50°)

1y
=4.5%x10™.
Thus, 0.045% of the light’s initial intensity is transmitted.

33. THINK Unpolarized light becomes polarized when it is sent through a polarizing
sheet. In this problem, three polarizing sheets are involved, we work through the system
sheet by sheet, applying either the one-half rule or the cosine-squared rule.

EXPRESS Let Iy be the intensity of the unpolarized light that is incident on the first
polarizing sheet. The transmitted intensity is, by one-half rule, 1, =3 1,, and the direction

of polarization of the transmitted light is 6, = 40° counterclockwise from the y axis in the
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diagram. For the second sheet (and the third one as well), we apply the cosine-squared
rule:

I, =1 cos’6,

where 6, is the angle between the direction of polarization that is incident on that sheet
and the polarizing direction of the sheet.

ANALYZE The polarizing direction of the second sheet is & = 20° clockwise from the y
axis, so 8, =40° + 20° = 60°. The transmitted intensity is

l, = Ilcosz60°:% I, cos’60°,

and the direction of polarization of the transmitted light is 20° clockwise from the y axis.
The polarizing direction of the third sheet is & = 40° counterclockwise from the y axis.
Consequently, the angle between the direction of polarization of the light incident on that
sheet and the polarizing direction of the sheet is 20° + 40° = 60°. The transmitted
intensity is

I, = I2c05260°=% l,c0s*60°=3.1x1071,.

Thus, 3.1% of the light’s initial intensity is transmitted.

LEARN When two polarizing sheets are crossed (& =90°), no light passes through and
the transmitted intensity is zero.

34. In this case, we replace I cos® 70° by 11, as the intensity of the light after passing
through the first polarizer. Therefore,

I :% I, cos?(90°—70°) = %(43 W/ m?)(cos” 20°) =19 W/ m?.

35. The angle between the direction of polarization of the light incident on the first
polarizing sheet and the polarizing direction of that sheet is ¢, = 70°. If Iy is the intensity
of the incident light, then the intensity of the light transmitted through the first sheet is

I, =1,c0s* 8, = (43 W/ m*) cos’ 70°=503 W/ m?.

The direction of polarization of the transmitted light makes an angle of 70° with the
vertical and an angle of & = 20° with the horizontal. & is the angle it makes with the
polarizing direction of the second polarizing sheet. Consequently, the transmitted
intensity is

|, =1, 008" 0, = (503 W/ m?) cos” 20°= 4.4 W/ m’.
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36. (a) The fraction of light that is transmitted by the glasses is

I E2 E2 E2
—f=—f2= > v 2 = > v 2 =016
|, EZ EZ+E’ EZ+(23E)

(b) Since now the horizontal component of E will pass through the glasses,

I 2 2
I 2Eh _ 2(2.3EV) o
|, E2+E’ EZ+(23E)

37. THINK A polarizing sheet can change the direction of polarization of the incident
beam since it allows only the component that is parallel to its polarization direction to
pass.

EXPRESS The 90° rotation of the polarization direction cannot be done with a single
sheet. If a sheet is placed with its polarizing direction at an angle of 90° to the direction
of polarization of the incident radiation, no radiation is transmitted.

ANALYZE (a) The 90° rotation of the polarization direction can be done with two sheets.
We place the first sheet with its polarizing direction at some angle 6, between 0 and 90°,
to the direction of polarization of the incident radiation. Place the second sheet with its
polarizing direction at 90° to the polarization direction of the incident radiation. The
transmitted radiation is then polarized at 90° to the incident polarization direction. The
intensity is

| =1,cos” &cos®(90°—0) = 1, cos” Fsin® 9,

where | is the incident radiation. If #is not 0 or 90°, the transmitted intensity is not zero.

(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of
= 90°/n relative to the direction of polarization of the incident radiation. The polarizing
direction of each successive sheet is rotated 90°/n in the same sense from the polarizing
direction of the previous sheet. The transmitted radiation is polarized, with its direction of
polarization making an angle of 90° with the direction of polarization of the incident
radiation. The intensity is

| =1,cos™"(90°/n).

We want the smallest integer value of n for which this is greater than 0.601,. We start
with n = 2 and calculate cos®"(90°/n). If the result is greater than 0.60, we have obtained
the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing
n by 1 each time, until we have a value for which cos*"(90°/n) is greater than 0.60. The
first one will be n = 5.

LEARN The intensities associated withn =1 to 5 are:
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I, =1,c0s*(90°) =0

|, =1,c0s"(45°) = 1,/4=0.25I,
., =1,c0s®(30°) =0.4221,

., =1,co0s*(22.5°) =0.531l,

I, =1,c0s"(18°) = 0.605I,

38. We note the points at which the curve is zero (6 = 0° and 90°) in Fig. 33-43. We
infer that sheet 2 is perpendicular to one of the other sheets at & = 0°, and that it is
perpendicular to the other of the other sheets when & = 90°. Without loss of generality,
we choose &, = 0°, 65 =90°. Now, when & = 30°, it will be A@= 30° relative to sheet 1
and A@”=60° relative to sheet 3. Therefore,

I
I—f = %cos2 (AO)cos*(A0") =9.4%.

39. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is
absorbed. Thus the transmitted intensity is | = 5.0 mW/m?. The intensity and the electric

field amplitude are related by 1 = EZ /2,¢, so

E,, =+/21,C1 =/2(4nx107 H/m)(3.00x10° m/s)(5.0x10° W/ m?)
=19 V/m.

(b) The radiation pressure is p; = la/c, where 1, is the absorbed intensity. Thus

-3 2
p, = 200 WM™ _ 17 54 pg
300x10° m/s

40. We note the points at which the curve is zero (& = 60° and 140°) in Fig. 33-44. We
infer that sheet 2 is perpendicular to one of the other sheets at & = 60°, and that it is
perpendicular to the other of the other sheets when & = 140°. Without loss of generality,
we choose 6 = 150°, & = 50°. Now, when & = 90°, it will be |A#| = 60° relative to
sheet 1 and |[AO’| = 40° relative to sheet 3. Therefore,

If _1 2 2 n _
T —Ecos (AB)cos“(AO')=T7.3%.

41. As the polarized beam of intensity Iy passes the first polarizer, its intensity is reduced
to 1,cos” 6. After passing through the second polarizer, which makes a 90° angle with
the first filter, the intensity is

I =(l,cos’0)sin*O=1,/10
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which implies sin? @ cos? 8= 1/10, or sin@ cosd = sin26/2 =1/+/10 . This leads to §= 70°
or 20°.

42. We examine the point where the graph reaches zero: 6, = 160°. Since the polarizers
must be “crossed” for the intensity to vanish, then 6 = 160° — 90° = 70° Now we
consider the case 6, = 90° (which is hard to judge from the graph). Since 6, is still equal
to 70° then the angle between the polarizers is now A8 =20° Accounting for the
“automatic” reduction (by a factor of one-half) whenever unpolarized light passes
through any polarizing sheet, then our result is

1
5C0s*(A6) = 0.442 ~ 44%.

43. Let lp be the intensity of the incident beam and f be the fraction that is polarized. Thus,
the intensity of the polarized portion is f lp. After transmission, this portion contributes
flo cos® @ to the intensity of the transmitted beam. Here @ is the angle between the
direction of polarization of the radiation and the polarizing direction of the filter. The
intensity of the unpolarized portion of the incident beam is (1-f )lo and after transmission,
this portion contributes (1 — f)lo/2 to the transmitted intensity. Consequently, the
transmitted intensity is

| = flocoszé’+%(1— f)1,.

As the filter is rotated, cos® @ varies from a minimum of 0 to a maximum of 1, so the
transmitted intensity varies from a minimum of

Imin

1
:E(l_ f)lo
to a maximum of

1 1
Lo = Flo 2 (0= 1)l = = @+ D)l

The ratio of Imay to Imin iS

| f
Imin 1- .

Setting the ratio equal to 5.0 and solving for f, we get f = 0.67.

44. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain

[ :% I, cos® 6, cos®(90°-4,).
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Using trig identities, we rewrite this as II_ = %sinz(zez).
0

(a) Therefore we find 6 = 3sin ™ 1/0.40 = 19.6°.

(b) Since the first expression we wrote is symmetric under the exchange & <> 90° — &,
we see that the angle's complement, 70.4°, is also a solution.

45. Note that the normal to the refracting surface is vertical in the diagram. The angle of
refraction is & = 90° and the angle of incidence is given by tan & = L/D, where D is the
height of the tank and L is its width. Thus

6, =tan™ sztanl L10m | _ 55310
D 0.850 m

The law of refraction yields

Non sind, _ (100) sin90° _126
' %sing, sin52.31° ’

where the index of refraction of air was taken to be unity.

46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-47(b)
would consist of a “y = X” line at 45° in the plot. Instead, the curve for material 1 falls
under such a “y = X” line, which tells us that all refraction angles are less than incident

ones. With & < @, Snell’s law implies n, > n;.

(b) Using the same argument as in (a), the value of n, for material 2 is also greater than that
of water (n,).

(c) It’s easiest to examine the topmost point of each curve. With 6 =90° and 6, = ¥2(90°),
and with n, = 1.33 (Table 33-1), we find n; = 1.9 from Snell’s law.

(d) Similarly, with 8, = 90° and 6, = %(90°), we obtain n, = 1.4.
47. The law of refraction states
n,sin@, =n,sing,.

We take medium 1 to be the vacuum, with n; = 1 and & = 32.0°. Medium 2 is the glass,
with & =21.0°. We solve for ny:
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n, =n, 3% _ (100) (S'_” 320 ) ~148
sind, sin21.0°

48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b)
would consist of a “y = X” line at 45° in the plot. Instead, the curve for material 1 falls
under such a “y = x” line, which tells us that all refraction angles are less than incident
ones. With & < @, Snell’s law implies n, > n;.

(b) Using the same argument as in (a), the value of n, for material 2 is also greater than that
of water (n,).

(c) It’s easiest to examine the right end-point of each curve. With 6, = 90° and &, =
%4(90°), and with n; = 1.33 (Table 33-1) we find, from Snell’s law, n, = 1.4 for material 1.

(d) Similarly, with €, = 90° and 6, = %2(90°), we obtain n, =1.9.

49. The angle of incidence for the light ray on mirror B is 90° — 6. So the outgoing ray r'
makes an angle 90° — (90° — &) = @ with the vertical direction, and is antiparallel to the
incoming one. The angle between i and r' is therefore 180°.

50. (@) From n;siné; = n,sind, and n,siné, = nssiné, we find n;sind; = nssinés. This has
a simple implication: that 8, =6 when n; = n;. Since we are given &, = 40° in Fig. 33-
50(a), then we look for a point in Fig. 33-50(b) where 6 = 40°. This seems to occur at n;
= 1.6, so we infer that n, = 1.6.

(b) Our first step in our solution to part (a) shows that information concerning n;
disappears (cancels) in the manipulation. Thus, we cannot tell; we need more
information.
(c) From 1.6sin70° = 2.4sin&; we obtain 6= 39°.
51. (a) Approximating n = 1 for air, we have

nsing, =@)sing, = 56.9°=6,
and with the more accurate value for n,;, in Table 33-1, we obtain 56.8°.

(b) Equation 33-44 leads to

n,sin@, =n,sind, =n,sin@d, =n,siné,
so that

0, =sin™ (&sin elJ =35.3°,
r-]4
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52. (a) A simple implication of Snell’s law is that & = €, when n; = n,. Since the angle of
incidence is shown in Fig. 33-52(a) to be 30°, we look for a point in Fig. 33-52(b) where
6, = 30°. This seems to occur when n, = 1.7. By inference, then, n, = 1.7.

(b) From 1.7sin(60°) = 2.4sin( &) we get 6 = 38°.

53. THINK The angle with which the light beam emerges from the triangular prism
depends on the index of refraction of the prism.

EXPRESS Consider diagram (a) shown next. The incident angle is & and the angle of
refraction is é. Since 6, +a =90° and ¢+ 2« =180°, we have

1
6, =90°—a=90°—§(180°—¢)=§.

ANALYZE Next, examine diagram (b) and consider the triangle formed by the two
normals and the ray in the interior. One can show that i is given by
w=20-6,).

Upon substituting @#/2 for &, we obtain y =2(0—¢/2) which yields 0= (¢+vy)/2.
Thus, using the law of refraction, we find the index of refraction of the prism to be

ne sind _sin;(¢+y)
sing, sinlg

LEARN The angle wis called the deviation angle. Physically, it represents the total angle
through which the beam has turned while passing through the prism. This angle is
minimum when the beam passes through the prism “symmetrically,” as it does in this
case. Knowing the value of ¢ and y allows us to determine the value of n for the prism
material.

54. (a) Snell’s law gives Ngir SIN(50°) = Nyp SIN Gy, and Nyir SIN(50°) = Ny, Sin G Where we
use subscripts b and r for the blue and red light rays. Using the common approximation
for air’s index (N = 1.0) we find the two angles of refraction to be 30.176° and 30.507°.
Therefore, A@=0.33°.



1427

(b) Both of the refracted rays emerge from the other side with the same angle (50°) with
which they were incident on the first side (generally speaking, light comes into a block at
the same angle that it emerges with from the opposite parallel side). There is thus no
difference (the difference is 0°) and thus there is no dispersion in this case.

55. THINK Light is refracted at the air—water interface. To calculate the length of the
shadow of the pole, we first calculate the angle of refraction using the Snell’s law.

EXPRESS Consider a ray that grazes the top of the pole, as shown in the diagram below.

0§ —5

air

I
I
I
I
I
water :
I
I
I

6,

shadow v

Here 6, = 90° — 8 = 90° -55° = 35°, 7, =050 m, and ¢, =150 m. The length of the
shadow isd =x + L.

ANALYZE The distance x is given by

X = /¢, tan @, = (050 m) tan35°=0.35 m.

According to the law of refraction, n; sin & = n; sin 6. We take n; = 1 and n, = 1.33
(from Table 33-1). Then,

g, = sin 3% | _gint (S'”?’E"O ]: 25550,
n, 133

L=/,tand, = (150 m)tan25.55°=0.72 m.

L is given by

Thus, the length of the shadow isd =0.35m + 0.72m =1.07 m.

LEARN If the pole were empty with no water, then &, = 6, and the length of the shadow

would be
d'=(,tang +(,tanf, =((,+(,)tan 6,

by simple geometric consideration.
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56. (a) We use subscripts b and r for the blue and red light rays. Snell’s law gives

. 1
Gop = slnl(1 313 sm(70°)) = 44.403°

_ 1.
& = sml(l 331 S|n(70°)) =44.911°

for the refraction angles at the first surface (where the normal axis is vertical). These rays
strike the second surface (where A is) at complementary angles to those just calculated
(since the normal axis is horizontal for the second surface). Taking this into
consideration, we again use Snell’s law to calculate the second refractions (with which
the light re-enters the air):

Gsp = Sin1[1.343sin(90°— &,)] = 73.636°
& = sin"'[1.331sin(90°- &,,)] = 70.497°

which differ by 3.1° (thus giving a rainbow of angular width 3.1°).

(b) Both of the refracted rays emerge from the bottom side with the same angle (70°) with
which they were incident on the topside (the occurrence of an intermediate reflection
[from side 2] does not alter this overall fact: light comes into the block at the same angle
that it emerges with from the opposite parallel side). There is thus no difference (the
difference is 0°) and thus there is no rainbow in this case.

57. Reference to Fig. 33-24 may help in the visualization of why there appears to be a
“circle of light” (consider revolving that picture about a vertical axis). The depth and the
radius of that circle (which is from point a to point f in that figure) is related to the
tangent of the angle of incidence. Thus, the diameter D of the circle in question is

w

D=2htand, =2htan|sin™ ER 2(80.0cm) tan | sin™ (i) =182cm.
n 133
. . (1) . (1
58. The critical angle is 8, =sin (—j =sin (—j =34°.
n 18

59. THINK Total internal reflection happens when the angle of incidence exceeds a
critical angle such that Snell’s law gives sing, >1.

EXPRESS When light reaches the interfaces between two materials with indices of
refraction n; and ny, if n; > ny, and the incident angle exceeds a critical value given by

0, =sin™ (&j
nl
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then total internal reflection will occur.

In our case, the incident light ray is perpendicular to the face ab. Thus, no refraction
occurs at the surface ab, so the angle of incidence at surface ac is & = 90° — ¢, as shown
in the figure below.

ANALYZE (a) For total internal reflection at the second surface, ng sin (90° — ¢) must be
greater than n,. Here ng is the index of refraction for the glass and n, is the index of
refraction for air. Since sin (90° — ¢) = cos ¢, we want the largest value of ¢ for which ng
COS ¢ > n,. Recall that cos ¢ decreases as ¢ increases from zero. When ¢ has the largest
value for which total internal reflection occurs, then ng cos ¢ = n,, or

¢=cos™ (n—J =cos™ (i) —489°.
n, 152

The index of refraction for air is taken to be unity.

(b) We now replace the air with water. If n,, = 1.33 is the index of refraction for water,
then the largest value of ¢ for which total internal reflection occurs is

$=cos™ [n—W] =cos™ (1—3’3) =29.0°.
n, 152

LEARN Total internal reflection cannot occur if the incident light is in the medium with
lower index of refraction. With 6, =sin™(n,/n,), we see that the larger the ratio n,/n,,

the larger the value of ..

60. (a) The condition (in Eq. 33-44) required in the critical angle calculation is & = 90°.
Thus (with & = €., which we don’t compute here),

n,sin@, =n,sin@, =n,sino,
leads to &, = @=sin ! ny/n; = 54.3°.

(b) Yes. Reducing € leads to a reduction of & so that it becomes less than the critical
angle; therefore, there will be some transmission of light into material 3.
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(c) We note that the complement of the angle of refraction (in material 2) is the critical
angle. Thus,

2
: n
n,sin@=n,cosé, =n, 1—(—3J = /N> —n’
n2

leading to #=51.1°.

(d) No. Reducing @ leads to an increase of the angle with which the light strikes the
interface between materials 2 and 3, so it becomes greater than the critical angle.
Therefore, there will be no transmission of light into material 3.

61. (a) We note that the complement of the angle of refraction (in material 2) is the

critical angle. Thus,

2
: n
n sin@=n,cosé, =n, 1—(—3j =/nZ —n?
n2

leading to 6= 26.8°.

(b) Increasing € leads to a decrease of the angle with which the light strikes the interface
between materials 2 and 3, so it becomes greater than the critical angle; therefore, there
will be some transmission of light into material 3.

62. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a
“circle of light” (consider revolving that picture about a vertical axis). The depth and the
radius of that circle (which is from point a to point f in that figure) is related to the
tangent of the angle of incidence. The diameter of the circle in question is given by d =
2h tan @.. For water n = 1.33, so Eq. 33-47 gives sin 6. = 1/1.33, or &, = 48.75°. Thus,

d =2htan g, =2(2.00 m)(tan 48.75°) =4.56 m.

(b) The diameter d of the circle will increase if the fish descends (increasing h).

63. (a) A ray diagram is shown below.
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Let &, be the angle of incidence and & be the angle of refraction at the first surface. Let
& be the angle of incidence at the second surface. The angle of refraction there is 6, =
90°. The law of refraction, applied to the second surface, yields n sin & =sin 6, = 1. As
shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each
other. The interior angles of the triangle formed by the ray and the two normals must sum
to 180°, so & =90° — & and

sin@, =sin(90°-6, ) = cos @, = ,/1-sin* ,.

According to the law of refraction, applied at Q, ny/1—sin’ @, =1 The law of refraction,
applied to point P, yields sin &, = nsin &, so sin & = (sin &)/n and

P2
0 /1_ sin 261 _1
n
Squaring both sides and solving for n, we get
n=.1+sin’4,.

(b) The greatest possible value of sin® & is 1, so the greatest possible value of n is
N = V2 =141

(c) For a given value of n, if the angle of incidence at the first surface is greater than &,
the angle of refraction there is greater than & and the angle of incidence at the second
face is less than & (= 90° — ). That is, it is less than the critical angle for total internal
reflection, so light leaves the second surface and emerges into the air.

(d) If the angle of incidence at the first surface is less than &, the angle of refraction there
is less than & and the angle of incidence at the second surface is greater than . This is
greater than the critical angle for total internal reflection, so all the light is reflected at Q.

64. (a) We refer to the entry point for the original incident ray as point A (which we take
to be on the left side of the prism, as in Fig. 33-53), the prism vertex as point B, and the
point where the interior ray strikes the right surface of the prism as point C. The angle
between line AB and the interior ray is £ (the complement of the angle of refraction at the
first surface), and the angle between the line BC and the interior ray is « (the complement
of its angle of incidence when it strikes the second surface). When the incident ray is at
the minimum angle for which light is able to exit the prism, the light exits along the
second face. That is, the angle of refraction at the second face is 90°, and the angle of
incidence there for the interior ray is the critical angle for total internal reflection. Let &
be the angle of incidence for the original incident ray and & be the angle of refraction at
the first face, and let & be the angle of incidence at the second face. The law of refraction,
applied to point C, yields n sin & =1, so
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sin &5 =1/n=1/1.60 = 0.625 = 65 = 38.68".
The interior angles of the triangle ABC must sum to 180°, so « + £ = 120°. Now, a =
90° — 6 =51.32°, s0 f=120° — 51.32° = 69.68°. Thus, & =90° — g =21.32°. The law of
refraction, applied to point A, yields

sin &, =nsin 6 =1.60 sin 21.32° = 0.5817.
Thus 6, = 35.6°.
(b) We apply the law of refraction to point C. Since the angle of refraction there is the
same as the angle of incidence at A, n sin & =sin .. Now, a + = 120°, a = 90° — &,
and g =90° — 6, as before. This means & + & = 60°. Thus, the law of refraction leads to

sing, =nsin(60°—6,) = sing, =nsin60°cosd, —ncos60°sin 6,
where the trigonometric identity
sin(A —B) =sin A cos B —cos Asin B

is used. Next, we apply the law of refraction to point A:

sing, =nsing, = siné, =(1/n)sing,

which yields cosé, = /1-sin’ @, = \/1—(1/ n?) sin® @,. Thus,

sing, = nsin60°\/1—(1/n)2 sin? 6, —c0s60°sin 6,

1+ c0s60°)sin @, = sin60°,/n? —sin® 4, .
( )siné, N )

Squaring both sides and solving for sin 6, we obtain

or

§in@, = nsin60 _ 160sin60 _ 080

\/ (1+c0s60°)° +sin? 60° \/(1+ cos 60°)° +sin? 60°

and &, =53.1°.

65. When examining Fig. 33-61, it is important to note that the angle (measured from the
central axis) for the light ray in air, 6, is not the angle for the ray in the glass core, which
we denote @' . The law of refraction leads to
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sin@' = 1sin 0
nl

assuming n,, =1. The angle of incidence for the light ray striking the coating is the
complement of @', which we denote as & comp, and recall that

sing,,, =cosd’ =[1-sin* &',

In the critical case, &comp must equal &; specified by Eq. 33-47. Therefore,

n—Z_smHgomp J1-sin’ @ = f — —sm@

which leads to the result: sin@=./n/ —n>. With n; = 1.58 and n, = 1.53, we obtain
6 =sin"" (1587 ~1537) = 23.2°.

66. (a) We note that the upper-right corner is at an angle (measured from the point where
the light enters, and measured relative to a normal axis established at that point the
normal at that point would be horizontal in Fig. 33-62) is at tan *(2/3) = 33.7°. The angle
of refraction is given by

Nair SiN 40° = 1.56 sin &

which yields 6, = 24.33° if we use the common approximation n,; = 1.0, and yields & =
24.34° if we use the more accurate value for n,, found in Table 33-1. The value is less
than 33.7°, which means that the light goes to side 3.

(b) The ray strikes a point on side 3, which is 0.643 cm below that upper-right corner, and
then (using the fact that the angle is symmetrical upon reflection) strikes the top surface
(side 2) at a point 1.42 cm to the left of that corner. Since 1.42 cm is certainly less than 3
cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as
its second reflection (if we had gotten 3.42 cm instead of 1.42 cm, then the situation
would be quite different).

(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the
plastic) at side 3 is the same as the angle of refraction was at side 1. Thus,

1.56 sin 24.3° = nyi; Sin Gy = G =40°.

(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there,
which in this case would be a vertical axis) of 90° — 6, = 66°, which is much greater than
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the critical angle for total internal reflection (sin~*(n.: /1.56 ) = 39.99). Therefore, no
refraction occurs when the light strikes side 2.

(e) In this case, we have
Nair SIN 70° = 1.56 sin 6,

which yields 6, = 37.04° if we use the common approximation n,; = 1.0, and yields & =
37.05° if we use the more accurate value for n,; found in Table 33-1. This is greater than
the 33.7° mentioned above (regarding the upper-right corner), so the ray strikes side 2
instead of side 3.

(f) After bouncing from side 2 (at a point fairly close to that corner) it goes to side 3.

(9) When it bounced from side 2, its angle of incidence (because the normal axis for side
2 is orthogonal to that for side 1) is 90° — & = 53°, which is much greater than the critical
angle for total internal reflection (which, again, is sin"*(ng; /1.56 ) = 39.9%). Therefore, no
refraction occurs when the light strikes side 2.

(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges
from side 3 with the same angle (70°) that it entered side 1. We see that the occurrence of
an intermediate reflection (from side 2) does not alter this overall fact: light comes into
the block at the same angle that it emerges with from the opposite parallel side.

67. () In the notation of this problem, Eq. 33-47 becomes

which yields n3 = 1.39 for €, = ¢=60°.

(b) Applying Eq. 33-44 to the interface between material 1 and material 2, we have
n,sin30°=n, sin@

which yields 6= 28.1°.

(c) Decreasing & will increase ¢ and thus cause the ray to strike the interface (between

materials 2 and 3) at an angle larger than .. Therefore, no transmission of light into

material 3 can occur.

68. (a) We use Eq. 33-49: 9, =tan'n, = tan*(L33) =531°.

(b) Yes, since n,, depends on the wavelength of the light.
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69. THINK A reflected wave will be fully polarized if it strikes the boundary at the
Brewster angle.

EXPRESS The angle of incidence for which reflected light is fully polarized is given by
Eq. 33-48:
s = tanl(&j
nl

where n; is the index of refraction for the medium of incidence and n; is the index of
refraction for the second medium. The angle & is called the Brewster angle.

ANALYZE With n; =1.33 and n, = 1.53, we obtain
0, =tan*(n,/n,) =tan™"(1.53/1.33) = 49.0°.

LEARN In general, reflected light is partially polarized, having components both parallel
and perpendicular to the plane of incidence. However, it can be completely polarized
when incident at the Brewster angle.

70. Since the layers are parallel, the angle of refraction regarding the first surface is the
same as the angle of incidence regarding the second surface (as is suggested by the

notation in Fig. 33-64). We recall that as part of the derivation of Eq. 33-49 (Brewster’s
angle), the refracted angle is the complement of the incident angle:

6, =(6,). =90°-6,.

We apply Eq. 33-49 to both refractions, setting up a product:

[&] [”—] = (tan6,, ) (tan 6, ;) = 2= (tan 6)(tan 6))
n 2 n
Now, since & is the complement of &, we have

1
ang,

tang, =tan(6,), = "
Therefore, the product of tangents cancel and we obtain nz/n; = 1. Consequently, the third
medium is air: n3 = 1.0.

71. THINK All electromagnetic waves, including visible light, travel at the same speed ¢
in vacuum.

EXPRESS The time for light to travel a distance d in free space is t = d/c, where c is the
speed of light (3.00 x 10% m/s).
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ANALYZE (a) We take d to be 150 km = 150 x 10° m. Then,

3
tzgzwzwoﬂo—“s,
c 300x10°m/s

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance
traveled by the light is

d= (1.5 x 10® km) + 2 (3.8 x 10° km) = 1.51 x 10°® km = 1.51 x 10** m.

The time taken by light to travel this distance is

11
=4 1SDA0TM 540 g4 min,
c 3.00x10°m/s

(c) We take d to be 2(1.3 x 10° km) = 2.6 x 10* m. Then,

d_ 26x10%m

- :m:8.7x103s:2.4 h.
. X

t=

(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then,

_d_ 000l _gengy,
c 100ly/y

The explosion took place in the year 1054 — 6500 = —5446 or 5446 B.C.

LEARN Since the speed c is constant, the travel time is proportional to the distance. The
radio signals at 150 km away reach you almost instantly.

72. (a) The expression Ey = Ej, sin(kx — at) fits the requirement “at point P ... [it] is
decreasing with time” if we imagine P is just to the right (x > 0) of the coordinate origin
(but at a value of x less than 72k = A/4 which is where there would be a maximum, at t =
0). Itis important to bear in mind, in this description, that the wave is moving to the right.
Specifically, x, = (1/k)sin"*(1/4) so that E, = (1/4) En, att =0, there. Also, E, =0
with our choice of expression for E, . Therefore, part (a) is answered simply by solving
for xp. Since k = 2zf/c we find

Xp = _° sin (1) =30.1nm.
2r f 4

(b) If we proceed to the right on the x axis (still studying this “snapshot” of the wave at t
= 0) we find another point where E, = 0 at a distance of one-half wavelength from the
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A :%clf and is

previous point where Ey = 0. Thus (since A = c/f ) the next point is at x :%

consequently a distance c/2f —xp =345 nm to the right of P.

73. THINK The electric and magnetic components of the electromagnetic waves are
always in phase, perpendicular to each other, and perpendicular to the direction of
propagation of the wave.

EXPRESS The electric and magnetic fields can be written as sinusoidal functions of

position and time as:
E =E,sin(kx+at), B=DB,sin(kx+at)

where E,, and B, are the amplitudes of the fields, and @ and k, are the angular frequency

and angular wave number of the wave, respectively. The two amplitudes are related by
Eq. 33-4: E,,/B,, =c, where c is the speed of the wave.

ANALYZE (a) From kc = @ where k = 1.00 x 10° m™, we obtain » = 3.00 x 10" rad/s.
The magnetic field amplitude is, from Eq. 33-5,

B = Em/c = (5.00 V/m)/c = 1.67 x 108 T.

From the argument of the sinusoidal fucntion for E, we see that the direction of
propagation is in the —z direction. Since E = Ey], and that B is perpendicular to E and

E x B,, we conclude that the only non-zero component of B is By, so that we have
B, =(1.67x107° T)sin[(1.00x10° / m)z +(3.00x10" /s)t].
(b) The wavelength is A = 2n/k = 6.28 x 10°° m.

(c) The period is T = 2n/@w=2.09 x 10 ™.

(d) The intensity is

2
1=t (S'OOV/mj —~0.0332W/m?.

Cuy\ 2

(e) As noted in part (a), the only nonzero component of B is By. The magnetic field
oscillates along the x axis.

(f) The wavelength found in part (b) places this in the infrared portion of the spectrum.

LEARN Electromagnetic wave is a transverse wave. Knowing the functional form of the
electric field allows us to determine the corresponding magnetic field, and vice versa.
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74. (a) Let r be the radius and p be the density of the particle. Since its volume is (443)r?,
its mass is m = (4743)pr°. Let R be the distance from the Sun to the particle and let M be
the mass of the Sun. Then, the gravitational force of attraction of the Sun on the particle
has magnitude

£ - GMm _ AnGMpr?
¢ R? 3R*

If P is the power output of the Sun, then at the position of the particle, the radiation
intensity is | = P/47R?, and since the particle is perfectly absorbing, the radiation pressure
onitis

p_l_ P
" ¢ 4nR%’

All of the radiation that passes through a circle of radius r and area A=mr?,
perpendicular to the direction of propagation, is absorbed by the particle, so the force of
the radiation on the particle has magnitude

7Pr?  Pr?

=P 47R%c 4R%

The force is radially outward from the Sun. Notice that both the force of gravity and the
force of the radiation are inversely proportional to R2. If one of these forces is larger than
the other at some distance from the Sun, then that force is larger at all distances. The two
forces depend on the particle radius r differently: Fq is proportional to r® and F; is
proportional to r>. We expect a small radius particle to be blown away by the radiation
pressure and a large radius particle with the same density to be pulled inward toward the
Sun. The critical value for the radius is the value for which the two forces are equal.
Equating the expressions for Fq4 and F;, we solve for r:

.__ 3P
16nGMpc”

(b) According to Appendix C, M = 1.99 x 10* kg and P = 3.90 x 10% W. Thus,

‘e 3(390x10% W)
16m(6.67 107" N-m?/kg?)(199 x10% kg)(1.0x10° kg/ m*)(3.00x10° m/s)

=58x10" m.

75. THINK Total internal reflection happens when the angle of incidence exceeds a
critical angle such that Snell’s law gives sing, >1.
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EXPRESS When light reaches the interfaces between two materials with indices of
refraction n; and ny, if ny > ny, and the incident angle exceeds a critical value given by

0. =sin™" (&]
nl

then total internal reflection will occur.

Referring to Fig. 33-65, let & = 45° be the angle of incidence at the first surface and &
be the angle of refraction there. Let & be the angle of incidence at the second surface.
The condition for total internal reflection at the second surface is

nsin &> 1.

We want to find the smallest value of the index of refraction n for which this inequality
holds. The law of refraction, applied to the first surface, yields

nsin & =sin 6.

Consideration of the triangle formed by the surface of the slab and the ray in the slab tells
us that &5 = 90° — 6. Thus, the condition for total internal reflection becomes

1<nsin(90° — &) =n cos 6.

Squaring this equation and using sin® & + cos® 6 = 1, we obtain 1 < n? (1 — sin® &).
Substituting sin & = (1/n) sin &, now leads to

A2
1<n’ (1— al 91] =n®—sin*4,.

n2

The smallest value of n for which this equation is true is given by 1 = n? — sin* 6. We
solve for n:

n=/1+sin? 4, = /1+sin? 45° =122,

LEARN With n = 1.22, we have 6, =sin"'[(1/1.22)sin45°]=35°, which gives & =
90° — 35° = 55° as the angle of incidence at the second surface. We can readily verify that
nsin & = (1.22) sin55° = 1, meeting the threshold condition for total internal reflection.

76. Since some of the angles in Fig. 33-66 are measured from vertical axes and some are
measured from horizontal axes, we must be very careful in taking differences. For
instance, the angle difference between the first polarizer struck by the light and the
second is 110° (or 70° depending on how we measure it; it does not matter in the final
result whether we put Aé, = 70° or put Ay = 110°. Similarly, the angle difference
between the second and the third is A& = 40°, and between the third and the fourth is A&
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= 40° also. Accounting for the “automatic” reduction (by a factor of one-half) whenever
unpolarized light passes through any polarizing sheet, then our result is the incident
intensity multiplied by

%cos2 (A6,) cos?(A6,) cos? (AB,) .

Thus, the light that emerges from the system has intensity equal to 0.50 W/m?.

77. (@) The first contribution to the overall deviation is at the first refraction:
00, = 6, —06,. The next contribution to the overall deviation is the reflection. Noting that

the angle between the ray right before reflection and the axis normal to the back surface
of the sphere is equal to &, and recalling the law of reflection, we conclude that the angle
by which the ray turns (comparing the direction of propagation before and after the
reflection) is 06, =180°-26,. The final contribution is the refraction suffered by the ray

upon leaving the sphere: 66, = 6, — 6, again. Therefore,

6,

dev

= 56, + 56, + 56, =180° + 20, — 40)..

(b) We substitute &, =sin™ (tsing,) into the expression derived in part (a), using the two
given values for n. The higher curve is for the blue light.

Odev
180

170
160
150

140

IIII|IIII|IIII|IIII|II01‘
0 20 40 60 80

(c) We can expand the graph and try to estimate the minimum, or search for it with a
more sophisticated numerical procedure. We find that the Gy, minimum for red light is
137.63°~137.6°, and this occurs at & = 59.52°.

(d) For blue light, we find that the G4, minimum is 139.35° ~139.4°, and this occurs at &
=59.52°.

(e) The difference in Gy, in the previous two parts is 1.72°.

78. (a) The first contribution to the overall deviation is at the first refraction:
00, =6, —6,. The next contribution(s) to the overall deviation is (are) the reflection(s).
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Noting that the angle between the ray right before reflection and the axis normal to the
back surface of the sphere is equal to &, and recalling the law of reflection, we conclude
that the angle by which the ray turns (comparing the direction of propagation before and
after [each] reflection) is 66. =180° — 26.. Thus, for k reflections, we have 56, = ké, to
account for these contributions. The final contribution is the refraction suffered by the ray
upon leaving the sphere: 66, = 6, — 6, again. Therefore,

6,

dev

= 50, + 50, + 50, = 2(6, —0,) + k(180° — 20, ) = k(180°) + 20, — 2(k +1)6)..

(b) For k = 2 and n = 1.331 (given in Problem 33-77), we search for the second-order
rainbow angle numerically. We find that the &4, minimum for red light is 230.37°
~ 230.4°, and this occurs at 6 = 71.90°.

(c) Similarly, we find that the second-order G, minimum for blue light (for which n =
1.343) is 233.48° ~ 233.5°, and this occurs at & = 71.52°.

(d) The difference in Gy in the previous two parts is approximately 3.1°.

(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that
the Gy minimum for red light is 317.5°, and this occurs at & = 76.88°.

(f) Similarly, we find that the third-order s, minimum for blue light is 321.9°, and this
occurs at 4 = 76.62°.

(9) The difference in Gy in the previous two parts is 4.4°.

79. THINK We apply law of refraction to both interfaces to calculate the sideway
displacement.

EXPRESS Let 0 be the angle of incidence and & be the angle of refraction at the left
face of the plate. Let n be the index of refraction of the glass. Then, the law of refraction
yields

sin @ =nsin 6.
The angle of incidence at the right face is also &. If & is the angle of emergence there,

then
nsin & =sin 6.
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ANALYZE (a) Combining the two expressions gives sin & = sin 6, which implies that &
= 6. Thus, the emerging ray is parallel to the incident ray.

(b) We wish to derive an expression for x in terms of 6. If D is the length of the ray in the
glass, then D cos & =t and D =t/cos &. The angle « in the diagram equals 6— & and

X=Dsin a=D sin (- &).
Thus,
o tsin(6-46,)
cos,

If all the angles 6, &, &, and 6— & are small and measured in radians, then sin &~ 6, sin
&~ 6, sin(@— 6&) =~ 0— 6, and cos & ~ 1. Thus x = t(6 — &). The law of refraction
applied to the point of incidence at the left face of the plate is now 8~ né, so & ~ @n

and
. z{g_g): (n—l)tHl
n n

LEARN The thicker the glass, the greater the displacement x. Note in the limitn =1 (no
glass), x=0, as expected.

80. (a) The magnitude of the magnetic field is

g E_ 10VIM 55,0077,
c 30x10°m/s

(b) With E x B= 1,5, where E=EkandS=5(—j), one can verify easily that since
kx (i) =—}, B has to be in the —x direction.
81. (a) The polarization direction is defined by the electric field (which is perpendicular

to the magnetic field in the wave, and also perpendicular to the direction of wave travel).
The given function indicates the magnetic field is along the x axis (by the subscript on B)
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and the wave motion is along —y axis (see the argument of the sine function). Thus, the
electric field direction must be parallel to the z axis.

(b) Since k is given as 1.57 x 10°/m, then A = 277k = 4.0 x 10" m, which means f = ¢/A =
7.5 x 10" Hz.

(c) The magnetic field amplitude is given as By = 4.0 x 10° T. The electric field
amplitude En, is equal to By, divided by the speed of light c. The rms value of the electric
field is then Ep, divided by /2. Equation 33-26 then gives | = 1.9 kW/m?.

82. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain
1 2 2
I =§|Ocos 0/ cos” 0,

where 6/ =90°—-6, =60° and &, =90°—6, =60°. This yields I/, = 0.031.

83. THINK The index of refraction encountered by light generally depends on the
wavelength of the light.

EXPRESS The critical angle for total internal reflection is given by sin & = 1/n. With an
index of refraction n = 1.456 at the red end, the critical angle is 6. = 43.38° for red.
Similarly, with n = 1.470 at the blue end, the critical angle is &, = 42.86° for blue.

ANALYZE (a) An angle of incidence of 6, = 42.00° is less than the critical angles for
both red and blue light, so the refracted light is white.

(b) An angle of incidence of 6, = 43.10° is slightly less than the critical angle for red light
but greater than the critical angle for blue light, so the refracted light is dominated by red
end.

(c) An angle of incidence of &, = 44.00° is greater than the critical angles for both red and
blue light, so there is no refracted light.

LEARN The dependence of the index of refraction of fused quartz on wavelength is
shown in Fig. 33-18. From the figure, we see that the index of refraction is greater for a
shorter wavelength. Such dependence results in the spreading of light as it enters or
leaves quartz, a phenomenon called “chromatic dispersion.”

84. Using Egs. 33-40 and 33-42, we obtain

(15/2)(cos? 45°) (cos® 45°)

final — —

1_012s.
1, I 8
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85. We write m = pV where V = 4nR%/3 is the volume. Plugging this into F = ma and
then into Eq. 33-32 (with A = zR?, assuming the light is in the form of plane waves), we
find
4nR® _ I7R?
a= :
3 c

This simplifies to

which yields a = 1.5 x 10°° m/s%.

86. Accounting for the ‘“automatic” reduction (by a factor of one-half) whenever
unpolarized light passes through any polarizing sheet, then our result is

2 (cos¥(30%))° = 0.21.

87. THINK Since the radar beam is emitted uniformly over a hemisphere, the source
power is also the same everywhere within the hemisphere.

EXPRESS The intensity of the beam is given by

P
A 2xr?

where A = 2nr? is the area of a hemisphere. The power of the aircraft’s reflection is equal
to the product of the intensity at the aircraft’s location and its cross-sectional area:
P =IA. The intensity is related to the amplitude of the electric field by Eq. 33-26:

| =B /cu, =E2/2cu,.

rms

ANALYZE (a) Substituting the values given we get

P 180x10° W

== ——=3.5x10" W/m®.
2zr 27(90x10° m)

(b) The power of the aircraft’s reflection is
P =1A =(3.5x10° W/m?)(0.22 m*) =7.8x107" W.
(c) Back at the radar site, the intensity is

-7
=t o TBAOW 510 wim?,
2zr° 27(90%10° m)
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(d) From 1, =E? / 2cu,, we find the amplitude of the electric field to be

E, =/2C], =+/2(3.0x10° m/s)(4nx107 T-m/A)(L.5x10™" W/m?)
=1.1x107 V/m.

(e) The rms value of the magnetic field is

-7
Epe _ Ep _ 1107 VIM o e

B = = =
™ ¢ J2c  J2(3.0x10° mis)

LEARN The intensity due to a power source decreases with the square of the distance.
Also, as emphasized in Sample Problem — “Light wave: rms values of the electric and
magnetic fields,” one cannot compare the values of the two fields because they are
measured in different units. Both components are on the same basis from the perspective
of wave propagation, and they have the same average energy.

88. The amplitude of the magnetic field in the wave is

4
B - En_ 32010 8\”m=107><1o-12 T.
C 2.998x10°m/s

89. From Fig. 33-19 we find nmax = 1.470 for A =400 nm and Ny, = 1.456 for 4 =700 nm.
(a) The corresponding Brewster’s angles are

b, max = tan ™+ Niax = tan* (1.470) = 55.8°,
(b) and G min = tan* (1.456) = 55.5°.

90. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label
these layers from left to right with indices 1, 2, ..., N. Let the index of refraction of the air
be no. We denote the initial angle of incidence of the light ray upon the air-layer boundary
as & and the angle of the emerging light ray as &. We note that, since all the boundaries
are parallel to each other, the angle of incidence 4 at the boundary between the j-th and
the (j + 1)-th layers is the same as the angle between the transmitted light ray and the
normal in the j-th layer. Thus, for the first boundary (the one between the air and the first
layer)

n, _sing,

n, siné,’
for the second boundary

n, siné,

2
n, siné,
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and so on. Finally, for the last boundary

n, sind,

Mo
n, sing,’

Multiplying these equations, we obtain

(M )N} (Ng | _(sing |(sing, |[sind, | |sing,

n, )\ Jn, n, ) \sing, ){sin@, |\sing, sing, |
We see that the L.H.S. of the equation above can be reduced to no/ng while the R.H.S. is
equal to sin@/sin&. Equating these two expressions, we find

sing, = (&j sing, =sing,,

nO
which gives & = &. So for the two light rays in the problem statement, the angle of the
emerging light rays are both the same as their respective incident angles. Thus, & = 0 for
ray a,

(b) and & = 20° for ray b.

(c) In this case, all we need to do is to change the value of no from 1.0 (for air) to 1.5 (for
glass). This does not change the result above. That is, we still have & = 0 for ray a,

(d) and & = 20° for ray b.

Note that the result of this problem is fairly general. It is independent of the number of
layers and the thickness and index of refraction of each layer.

91. (a) At r =40 m, the intensity is

P P 4(3.0x10°W)
xd?/4  7(6r)?/4 7| (0.17x10"rad) (40m) |

- =83W/m’.

(b) P’ =4nr’l = 4n(40m)*(83W/m?) =17 x10°W.
92. The law of refraction requires that

sin @i/sin & = Nyater = CONSL.
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We can check that this is indeed valid for any given pair of 6 and &. For example, sin
10° /sin 8° = 1.3, and sin 20° / sin 15°30" = 1.3, etc. Therefore, the index of refraction of
water is Nyager = 1.3.

93. We remind ourselves that when the unpolarized light passes through the first sheet, its
intensity is reduced by a factor of 2. Thus, to end up with an overall reduction of one-
third, the second sheet must cause a further decrease by a factor of two-thirds (since
(1/2)(2/3) = 1/3). Thus, cos’6=2/3 = @=35°.

94. (a) The magnitude of the electric field at point P is

1.00Q

=Y ! 1006
| 300 m

:TR: (25.0 A)( j: 0.0833 V/m.

The direction of E at point P is in the +x direction, same as the current.

(b) We use Ampere’s law: j: B-dS = u,i , where the integral is around a closed loop and i
is the net current through the loop. The magnitude of the magnetic field is

B— Hol _ (47x107 T-m/A)(25.0A)

_ —4.00x1073T.
27r 2;z(1.25x10-3m)

The direction of B at point P is in the +z direction (out of the page).

(c) From S =Ex E/yo, we find the magnitude of the Poynting vector to be

_EB_ (0.0833V/m)(4.0x10° T)

$ = 265W/m?>.
o 2(4nx107 T-m/A)

S

(d) Since S points in the direction of E x B, using the right-hand-rule, the direction of S
at point P is in the —y direction.

95. (a) For the cylindrical resistor shown in Figure 33-74, the magnetic field is in the -9,
or clockwise direction. On the other hand, the electric field is in the same direction as the

current, —2. Since S=ExB/y,, S is in the direction of (-2)x(-8) =—F, or radially
inward.

(b) The magnitudes of the electric and magnetic fields are E=V/I=iR/l and
B = 1,1/ 2ra, respectively. Thus,



1448 CHAPTER 33

G- E8_ L () i) i
i\ 1 N\ 27ra) 2rzal’

Noting that the magnitude of the Poynting vector S is constant, we have

i’R
2ra

jst.dZ\ZSA:(

J(zﬁau): iR

96. The average rate of energy flow per unit area, or intensity, is related to the electric
field amplitude En by | =EZ2/2u,c, implying that the rate of energy absorbed is

P, =IA=E2A/2u.c. If all the energy is used to heat up the sheet (converting to its
internal energy), then
_dE, __dT
g Cdt

where s is the specific heat of the material. Solving for dT/dt, we find

dT  EZA dT  EZA
mc, — = = —= .
dt  2u.c dt  2mc y,C

97. Let Iy be the intensity of the unpolarized light that is incident on the first polarizing
sheet. The transmitted intensity is, by one-half rule, 1, =3 1,. For the second sheet, we

apply the cosine-squared rule:

|, =1,c0s°0 =% I, cos’d

where @ is the angle between the direction of polarization of the two sheets. With
I,/1,=p/100, we solve for §and obtain

I—Zzﬁzlcosze = @=cos?| ||
I, 100 2 \'50

98. The cross-sectional area of the beam on the surface is Acosé. In a time interval At,
the volume of the beam that’s been reflected is AV = (Acosd)cAt, and the momentum
carried by this volume is p=(1/c*)(Acos&)cAt. Upon being reflected, the change in
momentum is

Ap =2pcoséd =21Acos’ OAt/ ¢

Thus, the radiation pressure is

_2 s 0= p,, cos’ @
c

o F_ap
A AAt
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where p,, =2l /c is the radiation pressure when 6 =0.

99. Consider the figure shown to the right. The y-
component of the force cancels out, and we’re left
with the x-component:

\/
dF, =2dF cosd =2(p,dA)cosé.
Using the result from  Problem  98:
p, =(21/c)cos’* @, and dA=RLdA, where L is the
length of the cylinder, we obtain
Lt :_[2(2I cosé/c)cosd rdo= 2R mcos36’d0=8|—R.
L c 3c

100. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain
l 2 2
I =§|0cos 0/ cos” 6,

where g/ =(90°—-6,)+6, =110° is the relative angle between the first and the second
polarizing sheets, and &, =90°—@, =50° is the relative angle between the second and the
third polarizing sheets. Thus, we have /1o = 0.024.

101. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain
1 2 2 nn
I =§|0005 0'cos” 6"

With @' =6, -6, = 60° — 20° = 40° and 0" =6, + (= /2—6,) = 40° + 30° = 70°, we get
I/lp = 0.034.

102. We use Eq. 33-33 for the force, where A is the area of the reflecting surface (4.0 m?).
The intensity is gotten from Eq. 33-27 where P = Ps is in Appendix C (see also Sample
Problem 33-2) and r = 3.0 x 10" m (given in the problem statement). Our result for the
force is 9.2 uN.

103. Eq. 33-5 gives B = E/c, which relates the field values at any instant — and so relates

rms values to rms values, and amplitude values to amplitude values, as the case may be.
Thus, the rms value of the magnetic field is

B,y =(0.200 V/m)/(3 x 10° m/s) = 6.67 x 10 ° T,
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which (upon multiplication by +/2) yields an amplitude value of magnetic field equal to
9.43x107°T.

104. (a) The Sun is far enough away that we approximate its rays as “parallel” in this
Figure. That is, if the sunray makes angle @ from horizontal when the bird is in one
position, then it makes the same angle @ when the bird is any other position. Therefore,
its shadow on the ground moves as the bird moves: at 15 m/s.

(b) If the bird is in a position, a distance x > 0 from the wall, such that its shadow is on
the wall at a distance 0 >y > h from the top of the wall, then it is clear from the Figure
that tand = y/x. Thus,

ﬂ=%tam9: (15 m/s)tan30°=—-8.7 m/s,
dt dt

which means that the distance y (which was measured as a positive humber downward
from the top of the wall) is shrinking at the rate of 8.7 m/s.

(c) Since tan@ grows as 0 < @ < 90° increases, then a larger value of |dy/dt| implies a
larger value of 8. The Sun is higher in the sky when the hawk glides by.

(d) With |dy/dt| = 45 m/s, we find
dx
dt

B |dy/dt|
~ tan@

hawk —

so that we obtain 8= 72° if we assume Vhawk = 15 m/s.

105. (a) The wave is traveling in the —y direction (see 816-5 for the significance of the
relative sign between the spatial and temporal arguments of the wave function).

(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y
axis) is perpendicular to B (presumably along the x axis, since the problem gives By and

no other component) and both are perpendicular to E (which determines the axis of
polarization). Thus, the wave is z-polarized.

(c) Since the magnetic field amplitude is By = 4.00 uT, then (by Eg. 33-5) E,, = 1199
V/m ~1.20x10° V/m. Dividing by V2 yields E;ms = 848 VV/m. Then, Eq. 33-26 gives

I =LE2 =191x10° W/ m?.

rms
Ciy

(d) Since kc = @ (equivalent to ¢ =f 1), we have
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_ 200x10%
C

k =6.67x10°m™.

Summarizing the information gathered so far, we have (with SI units understood)
E, = (1.2x10° V/m) sin[(6.67x10° / m)y + (2.00x10" / s)t].

(e) A =2n/k =942 nm,

(f) This is an infrared light.

106. (a) The angle of incidence 61 at B is the complement of the critical angle at A; it
sine is

w

2
sing,, =cosé, = 1—[&]
: n,

so that the angle of refraction 6, at B becomes

2 2
0,,=sin"| 2 1—(&j —sin™ E&j ~1=35.1°.
’ n3 n2 n3

(b) From ny sin &= n; sin &, = ny(ns/ny), we find

0= sin-l(&} ~49.9°.
n

(c) The angle of incidence 6a1 at A is the complement of the critical angle at B; its sine is
2
. n,
sing,, =cosd, = 1—(—} .

n,

so that the angle of refraction €, at A becomes

2 2
B,, =sin" Ny 1—(ﬁj =sin™ E&j ~-1=35.1°.
’ n3 n2 n3

2
: : n
nsin@=n,sind,, =n, 1—(—3] =Jn?-n,
, n,

(d) From
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we find

n

2 _ .2
9[_4 szo

(e) The angle of incidence és; at B is the complement of the Brewster angle at A; its sine
IS
r]2

2 2
Jné+n2

so that the angle of refraction 0, at B becomes

2
. n
0,, =sin 1[%} =60.7°.
Ny/N; + 1,

sindy, =

(f) From
. . n,
n sin 0= n,sin eBrewster =n, T2 2!
an +;
we find

. n,n
f=sin"| —2=— |=35.3° .
[np/nz2 +n’ J
107. (a) and (b) At the Brewster angle, Gncident + Grefracted = G5 + 32.0° = 90.0°, so & =
58.0° and
Nglass = tan &g = tan 58.0° = 1.60.

108. We take the derivative with respect to x of both sides of Eq. 33-11:

ala )5 -alR)5
xlox) o "\ o) et

Now we differentiate both sides of Eq. 33-18 with respect to t:

o( 0B B 0 oE O°E
= = | Coto— | = Eokto :

o\ ox ) oxot ot ot ot

Substituting 6°E/ox* = —6°B/oxat from the first equation above into the second one, we
get
0’E _0°E O’E 1 0°E_ ,0E

P — = = =C .
otr ox’ ot® gyu, OX° ox’

Eolty
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Similarly, we differentiate both sides of Eq. 33-11 with respect to t

°E__o'B
oXot ot?’

and differentiate both sides of Eq. 33-18 with respect to x

_oB__, _OE
ox2 T

Combining these two equations, we get

B 1 8ZB_C2628
ot* ey, OX° ox*’

109. (a) From Eq. 33-1,

2 2
%tlf =% E_sin(kx—at) = —o’E, sin (kx—at),
and
2 O’E 2 & ; 2.2 o 2 ;
C°—5 =C"—5 E_sin(kx—at) =-k“c”sin(kx —at) = - E_ sin (kx — at).
OX OX
Consequently,
O’E ,0°E
7 =0 =%
ot OX

is satisfied. Analogously, one can show that Eq. 33-2 satisfies

(b) From E = E_ f(kx £ at),

aZE_E O f(kxtat) = d*f
" a2 A
u=kx+awt
and
2 2 + 2
czgzczEm O Hkx £ at) f(kxz_a)t) =c2Emk2¥
OX du”|

Since w = ck the right-hand sides of these two equations are equal. Therefore,
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oz oot

0°E o2 O°E

Changing E to B and repeating the derivation above shows that B=B_f (kx £ at)
satisfies
'8 _ .08

—=c .
ot? x>

110. Since intensity is power divided by area (and the area is spherical in the isotropic
case), then the intensity at a distance of r = 20 m from the source is

| = P2 =O.O4OW/m2.
4ntr

as illustrated in Sample Problem 33-2. Now, in Eq. 33-32 for a totally absorbing area A,
we note that the exposed area of the small sphere is that on a flat circle A = £(0.020 m)? =
0.0013 m?. Therefore,

£ _ A _ (0.040)(0.0013)

- T 17x107"N.
X




