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Chapter 42 
 

 

1. Kinetic energy (we use the classical formula since v is much less than c) is converted 

into potential energy (see Eq. 24-43). From Appendix F or G, we find Z = 3 for lithium 

and Z = 90 for thorium; the charges on those nuclei are therefore 3e and 90e, respectively. 

We manipulate the terms so that one of the factors of e cancels the “e” in the kinetic 

energy unit MeV, and the other factor of e is set to be 1.6  10
–19

 C. We note that 

01 4k   can be written as 8.99  10
9
 V·m/C. Thus, from energy conservation, we have 

 

   9 19V m
C1 2

6

8.99 10 3 1.6 10 C 90

3.00 10 eV

ekq q
K U r

K

  
   


 

 

which yields r = 1.3  10
– 13

 m (or about 130 fm). 

 

2. Our calculation is similar to that shown in Sample Problem — “Rutherford scattering 

of an alpha particle by a gold nucleus.” We set 

 

  0 Cu min5.30MeV= 1/ 4 /K U q q r    

 

and solve for the closest separation, rmin: 

 

    19 9

Cu Cu
min 6

0 0

14

2 29 1.60 10 C 8.99 10 V m/C

4 4 5.30 10 eV

1.58 10 m 15.8 fm.

eq q kq q
r

K K

 

 





  
  



  

 

 

We note that the factor of e in q = 2e was not set equal to 1.60  10
– 19

 C, but was 

instead allowed to cancel the “e” in the non-SI energy unit, electron-volt. 

 

3. Kinetic energy (we use the classical formula since v is much less than c) is converted 

into potential energy. From Appendix F or G, we find Z = 3 for lithium and Z = 110 for 

Ds; the charges on those nuclei are therefore 3e and 110e, respectively. From energy 

conservation, we have 

Li Ds

0

1

4

q q
K U

r
   

 

which yields  

 



CHAPTER 42 1774 

9 2 2 19 19

Li Ds

13

0
14

1 (8.99 10 N m C )(3 1.6 10 C)(110 1.6 10 C)

4 (10.2 MeV)(1.60 10  J/MeV)

4.65 10  m 46.5 fm.

q q
r

K

 





     
 



  

 

 

4. In order for the  particle to penetrate the gold nucleus, the separation between the 

centers of mass of the two particles must be no greater than  

 

r = rCu + r = 6.23 fm + 1.80 fm = 8.03 fm. 

 

Thus, the minimum energy K is given by 

 

    

Au Au

0

9 19

6

15

1

4

8.99 10 V m/C 2 79 1.60 10 C
28.3 10 eV.

8.03 10 m

q q kq q
K U

r r

e

 








  

  
  



 

 

We note that the factor of e in q = 2e was not set equal to 1.60  10
– 19

 C, but was 

instead carried through to become part of the final units. 

 

5. The conservation laws of (classical kinetic) energy and (linear) momentum determine 

the outcome of the collision (see Chapter 9). The final speed of the  particle is 

 

v
m m

m m
vf i










Au

Au

, 

 

and that of the recoiling gold nucleus is 

 

v
m

m m
vf iAu,

Au




2 



 . 

 

(a) Therefore, the kinetic energy of the recoiling nucleus is 

 

 

 
  

 

2

2 2 Au
Au, Au Au, Au 2

Au Au

2

2 41 1

2 2

4 197 u 4.00 u
5.00 MeV

4.00 u 197 u

0.390 MeV.

f f i i

m m m
K m v m v K

m m m m

 
 

 

 
   

  






 

 

(b) The final kinetic energy of the alpha particle is 
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 

2 2

2 2Au Au

Au Au

2

1 1

2 2

4.00 u 197 u
5.00 MeV

4.00 u 197 u

4.61 MeV.

f f i i

m m m m
K m v m v K

m m m m

 
     

 

    
     

    

 
  

 



 

 

We note that K K Kaf f i Au,   is indeed satisfied. 

 

6. (a) The atomic number Z = 39 corresponds to the element yttrium (see Appendix F 

and/or Appendix G). 

 

(b) The atomic number Z = 53 corresponds to iodine. 

 

(c) A detailed listing of stable nuclides (such as the Web site http://nucleardata. 

nuclear.lu.se/nucleardata) shows that the stable isotope of yttrium has 50 neutrons (this 

can also be inferred from the Molar Mass values listed in Appendix F). 

 

(d) Similarly, the stable isotope of iodine has 74 neutrons. 

 

(e) The number of neutrons left over is 235 –  127 –  89 = 19. 

 

7. For 
55

Mn the mass density is 

 

      
17 3

3
1/315 23

0.055kg/mol
2.3 10 kg/m

4 / 3 1.2 10 m 55 6.02 10 / mol
m

M

V




   
   
 

. 

 

(b) For 
209

Bi,  

 

m

M

V
 

 
 



0 209

4 3 12 10 209 6 02 10
2 3 10

15 1 3 3
23

17.

/ . . /
. .

/

kg / mol

m mol
kg / m3

a f c ha f c h
 

 

(c) Since V r r A A  3

0

1 3 3/ ,c h  we expect m A V A A  / / const.  for all nuclides. 

 

(d) For 
55

Mn, the charge density is 

 

  

    

19

25 3

3
1/315

25 1.6 10 C
1.0 10 C/m .

4 / 3 1.2 10 m 55
q

Ze

V







   

  
 

 

 

(e) For 
209

Bi, the charge density is 
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q

Ze

V
 




 





83 16 10

4 3 12 10 209
8 8 10

19

15 1 3 3

24
a fc h

a f c ha f
.

/ .
. .

/

C

m
C / m3


 

 

Note that q Z V Z A / /  should gradually decrease since A > 2Z for large nuclides. 

 

8. (a) The mass number A is the number of nucleons in an atomic nucleus. Since m mp n  

the mass of the nucleus is approximately Amp. Also, the mass of the electrons is 

negligible since it is much less than that of the nucleus. So M Amp . 

 

(b) For 
1
H, the approximate formula gives  

 

M  Amp = (1)(1.007276 u) = 1.007276 u. 

 

The actual mass is (see Table 42-1) 1.007825 u. The percentage deviation committed is 

then  

 = (1.007825 u – 1.007276 u)/1.007825 u = 0.054%0.05%. 

 

(c) Similarly, for 
31

P,  = 0.81%. 

 

(d) For 
120

Sn,  = 0.81%. 

 

(e) For 
197

Au,  = 0.74%. 

 

(f) For 
239

Pu,  = 0.71%. 

 

(g) No. In a typical nucleus the binding energy per nucleon is several MeV, which is a bit 

less than 1% of the nucleon mass times c
2
. This is comparable with the percent error 

calculated in parts (b) – (f) , so we need to use a more accurate method to calculate the 

nuclear mass. 

 

9. (a) 6 protons, since Z = 6 for carbon (see Appendix F). 

 

(b) 8 neutrons, since A – Z = 14 – 6 = 8 (see Eq. 42-1). 

 

10. (a) Table 42-1 gives the atomic mass of 
1
H as m = 1.007825 u. Therefore, the mass 

excess for 
1
H is  

 = (1.007825 u –  1.000000 u)= 0.007825 u. 

 

(b) In the unit MeV/c
2
,  

 

 = (1.007825 u – 1.000000 u)(931.5 MeV/c
2
·u) = +7.290 MeV/c

2
. 

 

(c) The mass of the neutron is mn = 1.008665 u. Thus, for the neutron,  

 



 

  

1777 

 = (1.008665 u – 1.000000 u) = 0.008665 u. 

 

(d) In the unit MeV/c
2
,  

 

 = (1.008665 u – 1.000000 u)(931.5 MeV/ c
2
·u) = +8.071 MeV/c

2
. 

 

(e) Appealing again to Table 42-1, we obtain, for 
120

Sn,  

 

 = (119.902199 u – 120.000000 u) = – 0.09780 u. 

 

(f) In the unit MeV/c
2
,  

 

 = (119.902199 u – 120.000000 u) (931.5 MeV/ c
2
·u) = – 91.10 MeV/c

2
. 

 

11. THINK To resolve the detail of a nucleus, the de Broglie wavelength of the probe 

must be smaller than the size of the nucleus.  

 

EXPRESS The de Broglie wavelength is given by  = h/p, where p is the magnitude of 

the momentum. Since the kinetic energy K of the electron is much greater than its rest 

energy, relativistic formulation must be used. The kinetic energy and the momentum are 

related by Eq. 37-54: 

2 22 .pc K Kmc   

 

 ANALYZE (a) With K = 200 MeV and mc
2
 = 0.511 MeV, we obtain 

 

pc K Kmc    2 2 2
2 200 2 200 0 511 200 5MeV MeV MeV MeV.a f a fa f. .  

 

Thus, 

6

6

1240 eV nm
6.18 10 nm 6.2 fm.

200.5 10 eV

hc

pc


     


 

 

(b) The diameter of a copper nucleus, for example, is about 8.6 fm, just a little larger than 

the de Broglie wavelength of a 200-MeV electron. To resolve detail, the wavelength 

should be smaller than the target, ideally a tenth of the diameter or less. 200-MeV 

electrons are perhaps at the lower limit in energy for useful probes. 

 

LEARN The more energetic the incident particle, the finer the details of the target that 

can be probed.  

 

12. (a) Since 0U  , the energy represents a tendency for the sphere to blow apart. 

 

(b) For 
239

Pu, Q = 94e and R = 6.64 fm. Including a conversion factor for J eV  we 

obtain 
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U
Q

r
 

  

 

F
HG

I
KJ

 



 

3

20

3 94 160 10 8 99 10

5 6 64 10

1

115 10

2

0

19
2

9

15 19

9



. .

.

.

C N m / C

m

eV

1.60 10 J

eV = 1.15GeV.

2 2c h c h
c h  

 

(c) Since Z = 94, the electrostatic potential per proton is 1.15 GeV/94 = 12.2 MeV/proton.  

 

(d) Since A = 239, the electrostatic potential per nucleon is 1.15 GeV/239 = 4.81 

MeV/nucleon.  

 

(e) The strong force that binds the nucleus is very strong. 

 

13. We note that the mean density and mean radius for the Sun are given in Appendix C. 

Since  = M/V where V r 3, we get r   1 3/ . Thus, the new radius would be 

 

r Rs
s
F
HG
I
KJ  



F
HG

I
KJ  





1 3

8

17

1 3

46 96 10
1410

2 10
13 10

/ /

. .m
kg / m

kg / m
m.

3

3c h  

 

14. The binding energy is given by  

 

  2

be AmH nE Zm A Z m M c       , 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and AmM  is 

the mass of a 244

95Am  atom. In principle, nuclear masses should be used, but the mass of 

the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

AmM , so the result is the same. First, we calculate the mass difference in atomic mass 

units:  

 

m = (95)(1.007825 u) + (244 – 95)(1.008665 u) –  (244.064279 u) = 1.970181 u. 

 

Since 1 u is equivalent to 931.494013 MeV,  

 

Ebe = (1.970181 u)(931.494013 MeV/u) = 1835.212 MeV. 

 

Since there are 244 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1835.212 MeV)/244 = 7.52 MeV. 

 

15. (a) Since the nuclear force has a short range, any nucleon interacts only with its 

nearest neighbors, not with more distant nucleons in the nucleus. Let N be the number of 

neighbors that interact with any nucleon. It is independent of the number A of nucleons in 

the nucleus. The number of interactions in a nucleus is approximately NA, so the energy 
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associated with the strong nuclear force is proportional to NA and, therefore, proportional 

to A itself. 

 

(b) Each proton in a nucleus interacts electrically with every other proton. The number of 

pairs of protons is Z(Z –  1)/2, where Z is the number of protons. The Coulomb energy is, 

therefore, proportional to Z(Z –  1). 

 

(c) As A increases, Z increases at a slightly slower rate but Z
2
 increases at a faster rate 

than A and the energy associated with Coulomb interactions increases faster than the 

energy associated with strong nuclear interactions. 

 

16. The binding energy is given by  

 

  2

be EuH nE Zm A Z m M c       , 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and EuM  is 

the mass of a 152

63Eu  atom. In principle, nuclear masses should be used, but the mass of 

the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

EuM , so the result is the same. First, we calculate the mass difference in atomic mass 

units:  

 

m = (63)(1.007825 u) + (152 –  63)(1.008665 u) –  (151.921742 u) = 1.342418 u. 

 

Since 1 u is equivalent to 931.494013 MeV,  

 

Ebe = (1.342418 u)(931.494013 MeV/u) = 1250.454 MeV. 

 

Since there are 152 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1250.454 MeV)/152 = 8.23 MeV. 

 

17. It should be noted that when the problem statement says the “masses of the proton 

and the deuteron are ” they are actually referring to the corresponding atomic masses 

(given to very high precision). That is, the given masses include the “orbital” electrons. 

As in many computations in this chapter, this circumstance (of implicitly including 

electron masses in what should be a purely nuclear calculation) does not cause extra 

difficulty in the calculation. Setting the gamma ray energy equal to Ebe, we solve for the 

neutron mass (with each term understood to be in u units): 

 

n d H 2

2.2233
2.013553212 1.007276467

931.502

1.0062769 0.0023868

E
m M m

c


     

 
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which yields mn = 1.0086637 u   1.0087 u. 

 

18. The binding energy is given by  

 

  2

be RfH nE Zm A Z m M c       , 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and 
RfM  is 

the mass of a 259

104 Rf  atom. In principle, nuclear masses should be used, but the mass of 

the Z electrons included in ZMH is canceled by the mass of the Z electrons included in 

RfM , so the result is the same. First, we calculate the mass difference in atomic mass 

units:  

 

m = (104)(1.007825 u) + (259 –  104)(1.008665 u) –  (259.10563 u) = 2.051245 u. 

 

Since 1 u is equivalent to 931.494013 MeV,  

 

Ebe = (2.051245 u)(931.494013 MeV/u) = 1910.722 MeV. 

 

Since there are 259 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1910.722 MeV)/259 = 7.38 MeV. 

 

19. Let f24 be the abundance of 
24

Mg, let f25 be the abundance of 
25

Mg, and let f26 be the 

abundance of 
26

Mg. Then, the entry in the periodic table for Mg is  

 

24.312 = 23.98504f24 + 24.98584f25 + 25.98259f26. 

 

Since there are only three isotopes, f f f24 25 26 1   . We solve for f25 and f26. The second 

equation gives f f f26 24 251   . We substitute this expression and f24 = 0.7899 into the 

first equation to obtain  

 

24.312 =(23.98504)(0.7899) + 24.98584f25 + 25.98259–(25.98259)(0.7899) – 25.98259f25.  

 

The solution is f25 = 0.09303. Then,  

 

f26 = 1 –  0.7899 –  0.09303 = 0.1171. 78.99% 

 

of naturally occurring magnesium is 
24

Mg. 

 

(a) Thus, 9.303% is 
25

Mg. 

 

(b) 11.71% is 
26

Mg. 
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20. From Appendix F and/or G, we find Z = 107 for bohrium, so this isotope has N =  

A –  Z = 262 –  107 = 155 neutrons. Thus, 

 

 

       

2

H Bh

ben

107 1.007825u 155 1.008665u 262.1231u 931.5MeV u

262

nZm Nm m c
E

A

 
 

 


 

 

which yields 7.31 MeV per nucleon. 

 

21. THINK Binding energy is the difference in mass energy between a nucleus and its 

individual nucleons. 

 

EXPRESS If a nucleus contains Z protons and N neutrons, its binding energy is given by 

Eq. 42-7: 

 2 2 2

be ( ) ,H nE mc Mc Zm Nm M c       

 

where mH is the mass of a hydrogen atom, mn is the mass of a neutron, and M is the mass 

of the atom containing the nucleus of interest.  

 

ANALYZE (a) If the masses are given in atomic mass units, then mass excesses are 

defined by    2 21 , 1 ,H H n nm c m c      and   2.M A c    This means 

2 2 ,H Hm c c    2 2 ,n nm c c    and 2Mc   2.Ac  Thus,  

 

    2

be ,H n H nE Z N Z N A c Z N               

 

where A = Z + N is used.  

 

(b) For  79

197 Au ,  Z = 79 and N = 197 –  79 = 118. Hence, 

 

Ebe MeV MeV MeV MeV.    79 7 29 118 8 07 312 1560a fa f a fa f a f. . .  

 

This means the binding energy per nucleon is Eben MeV MeV. 1560 197 7 92a f / .  

 

LEARN Using mass excesses ( , ,H n  and ) instead of actual masses provides another 

convenient way of calculating the binding energy of a nucleus.  

 

22. (a) The first step is to add energy to produce 4 3He + H p , which — to make the 

electrons “balance” — may be rewritten as  4 3He H+ H1 . The energy needed is  

 

    3 1 4

2

1 H H He
3.01605u+1.00783u 4.00260u 931.5MeV/u

19.8MeV.

E m m m c     


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(b) The second step is to add energy to produce 3H H. n 2  The energy needed is  

 

    2 3

2

2 H H
2.01410u+1.00867 u 3.01605u 931.5MeV/u

6.26MeV.

nE m m m c     


  

 

(c) The third step: 2 H p n,  which — to make the electrons “balance” — may be 

rewritten as 2 H H+1 n. The work required is  

 

    1 2

2

3 H H
1.00783u 1.00867u 2.01410u 931.5MeV/u

2.23MeV.

nE m m m c      


 

 

(d) The total binding energy is  

 

be 1 2 3E E E E      19.8MeV 6.26MeV 2.23MeV 28.3MeV.    

 

(e) The binding energy per nucleon is  

 
 E E Aben be MeV / 4 = 7.07MeV. / .28 3  

 

(f) No, the answers do not match. 

 

23. THINK The binding energy is given by  

 

E Zm A Z m M cH nbe Pu   a f 2, 

 

where Z is the atomic number (number of protons), A is the mass number (number of 

nucleons), mH is the mass of a hydrogen atom, mn is the mass of a neutron, and MPu is the 

mass of a 94

239 Pu  atom.  

 

EXPRESS In principle, nuclear masses should be used, but the mass of the Z electrons 

included in ZmH is canceled by the mass of the Z electrons included in MPu, so the result 

is the same. First, we calculate the mass difference in atomic mass units:  

 

m = (94)(1.00783 u) + (239 – 94)(1.00867 u) –  (239.05216 u) = 1.94101 u. 

 

Since the mass energy of 1 u is equivalent to 931.5 MeV,  

 

Ebe = (1.94101 u)(931.5 MeV/u) = 1808 MeV. 

 

ANALYZE With 239 nucleons, the binding energy per nucleon is  

 

Eben = E/A = (1808 MeV)/239 = 7.56 MeV. 
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The result is the same as that given in Table 42-1. 

 

LEARN An alternative way to calculate binding energy is to use mass excesses, as 

discussed in Problem 21. The formula is 

 

be 239 ,H nE Z N       

 

where    2 21 , 1 ,H H n nm c m c       and   2

239 Pu 239 u .M c    

 

24. We first “separate” all the nucleons in one copper nucleus (which amounts to simply 

calculating the nuclear binding energy) and then figure the number of nuclei in the penny 

(so that we can multiply the two numbers and obtain the result). To begin, we note that 

(using Eq. 42-1 with Appendix F and/or G) the copper-63 nucleus has 29 protons and 34 

neutrons. Thus, 

 

     be 29 1.007825u 34 1.008665u 62.92960u 931.5MeV/u

551.4MeV.

E   


 

 

To figure the number of nuclei (or, equivalently, the number of atoms), we adapt Eq.  

42-21: 

NCu

g

62.92960g / mol
atoms / mol atoms.

F
HG

I
KJ   

3 0
6 02 10 2 9 1023 22.
. .c h  

 

Therefore, the total energy needed is 

 

N ECu be MeV MeV.    551 2 9 10 16 1022 25.4 . .a fc h  

 

25. The rate of decay is given by R = N, where  is the disintegration constant and N is 

the number of undecayed nuclei. In terms of the half-life T1/2, the disintegration constant 

is  = (ln 2)/T1/2, so 

 

N
R RT

  
 

 





1 2

10 7

22

2

6000 3 7 10 5 27 316 10

2

5 33 10

/

ln

. / . .

ln

.

Ci s Ci y s / y

nuclei.

1a fc ha fc h
 

 

26. By the definition of half-life, the same has reduced to 1
2  its initial amount after 140 d. 

Thus, reducing it to 1
4

1
2

2
 a f  of its initial number requires that two half-lives have passed: 

t = 2T1/2 = 280 d. 

 

27. (a) Since 60 y = 2(30 y) = 2T1/2, the fraction left is 2
– 2

 = 1/4 = 0.250. 
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(b) Since 90 y = 3(30 y) = 3T1/2, the fraction that remains is 2
– 3

 = 1/8 = 0.125. 

 

28. (a) We adapt Eq. 42-21: 

 

 23 18

Pu

0.002g
6.02 10 nuclei/mol 5.04 10 nuclei.

239g/mol
N

 
    
 

 

 

(b) Eq. 42-20 leads to 

R
N

T
 




 

ln ln

.41
.4 /

/

2 5 10 2

2 10
1 10

1 2

18

4

14

y
y 

 

which is equivalent to 4.60  10
6
/s = 4.60  10

6
 Bq (the unit becquerel is defined as 1 

decay/s). 

 

29. THINK Half-life is the time is takes for the number of radioactive nuclei to decrease 

to half of its initial value.   

 

EXPRESS The half-life T1/2 and the disintegration constant  are related by  

 

T1/2 = (ln 2)/. 

 

ANALYZE (a) With = 0.0108 h
– 1

, we obtain 

 

T1/2 = (ln 2)/(0.0108 h
– 1

) = 64.2 h. 

 

(b) At time t, the number of undecayed nuclei remaining is given by 

 

N N e N et t T
  

0 0

2 1 2 ln / / .
a f

 

 

We substitute t = 3T1/2 to obtain 
N

N
e

0

3 2 0125  ln . . 

 

In each half-life, the number of undecayed nuclei is reduced by half. At the end of one 

half-life, N = N0/2, at the end of two half-lives, N = N0/4, and at the end of three half-lives, 

N = N0/8 = 0.125N0. 

 

(c) We use 

N N e t 

0

 . 

 

Since 10.0 d is 240 h, t = (0.0108 h
– 1

) (240 h) = 2.592 and 

 
N

N
e

0

2 592 0 0749  . . .  
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LEARN The fraction of the Hg sample remaining as a function of time (measured in 

days) is plotted below. 

 

 
 

 

30. We note that t = 24 h is four times T1/2 = 6.5 h. Thus, it has reduced by half, four-fold: 

 

 
4

19 191
48 10 3.0 10 .

2

 
   

 
 

 

31. (a) The decay rate is given by R = N, where  is the disintegration constant and N is 

the number of undecayed nuclei. Initially, 0 0 ,R R N   where N0 is the number of 

undecayed nuclei at that time. One must find values for both N0 and . The disintegration 

constant is related to the half-life 1/ 2T  by 

 

      3 1

1/ 2ln2 / ln 2 / 78h 8.89 10 h .T       

 

If M is the mass of the sample and m is the mass of a single atom of gallium, then N0 = 

M/m. Now,  

m = (67 u)(1.661  10
– 24

 g/u) = 1.113  10
– 22

 g 

and  

 

N0 = (3.4 g)/(1.113  10
– 22

 g) = 3.05  10
22

. 

 

Thus, 

R0 = (8.89  10
– 3

 h
– 1

) (3.05  10
22

) = 2.71  10
20

 h
– 1

 = 7.53  10
16

 s
– 1

. 

 

(b) The decay rate at any time t is given by 

 

R R e t 

0

  

 

where R0 is the decay rate at t = 0. At t = 48 h, t = (8.89  10
– 3

 h
– 1

) (48 h) = 0.427 and 
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R e     7 53 10 4 91 1016 1 0 427 16. . ..s s 1c h  

 

32. Using Eq. 42-15 with Eq. 42-18, we find the fraction remaining: 

 

N

N
e et T

0

2 1 2 30 2 29 0 49   ln / / ln / . .  

 

33. We note that 3.82 days is 330048 s, and that a becquerel is a disintegration per second 

(see Section 42-3). From Eq. 34-19, we have 

 

N R T

 
  

F
HG

I
KJ  

1 2 5

3

10

32
155 10

330048

2
7 4 10

ln
.

ln
.

Bq

m

s atoms

m
 

 

where we have divided by volume v. We estimate v (the volume breathed in 48 h =  

2880 min) as follows: 

 

 
3liters 1m breaths

2 40 2880min
breath 1000L min

    
    

    
 

 

which yields v  200 m
3
. Thus, the order of magnitude of N is 

 

   10 3 13

3

atoms
7 10 200m 1 10 atoms.

m

N   
      

   
 

 

34. Combining Eqs. 42-20 and 42-21, we obtain 

 

M N
M

M

RT
sam

K

A

g / mol

mol
 

F
HG
I
KJ 

F
HG

I
KJ

1 2

232

40

6 02 10

/

ln . /
 

 

which gives 0.66 g for the mass of the sample once we plug in 1.7  10
5
/s for the decay 

rate and 1.28  10
9
 y = 4.04  10

16
 s for the half-life. 

 

35. THINK We modify Eq. 42-11 to take into consideration the rate of production of the 

radionuclide. 

 

EXPRESS If N is the number of undecayed nuclei present at time t, then 

 
dN

dt
R N    

 

where R is the rate of production by the cyclotron and  is the disintegration constant. 

The second term gives the rate of decay. Note the sign difference between R and N. 
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ANALYZE (a) Rearrange the equation slightly and integrate: 

 

0 0

N t

N

dN
dt

R N


   

 

where N0 is the number of undecayed nuclei present at time t = 0. This yields 

 







1

0




ln .

R N

R N
t  

We solve for N: 

N
R

N
R

e t  
F
H

I
K 

 



0 . 

 

After many half-lives, the exponential is small and the second term can be neglected. 

Then, N = R/. 

 

(b) The result N = R/holds regardless of the initial value N0, because the dependence on 

N0 shows up only in the second term, which is exponentially suppressed at large t.  

 

LEARN At times that are long compared to the half-life, the rate of production equals the 

rate of decay and N is a constant. The nuclide is in secular equilibrium with its source. 

 

36. We have one alpha particle (helium nucleus) produced for every plutonium nucleus 

that decays. To find the number that have decayed, we use Eq. 42-15, Eq. 42-18, and 

adapt Eq. 42-21: 

 

N N N e N e
t T

A0 0

2 20000 2 241001
12 0

239
11 2    

 ln / ln //
.d i c hg / mol

g / mol
 

 

where NA is the Avogadro constant. This yields 1.32  10
22

 alpha particles produced. In 

terms of the amount of helium gas produced (assuming the  particles slow down and 

capture the appropriate number of electrons), this corresponds to 

 

mHe
mol

g / mol g.




F
HG

I
KJ   132 10

6 02 10
4 0 87 9 10

22

23

3.

. /
. .a f  

 

37. Using Eq. 42-15 and Eq. 42-18 (and the fact that mass is proportional to the number 

of atoms), the amount decayed is 

 

   

       

1/ 21/ 2

1/ 2 1/ 2

ln 2/ln 2/

16.0 h 14.0 h 0 0

ln 2/ 16.0 /12.7 h ln 2 14.0 h/12.7h ln 2ln 2/

0

| | 1 1

       5.50g

       0.265g.

fi

f f

f i

t Tt T

t t

t T ht T

m m m m e m e

m e e e e



 

  

      

    
 


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38. With 4

1/ 2 3.0 h 1.08 10 s,T    the decay constant is (using Eq. 42-18) 

 

 5

4

1/ 2

ln 2 ln 2
6.42 10 / s

1.08 10 sT
    


. 

 

Thus, the number of isotope parents injected is 

 

 
6 10

9

5

(8.60 10 Ci)(3.7 10 Bq/Ci)
4.96 10

6.42 10 / s

R
N







 
   


. 

 

39. (a) The sample is in secular equilibrium with the source, and the decay rate equals the 

production rate. Let R be the rate of production of 
56

Mn and let  be the disintegration 

constant. According to the result of Problem 42-35, R = N after a long time has passed. 

Now, N = 8.88  10
10

 s
– 1

, so R = 8.88  10
10

 s
– 1

. 

 

(b) We use N = R/. If T1/2 is the half-life, then the disintegration constant is  

 

 = (ln 2)/T1/2 = (ln 2)/(2.58 h) = 0.269 h
– 1

 = 7.46  10
– 5

 s
– 1

, 

 

so N = (8.88  10
10

 s
– 1

)/(7.46  10
– 5

 s
– 1

) = 1.19  10
15

. 

 

(c) The mass of a 
56

Mn nucleus is  

 

m = (56 u) (1.661  10
– 24

 g/u) = 9.30  10
– 23

 g 

 

and the total mass of 
56

Mn in the sample at the end of the bombardment is  

 

Nm = (1.19  10
15

)(9.30  10
– 23

 g) = 1.11  10
– 7

 g. 

 

40. We label the two isotopes with subscripts 1 (for 
32

P) and 2 (for 
33

P). Initially, 10% of 

the decays come from 
33

P, which implies that the initial rate R02 = 9R01. Using Eq. 42-17, 

this means 

01 1 01 02 2 02

1 1
.

9 9
R N R N     

 

At time t, we have R R e
t

1 01
1


and R R e

t

2 02
2


. We seek the value of t for which R1 = 

9R2 (which means 90% of the decays arise from 
33

P). We divide equations to obtain 

 

   1 2

01 02/ 9,
t

R R e
  

  

and solve for t: 
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   

   1 2

2

01 0201

1 1
1 2 02 1/ 2 1/ 2

ln 1/ 9ln / 91
ln

9 ln 2 / ln 2 / ln 2 14.3d 25.3d

209d.

R RR
t

R T T   

 
   

   
    

 



 

 

41. The number N of undecayed nuclei present at any time and the rate of decay R at that 

time are related by R = N, where  is the disintegration constant. The disintegration 

constant is related to the half-life T1/2 by  = (ln 2)/T1/2, so R = (N ln 2)/T1/2 and 

  

T1/2 = (N ln 2)/R. 

 

Since 15.0% by mass of the sample is 
147

Sm, the number of 
147

Sm nuclei present in the 

sample is 

N 


 


0150 1 00

147 1661 10
6143 10

24

20. .

.
. .

a fa f
a fc h

g

u g / u
 

Thus, 

T1 2

20

18
6143 10 2

120
3 55 10/

. ln
.


  



c h
s

s =1.12 10 y.
1

11  

 

42. Adapting Eq. 42-21, we have 

 

 
9

14sam 23
Kr

Kr

20 10 g
6.02 10 atoms mol 1.3 10 atoms.

92g molA

M
N N

M

 
 
 
 
 


      

 

Consequently, Eq. 42-20 leads to 

 

R
N

T
 


 

ln . ln

.
.

2 13 10 2

184
4 9 10

1 2

14

13
c h

s
Bq.  

 

43. Using Eq. 42-16 with Eq. 42-18, we find the initial activity: 

 

R Re et T

0

2 1 2 8 24 2 83 61 87 4 10 9 0 10    ln / / ln / .. .Bq Bq.c h  

 

44. The number of atoms present initially at 0t   is 6

0 2.00 10N   . From Fig. 42-19, 

we see that the number is halved at 2.00 s.t   Thus, using Eq. 42-15, we find the decay 

constant to be 

 10 0

0

1 1 1
ln ln ln 2 0.3466 s

2.00 s / 2 2.00 s

N N

t N N
   
     

   
. 

 

At 27.0 st  , the number of atoms remaining is 
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 6 (0.3466/s)(27.0 s)

0 (2.00 10 ) 173tN N e e     . 

 

Using Eq. 42-17, the decay rate is 

 

 (0.3466/ s)(173) 60/ s 60 BqR N    . 

  

45. (a) Equation 42-20 leads to 

 

sam

8 27

1 2 atom

12

ln 2 ln 2 ln 2 0.0010kg

30.2y 9.53 10 s 137 1.661 10 kg

3.2 10 Bq.

M
R N

T m 

   
     

    

 

 

 

(b) Using the conversion factor 101 Ci 3.7 10  Bq,  123.2 10 Bq 86 Ci.R     

 

46. (a) Molybdenum beta decays into technetium: 

 

42

99 Mo Tc + 

43

99 e v  

 

(b) Each decay corresponds to a photon produced when the technetium nucleus de-excites 

(note that the de-excitation half-life is much less than the beta decay half-life). Thus, the 

gamma rate is the same as the decay rate: 8.2  10
7
/s. 

 

(c) Equation 42-20 leads to 

 

N
RT

   
1 2 6

2

38 6 0 3600

2
12 10

ln

.

ln
. .

s h s hb gb gb g
 

 

47. THINK The mass fraction of Ra in RaCl2 is given by 

 

 Ra

Ra Cl2

M

M M
 

 

where MRa is the molar mass of Ra and MCl is the molar mass of Cl. 

 

EXPRESS We assume that the chlorine in the sample had the naturally occurring 

isotopic mixture, so the average molar mass is 35.453 g/mol, as given in Appendix F. 

Then, the mass of 
226

Ra was 

 

m 


  226

226 2 35
010 761 10 3

.453
. .a f a fg g. 

 

ANALYZE (a) The mass of a 
226

Ra nucleus is (226 u)(1.661  10
– 24

 g/u) = 3.75  10
– 22

 

g, so the number of 
226

Ra nuclei present was  
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N = (76.1  10
– 3

 g)/(3.75  10
– 22

 g) = 2.03  10
20

. 

 

(b) The decay rate is given by  

R = N = (N ln 2)/T1/2, 

 

where  is the disintegration constant, T1/2 is the half-life, and N is the number of nuclei. 

The relationship  = (ln 2)/T1/2 is used. Thus, 

 

R 



  

2 03 10 2

1600 3156 10
2 79 10

20

7

9
. ln

.
. .

c h
a fc hy s / y

s 1  

 

LEARN Radium has 33 different known isotopes, four of which naturally occurring. 
226

Ra, with a half-life of 1600 years, is the most stable isotope of radium. 

 

48. (a) The nuclear reaction is written as 238 4U Th + He.234  The energy released is 

 

E m m m c1

2

238 05079 9315

4 25

  

  



U He Th

u 4.00260 u 234.04363u MeV / u

MeV.

b g
a fa f. .

.

 

 

(b) The reaction series consists of 238 237U U n,   followed by 

 
237 236

236 235

235 234

U Pa p

Pa Pa n

Pa Th p

 

 

 

 

 

The net energy released is then 

 

E m m m c m m m c

m m m c m m m c

m m m m c

n p

n p

n p

2

2 2

2 2

22 2

238 05079 2 1 00867 2 1 00783 234 04363 931 5

24 1

     

     

   

   

 

238 237 237 236

236 235 235 234

238 234

U U U Pa

Pa Pa Pa Th

U Th

u u u u MeV / u

MeV.

d i d i
d i d i

d i
a f a f a f. . . . .

.

 

 

(c) This leads us to conclude that the binding energy of the  particle is 

 

2 2 241 28 32m m m cn p     He MeV 4.25MeV MeV.d i . .  
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49. THINK The time for half the original 
238

U nuclei to decay is equal to 4.5  10
9
 y, 

which is the half-life of 
238

U. 

 

EXPRESS The fraction of undecayed nuclei remaining after time t is given by 

 
N

N
e et t T

0

2 1 2   ln / /a f
 

 

where  is the disintegration constant and T1/2 = (ln 2)/ is the half-life.  

 

(a) For 
244

Pu at t = 4.5  10
9
 y, 

 

    9

7

1/ 2

ln 2 4.5 10 yln 2
39

8.0 10 y

t
t

T



  


 

and the fraction remaining is 

39.0 17

0

1.2 10 .
N

e
N

     

 

(b) For 
248

Cm at t = 4.5  10
9
 y, 

 

ln ln .

.4/

2 2 4 5 10

3 10
9170

1 2

9

5

a f a fc ht

T







y

y
 

and the fraction remaining is 
N

N
e

0

9170 39833 31 10   . . 

 

For any reasonably sized sample this is less than one nucleus and may be taken to be zero. 

A standard calculator probably cannot evaluate e
– 9170

 directly. Our recommendation is to 

treat it as (e
– 91.70

)
100

. 

 

LEARN Since 248 244 2381/ 2 1/ 2 1/ 2Cm Pu U
( ) ( ) ( ) ,T T T   with 

  1/ 2ln2 /

0/ ,
t T

N N e


  we have 

 

248 244 2380 0 0Cm Pu U
( / ) ( / ) ( / ) .N N N N N N   

 

50. (a) The disintegration energy for uranium-235 “decaying” into thorium-232 is 

 

    235 232 3

2

3 U Th He
235.0439u 232.0381u 3.0160u 931.5MeV/u

9.50MeV.

Q m m m c     

 
 

 

(b) Similarly, the disintegration energy for uranium-235 decaying into thorium-231 is 
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    235 231 4

2

4 U Th He
235.0439u 231.0363u 4.0026u 931.5MeV/u

4.66MeV.

Q m m m c     


 

 

(c) Finally, the considered transmutation of uranium-235 into thorium-230 has a Q-value 

of  

    235 230 5

2

5 U Th He
235.0439u 230.0331u 5.0122u 931.5MeV/u

1.30MeV.

Q m m m c     

 
 

 

Only the second decay process (the  decay) is spontaneous, as it releases energy. 

 

51. Energy and momentum are conserved. We assume the residual thorium nucleus is in 

its ground state. Let K be the kinetic energy of the alpha particle and KTh be the kinetic 

energy of the thorium nucleus. Then, Q = K + KTh. We assume the uranium nucleus is 

initially at rest. Then, conservation of momentum yields 0 = p + pTh, where p is the 

momentum of the alpha particle and pTh is the momentum of the thorium nucleus.  

Both particles travel slowly enough that the classical relationship between momentum 

and energy can be used. Thus K p mTh Th

2

Th / 2 , where mTh is the mass of the thorium 

nucleus. We substitute pTh = – p and use K p m
   2 2/  to obtain KTh = (m/mTh)K. 

Consequently, 

 

 
Th Th

4.00u
1 1 4.196MeV 4.269MeV.

234u

m m
Q K K K

m m

 
  

   
         

  
 

 

52. (a) For the first reaction 

 

    2

1 Ra Pb C 223.01850u 208.98107u 14.00324u 931.5MeV/u

31.8MeV.

Q m m m c     


 

 

(b) For the second one 

 

 
    2

2 Ra Rn He 223.01850u 219.00948u 4.00260u 931.5MeV/u

5.98MeV.

Q m m m c     


 

 

(c) From U  q1q2/r, we get 

 

U U
q q

q q

e e

e e

C
1 2 30 0

6 0

86 2 0
86

F
HG

I
KJ  Pb

Rn He

MeV
82

MeV..
.

.
b g b gb gb gb g  

 

53. THINK The energy released in the decay is the disintegration energy: 
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 2 2 2 2( ) ,i f i fQ M c M c M M c M c       

 

where f iM M M    is the change in mass due to the decay. 

 

EXPRESS Let MCs be the mass of one atom of 55

137 Cs  and MBa be the mass of one atom of 

56

137 Ba.  The energy released is  

Q = (MCs –  MBa)c
2
 . 

 

ANALYZE With MCs = 136.9071 u and MBa = 136.9058 u, we obtain 

 

      2 2136.9071u 136.9058u 0.0013u 0.0013u 931.5MeV/u

1.21MeV.

Q c c   


 

 

LEARN In calculating Q above, we have used the atomic masses instead of nuclear 

masses. One can readily show that both lead to the same results. To obtain the nuclear 

masses, we subtract the mass of 55 electrons from MCs and the mass of 56 electrons from 

MBa. The energy released is  

 

Q = [(MCs –  55m) –  (MBa –  56m) –  m] c
2
, 

 

where m is the mass of an electron (the last term in the bracket comes from the beta 

decay). Once cancellations have been made, Q = (MCs –  MBa)c
2
, which is the same as  

before. 

 

54. Assuming the neutrino has negligible mass, then 

 

mc m ce

2 2  m mTi Vb g .  

 

Now, since vanadium has 23 electrons (see Appendix F and/or G) and titanium has 22 

electrons, we can add and subtract 22me to the above expression and obtain 

 

mc m m c m m ce e

2 2 222 23     m mTi V Ti Vb g b g .  

 

We note that our final expression for mc
2
 involves the atomic masses, and that this 

assumes (due to the way they are usually tabulated) the atoms are in the ground states 

(which is certainly not the case here, as we discuss below). The question now is: do we 

set Q = – mc
2
 as in Sample Problem —“Q value in a beta decay, suing masses?” The 

answer is “no.” The atom is left in an excited (high energy) state due to the fact that an 

electron was captured from the lowest shell (where the absolute value of the energy, EK, 

is quite large for large Z). To a very good approximation, the energy of the K-shell 

electron in Vanadium is equal to that in Titanium (where there is now a “vacancy” that 

must be filled by a readjustment of the whole electron cloud), and we write 
2

KQ mc E    so that Eq. 42-26 still holds. Thus, 
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Q m m c EK  V Tib g 2

.  

 

55. The decay scheme is n p + e +  .  The electron kinetic energy is a maximum if no 

neutrino is emitted. Then,  

Kmax = (mn –  mp –  me)c
2
, 

 

where mn is the mass of a neutron, mp is the mass of a proton, and me is the mass of an 

electron. Since mp + me = mH, where mH is the mass of a hydrogen atom, this can be 

written Kmax = (mn –  mH)c
2
. Hence,  

 

Kmax = (840  10
– 6

 u)c
2
 = (840  10

– 6
 u)(931.5 MeV/u) = 0.783 MeV. 

 

56. (a) We recall that mc
2
 = 0.511 MeV from Table 37-3, and hc = 1240 MeV·fm. Using 

Eq. 37-54 and Eq. 38-13, we obtain 

 

  






 

h

p

hc

K Kmc2 2

2

2

2

1240

10 2 10 0511
9 0 10

MeV fm

MeV MeV MeV
fm.

. . .
.

b g b gb g
 

 

(b) r = r0A
1/3

 = (1.2 fm)(150)
1/3

 = 6.4 fm.  

 

(c) Since   r  the electron cannot be confined in the nuclide. We recall that at least /2 

was needed in any particular direction, to support a standing wave in an “infinite well.” A 

finite well is able to support slightly less than /2 (as one can infer from the ground state 

wave function in Fig. 39-6), but in the present case /r is far too big to be supported. 

 

(d) A strong case can be made on the basis of the remarks in part (c), above. 

 

57. (a) Since the positron has the same mass as an electron, and the neutrino has 

negligible mass, then  

mc m ce

2 2  m mB Cb g .  

 

Now, since carbon has 6 electrons (see Appendix F and/or G) and boron has 5 electrons, 

we can add and subtract 6me to the above expression and obtain 

 

mc m m c m m m c
e e e

2 2 27 6 2      m mB C B Cd i b g .  

 

We note that our final expression for mc
2
 involves the atomic masses, as well an “extra” 

term corresponding to two electron masses. From Eq. 37-50 and Table 37-3, we obtain 

 

Q m m m c m m ce     C B C B MeV2 2 05112 2b g b g b g. .  
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(b) The disintegration energy for the positron decay of carbon-11 is 

 

   11.011434u 11.009305u 931.5MeV/u 1.022MeV

0.961MeV.

Q   


 

 

58. (a) The rate of heat production is 

 

dE

dt
R Q N Q

T

f

m
Qi i i i

ii

i

i

i

ii

  
F
HG
I
KJ




 





L
N
MM

















 

 1

1 21

3

1

3

1

3

13

7 27

6

9

6

10

6

2 100

100 2 160 10

315 10 1661 10

4 10 517

238 4 47 10

13 10 42 7

232 141 10

4 10 131

40 1

ln .

. ln .

. .

.

.

.

.

.

/

kg

kg J / MeV

s / y kg / u

MeV

u y

MeV

u y

MeV

u

b g

b gb gc h
c hc h

c hb g
b gc h

c hb g
b gc h

c hb g
b g .

.

28 10

10 10

9

9



O
Q
PP

  

y

W.

c h

 

 

(b) The contribution to heating, due to radioactivity, is  

 

P = (2.7  10
22

 kg)(1.0  10
– 9

 W/kg) = 2.7  10
13

 W, 

 

which is very small compared to what is received from the Sun. 

 

59. THINK The beta decay of 
32

P is given by 

 

 32 32P S e    . 

 

However, since the electron has the maximum possible kinetic energy, no (anti)neutrino 

is emitted. 

 

EXPRESS Since momentum is conserved, the momentum of the electron and the 

momentum of the residual sulfur nucleus are equal in magnitude and opposite in direction. 

If pe is the momentum of the electron and pS is the momentum of the sulfur nucleus, then 

pS = – pe. The kinetic energy KS of the sulfur nucleus is  

 
2 2/ 2 / 2S S S e SK p M p M  , 

 

where MS is the mass of the sulfur nucleus. Now, the electron’s kinetic energy Ke is 

related to its momentum by the relativistic equation 2 2 2( ) 2e e ep c K K mc  , where m is 

the mass of an electron.  

 

ANALYZE With Ke = 1.71 MeV, the kinetic energy of the recoiling sulfur nucleus is 
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K
p c

M c

K K mc

M c
S

e

S

e e

S

 





  

b g b g b gb g
b gb g

2

2

2 2

2

2

5

2

2

2

2 171 0511

2 32 9315

7 83 10

1.71MeV MeV MeV

u MeV / u

MeV = 78.3 eV

. .

.

.

 

 

where mc
2
 = 0.511 MeV is used for the electron (see Table 37-3). 

 

LEARN The maximum kinetic energy of the electron is equal to the disintegration 

energy Q: 

 maxQ K . 

 

To show this, we use the following data: MP = 31.97391 u and MS = 31.97207 u. The 

result is 

 

      2 231.97391u 31.97207u 0.00184u 0.00184u 931.5MeV/u

1.71MeV.

Q c c   


 

 

60. We solve for t from R = R0e
– t

: 

 

t
R

R
 

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ

L
NM

O
QP  

1 5730 153

630

500

100
161 100 3


ln ln

.

.

.

.
.

y

ln 2
y.  

 

61. (a) The mass of a 
238

U atom is (238 u)(1.661  10
– 24

 g/u) = 3.95  10
– 22

 g, so the 

number of uranium atoms in the rock is  

 

NU = (4.20  10
– 3

 g)/(3.95  10
– 22

 g) = 1.06  10
19

. 

 

(b) The mass of a 
206

Pb atom is (206 u)(1.661  10
– 24

 g) = 3.42  10
– 22

 g, so the number 

of lead atoms in the rock is  

 

NPb = (2.135  10
– 3

 g)/(3.42  10
– 22

 g) = 6.24  10
18

. 

 

(c) If no lead was lost, there was originally one uranium atom for each lead atom formed 

by decay, in addition to the uranium atoms that did not yet decay. Thus, the original 

number of uranium atoms was  

 

NU0 = NU + NPb = 1.06  10
19

 + 6.24  10
18

 = 1.68  10
19

. 

 

(d) We use 

U U0

tN N e   
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where  is the disintegration constant for the decay. It is related to the half-life T1 2/  by  

  ln / ./2 1 2b g T  Thus, 

 
9 19

9U 1/ 2 U

19

U0 U0

1 4.47 10 y 1.06 10
ln ln ln 2.97 10 y.

ln 2 ln 2 1.68 10

N T N
t

N N

      
         

    
 

 

62. The original amount of 
238

U the rock contains is given by 

 

m me et

0

2 260 106 4 47 109

370 385  
FH IK FH IK . .

ln / .

mg mg.
y yb g b g  

 

Thus, the amount of lead produced is 

 

  
F
HG
I
KJ  

F
HG
I
KJ m m m

m

m
0

206

238

385 370
206

238
0132b g b g. . .mg mg mg. 

 

63. We can find the age t of the rock from the masses of 
238

U and 
206

Pb. The initial mass 

of 
238

U is 

m m mU U Pb0

238

206
  .  

 

Therefore,  

    1/ 2U U
238

0

ln2 /

U U U Pb
/ 206 .

t Tt
m m e m m e

 
    

We solve for t: 

 

 
U

9
1/ 2 U Pb

U

9

238/ 206 4.47 10 y 238 0.15mg
ln ln 1

ln2 ln 2 206 0.86mg

1.18 10 y.

T m m
t

m

      
       

      

 

 

 

For the  decay of 
40

K, the initial mass of 
40

K is 

 

m m m m mK K Ar K Ar0
40 40   / ,b g  

 

so 

m m e m m et t

K K0

K
K Ar

K    b g .  

 

We solve for mK: 

    

K

9 9
K K

Ar Ar
K ln 2 1.18 10 y / 1.25 10 y

1.6mg
1.7mg.

1 1 1

t

t t

m e m
m

e e e



 



  
   

  
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64. We note that every calcium-40 atom and krypton-40 atom found now in the sample 

was once one of the original numbers of potassium atoms. Thus, using Eq. 42-14 and Eq. 

42-18, we find 

 

K

K Ar Ca 1 2

1 ln 2
ln     ln

1 1 8.54

N
t t

N N N T

   
       

     
 

 

which (with T1/2 = 1.26  10
9
 y) yields t = 4.28  10

9
 y. 

 

65. THINK The activity of a radioactive sample expressed in curie (Ci) can be converted 

to SI units (Bq) as 

 

1 curie = 1 Ci = 3.7  10
10

 Bq = 3.7  10
10 

disintegrations/s. 

 

EXPRESS The decay rate R is related to the number of nuclei N by R = N, where  is 

the disintegration constant. The disintegration constant is related to the half-life 1/ 2T  by 

 

1/ 2

1/ 2

ln 2
 

ln 2

RTR
N

T



     . 

 

Since 1 Ci = 3.7  10
10

 disintegrations/s, 

 

N 
 

 

250 37 10 2 7 8 64 10

2
311 10

10 1 4

18
Ci s Ci d s / db gc hb gc h. / . .

ln
. .  

 

ANALYZE The mass of a 
198

Au atom is  

 

M0 = (198 u)(1.661  10
– 24

 g/u) = 3.29  10
– 22

 g, 

 

so the mass required is  

 

M = N M0 = (3.11  10
18

)(3.29  10
– 22

 g) = 1.02  10
– 3

 g = 1.02 mg. 

 

LEARN The 
198

Au atom undergoes beta decay and emit an electron: 

 
198 198Au Hg e    . 

 

66. The becquerel (Bq) and curie (Ci) are defined in Section 42-3.  

 

(a) R = 8700/60 = 145 Bq. 

 

(b) R 


  145
392 10 9Bq

3.7 10 Bq / Ci
Ci.

10
.  
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67. The absorbed dose is  

 

 
3

4 42.00 10  J
absorbed dose 5.00 10  J/kg 5.00 10  Gy

4.00 kg


 

      

 

where 1 J/kg 1Gy.  With RBE 5 , the dose equivalent is  

 
4 4 3dose equivalent RBE (5.00 10  Gy) 5(5.00 10  Gy) 2.50 10  Sv

2.50 mSv .

        


 

 

68. (a) Using Eq. 42-32, the energy absorbed is 

 

2 4 10 75 184.   Gy kg mJ.c hb g  

 

(b) The dose equivalent is 

 

  4 32.4 10 Gy 12 2.9 10 Sv    . 

 

(c) Using Eq. 42-33, we have 32.9 10 Sv 0.29 rem  . 

 

69. (a) Adapting Eq. 42-21, we find 

 

N0

3 23

18
2 5 10 6 02 10

239
6 3 10

 
 

. . /
. .

g mol

g / mol

c hc h
 

 

(b) From Eq. 42-15 and Eq. 42-18, 

 

      1/ 2
12h ln 2/ 24,100y 8760h/yln 2/ 18 11

0| | 1 6.3 10 1 2.5 10 .
t T

N N e e
             

 

 

(c) The energy absorbed by the body is 

 

         11 130.95 0.95 5.2MeV 2.5 10 1.6 10 J/MeV 0.20 J.E N

      

 

(d) On a per unit mass basis, the previous result becomes (according to Eq. 42-32) 

 

0 20
2 3 10 3.
.

mJ

85kg
J / kg = 2.3mGy.    

 

(e) Using Eq. 42-31, (2.3 mGy)(13) = 30 mSv. 
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70. From Eq. 19-24, we obtain 

 
6

avg 10

5

2 2 5.00 10 eV
3.87 10 K.

3 k 3 8.62 10 eV/K

K
T



   
      

  
 

 

71. (a) Following Sample Problem — “Lifetime of a compound nucleus made by neutron 

capture,” we compute 

E
t

 
 


 







avg

eV fs

s
eV.

414 10 2

10 10
6 6 10

15

22

6
. /

.
.

c h 
 

 

(b) In order to fully distribute the energy in a fairly large nucleus, and create a 

“compound nucleus” equilibrium configuration, about 10
–15

 s is typically required. A 

reaction state that exists no more than about 10
–22

 s does not qualify as a compound 

nucleus. 

 

72. (a) We compare both the proton numbers (atomic numbers, which can be found in 

Appendix F and/or G) and the neutron numbers (see Eq. 42-1) with the magic nucleon 

numbers (special values of either Z or N) listed in Section 42-8. We find that 
18

O, 
60

Ni, 
92

Mo, 
144

Sm, and 
207

Pb each have a filled shell for either the protons or the neutrons (two 

of these, 
18

O and 
92

Mo, are explicitly discussed in that section). 

 

(b) Consider 
40

K, which has Z = 19 protons (which is one less than the magic number 20). 

It has N = 21 neutrons, so it has one neutron outside a closed shell for neutrons, and thus 

qualifies for this list. Others in this list include 
91

Zr, 
121

Sb, and 
143

Nd. 

 

(c) Consider 
13

C, which has Z = 6 and N = 13 – 6 = 7 neutrons. Since 8 is a magic number, 

then 
13

C has a vacancy in an otherwise filled shell for neutrons. Similar arguments lead to 

inclusion of 
40

K, 
49

Ti, 
205

Tl, and 
207

Pb in this list. 

 

73. THINKA generalized formation reaction can be written ,X x Y   where X is the 

target nucleus, x is the incident light particle, and Y is the excited compound nucleus 

(
20

Ne).  

 

EXPRESS We assume X is initially at rest. Then, conservation of energy yields 

 

m c m c K m c K EX x x Y Y Y

2 2 2      

 

where mX, mx, and mY are masses, Kx and KY are kinetic energies, and EY is the excitation 

energy of Y. Conservation of momentum yields p px Y .Now,  

 
22

2 2

x xY
Y x

Y Y Y

p mp
K K

m m m

 
    

 
 

so 
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m c m c K m c m m K EX x x Y x Y x Y

2 2 2    /b g  

and 

K
m

m m
m m m c Ex

Y

Y x

Y X x Y


  b g 2 . 

 

ANALYZE (a) Let x represent the alpha particle and X represent the 
16

O nucleus. Then,  

 

(mY – mX – mx)c
2
 = (19.99244 u –15.99491 u – 4.00260 u)(931.5 MeV/u)  

                                         = – 4.722 MeV 

 

and 

 
19.99244u

4.722MeV+25.0MeV 25.35MeV 25.4 MeV.
19.99244u 4.00260u

K    


 

 

(b) Let x represent the proton and X represent the 
19

F nucleus. Then,  

 

(mY – mX –  mx)c
2
 = (19.99244 u –18.99841 u –1.00783 u)(931.5 MeV/u)  

                                          = – 12.85 MeV 

 

and 

K 


 
19 99244

19 99244 100783
12 85 12 80

.

. .
. .

u

u u
MeV + 25.0MeV MeV.b g  

 

(c) Let x represent the photon and X represent the 
20

Ne nucleus. Since the mass of the 

photon is zero, we must rewrite the conservation of energy equation: if E is the energy of 

the photon, then  

E + mXc
2
 = mYc

2
 + KY + EY. 

 

Since mX = mY, this equation becomes E = KY + EY. Since the momentum and energy of 

a photon are related by p = E/c, the conservation of momentum equation becomes E/c 

= pY. The kinetic energy of the compound nucleus is  

 
22

22 2

Y
Y

Y Y

Ep
K

m m c


  . 

 

We substitute this result into the conservation of energy equation to obtain 

 

E
E

m c
E

Y

Y


 

2

22
.  

This quadratic equation has the solutions 

 

E m c m c m c EY Y Y Y   2 2
2

22c h .  
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If the problem is solved using the relativistic relationship between the energy and 

momentum of the compound nucleus, only one solution would be obtained, the one 

corresponding to the negative sign above. Since  

 

mYc
2
 = (19.99244 u)(931.5 MeV/u) = 1.862  10

4
 MeV, 

we have 

E      



1862 10 1862 10 2 1862 10 250

250

4 4
2

4. . . .

.

MeV MeV MeV MeV

MeV.

c h c h c hb g
 

 

LEARN In part (c), the kinetic energy of the compound nucleus is  

 
2 2

2 4

(25.0 MeV)
0.0168 MeV

2 2(1.862 10 MeV)
Y

Y

E
K

m c


  


 

 

which is very small compared to EY = 25.0 MeV. Essentially all of the photon energy 

goes to excite the nucleus. 

 

74. Using Eq. 42-15, the amount of uranium atoms and lead atoms present in the rock at 

time t is  

 U 0

Pb 0 U 0 0 0 (1 )

t

t t

N N e

N N N N N e N e



 



 



     
 

 

and their ratio is 

 Pb

U

1
1

t
t

t

N e
e

N e











   . 

The age of the rock is 

 

 
9

9Pb 1/ 2 Pb

U U

1 4.47 10 y
ln 1 ln 1 ln 1 0.30 1.69 10 y

ln 2 ln 2

N T N
t

N N

    
          

   
. 

 

75. THINK We represent the unknown nuclide as Z

A X , where A and Z are its mass 

number and atomic number, respectively.  

 

EXPRESS The reaction equation can be written as 

 

Z

A X 0

1

1

0n e +2 He.2

4  

 

Conservation of charge yields Z + 0 = – 1 + 4 or Z = 3. Conservation of mass number 

yields A + 1 = 0 + 8 or A = 7.  
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ANALYZE According to the periodic table in Appendix G (also see Appendix F), 

lithium has atomic number 3, so the nuclide must be 3

7 Li . 

 

LEARN Charge and mass number are conserved in the neutron-capture process. The 

intermediate nuclide is 
8
Li, which is unstable and decays (via  and  modes) into two 

4
He’s and an electron. 

 

76. The dose equivalent is the product of the absorbed dose and the RBE factor, so the 

absorbed dose is  

 

(dose equivalent)/(RBE) = (250  10
– 6

 Sv)/(0.85) = 2.94  10
– 4

 Gy. 

 

But 1 Gy = 1 J/kg, so the absorbed dose is 

 

2 94 10 1 2 94 104 4. .


F
HG

I
KJ   Gy

J

kg Gy
J / kg.c h  

 

To obtain the total energy received, we multiply this by the mass receiving the energy:  

 

E = (2.94  10
– 4

 J/kg)(44 kg) = 1.29  10
– 2

 J 1.3  10
– 2

 J. 

 

77. THINK The decay rate R is proportional to N, the number of radioactive nuclei.  

 

EXPRESS According to Eq. 42-17, ,R N  where  is the decay constant. Since R is 

proportional to N, then N/N0 = R/R0 .te   Since  = (ln 2)/T1/2, the solution for t is  

 

1 2

0 0

1
ln ln .

ln 2

TR R
t

R R

   
      

   
 

 

ANALYZE With T1/2 = 5730 y and R/R0 = 0.020, we obtain 

 

t
T R

R
 

F
HG
I
KJ    

1 2

0

4

2

5730

2
0 020 32 10

ln
ln

ln
ln . . .

y
yb g  

 

LEARN Radiocarbon dating based on the decay of 
14

C is one of the most widely used 

dating method in estimating the age of organic remains.    

 

78. Let AA0N  be the number of element AA at 0t  . At a later time t, due to radioactive 

decay, we have  

AA0 AA BB CCN N N N   . 

 

The decay constant is 
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1/ 2

ln 2 ln 2
0.0866 / d

8.00 dT
    . 

 

Since 
BB CC/ 2N N  , when CC AA/ 1.50N N  , BB AA/ 3.00N N  . Therefore, at time t, 

 

AA0 AA BB CC AA AA AA AA3.00 1.50 5.50N N N N N N N N       . 

 

Since 
AA AA0

tN N e  , combining the two expressions leads to 

 

AA0

AA

5.50tN
e

N

   

which can be solved to give 

ln(5.50) ln(5.50)
19.7 d

0.0866 / d
t


   . 

 

79. THINK The count rate in the area in question is given by R = N, where  is the 

decay constant and N is the number of radioactive nuclei.  

 

EXPRESS Since the spreading is assumed uniform, the count rate R = 74,000/s is given 

by  

R = N = (M/m)(a/A), 

 

where M is the mass of 
90

Sr produced, m is the mass of a single 
90

Sr nucleus, A is the area 

over which fall out occurs, and a is the area in question. Since = (ln 2)/T1/2, the solution 

for a is  

1/ 2

ln 2

AmRTm R
a A

M M

   
    

   
. 

 

ANALYZE The molar mass of 
90

Sr is 90g/mol. With M = 400 g and A = 2000 km
2
, we 

find the area to be 

 

     
   

6 2 7

1/ 2

23

2 2 2

2000 10 m 90g/mol 74,000 / s 29 y 3.15 10 s/y

ln 2 400g 6.02 10 / mol ln 2

7.3 10 m 730cm .

AmRT
a

M

 

 
 



  

 

 

LEARN The Chernobyl nuclear accident in 1986 contaminated a very large area with 
90

Sr. 

 

80. (a) Assuming a “target” area of one square meter, we establish a ratio: 
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rate through you

total rate upward

m

km m km



  1

2 6 10 1000
38 10

2

5 2 2

12

.
. .c hb g  

 

The SI unit becquerel is equivalent to a disintegration per second. With half the beta-

decay electrons moving upward, we find 

 

rate through you =
1

2
s s1 10 38 10 19 1016 12 4   c hc h. .  

 

which implies (converting s h ) that the rate of electrons you would intercept is R0 = 7 

 10
7
/h. So in one hour, 7  10

7
 electrons would be intercepted. 

 

(b) Let D indicate the current year (2003, 2004, etc.). Combining Eq. 42-16 and Eq. 42-

18, we find 

R R e e
t T D

  
  

0

2 7 1996 2 30 21 2 7 10
ln ln .

.h
yc h b g b g  

 

81. The lines that lead toward the lower left are alpha decays, involving an atomic 

number change of Z = – 2 and a mass number change of A = – 4. The short 

horizontal lines toward the right are beta decays (involving electrons, not positrons) in 

which case A stays the same but the change in atomic number is Z = +1. Figure 42-20 

shows three alpha decays and two beta decays; thus, 

 

Z Z Z Z A A Af i f i    3 2 3    and .  

 

Referring to Appendix F or G, we find Zi = 93 for neptunium, so  

 

Zf = 93 + 3(– 2) + 2(1) = 89, 

 

which indicates the element actinium. We are given Ai = 237, so Af = 237 + 3(– 4) = 225. 

Therefore, the final isotope is 
225

Ac. 

 

82. We note that 2.42 min = 145.2 s. We are asked to plot (with SI units understood) 

 

ln lnR R e R et t  
  

0 0

 c h  
 

where R0 = 3.1  10
5
, R0' = 4.1  10

6
,  = ln 2/145.2, and ' = ln 2/24.6. Our plot is 

shown below. 
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We note that the magnitude of the slope for small t is ' (the disintegration constant for 
110

Ag), and for large t is  (the disintegration constant for 
108

Ag). 

 

83. We note that hc = 1240 MeV·fm, and that the classical kinetic energy 1
2

2mv  can be 

written directly in terms of the classical momentum p = mv (see below). Letting 

 

/ / ,p p h x h r    

we get 

 

 
 

    

2 22

22 2 1/3

1240MeV fm
30MeV.

2 2 2 938MeV 1.2fm 100

hcp
E

m mc r


 

 
 

 

 

84. (a) The rate at which radium-226 is decaying is 

 

R N
T

M

m
 
F
HG
I
KJ
F
H
I
K 




  

ln ln . . /

.
. .

/

2 2 100 6 02 10

1600 315 10 226
3 66 10

1 2

23

7

7
a fa fc h
a fc ha f

mg mol

y s / y g / mol
s 1  

 

The activity is 73.66 10 Bq.  

 

(b) The activity of 
222

Rn is also 73.66 10 Bq.  

 

(c) From RRa = RRn and R = N = (ln 2/T1/2)(M/m), we get 

 

   

   
Rn

Ra

3

1/ 2 9Rn
Rn Ra

1/ 2 Ra

3.82d 1.00 10 g 222u
6.42 10 g.

1600y 365d/y 226u

T m
M M

T m




   

       
  

 

 

85. Although we haven’t drawn the requested lines in the following table, we can indicate 

their slopes: lines of constant A would have – 45° slopes, and those of constant N – Z 

would have 45°. As an example of the latter, the N – Z = 20 line (which is one of 

“eighteen-neutron excess”) would pass through Cd-114 at the lower left corner up 

through Te-122 at the upper right corner. The first column corresponds to N = 66, and the 
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bottom row to Z = 48. The last column corresponds to N = 70, and the top row to Z = 52. 

Much of the information below (regarding values of T1/2 particularly) was obtained from 

the Web sites http://nucleardata.nuclear.lu.se/nucleardata and http://www.nndc.bnl.gov/ 

nndc/ensdf.  

118
Te  

119
Te  

120
Te  

121
Te  

122
Te 

6.0 days 16.0 h 0.1% 19.4 days 2.6% 

117
Sb  

118
Sb  

119
Sb  

120
Sb  

121
Sb 

2.8 h 3.6 min 38.2 s 15.9 min 57.2% 

116
Sn  

117
Sn  

118
Sn  

119
Sn  

120
Sn 

14.5% 7.7% 24.2% 8.6% 32.6% 

115
In  

116
In  

117
In  

118
In  

119
In 

95.7% 14.1 s 43.2 min 5.0 s 2.4 min 

114
Cd  

115
Cd  

116
Cd  

117
Cd  

118
Cd 

28.7% 53.5 h 7.5% 2.5 h 50.3 min 

 

86. Using Eq. 42-3 ( 1/3

0r r A ), we estimate the nuclear radii of the alpha particle and Al 

to be 

 
15 1/3 15

15 1/3 15

Al

(1.2 10  m)(4) 1.90 10  m

(1.2 10  m)(27) 3.60 10  m.

r

r


 

 

   

   
 

  

The distance between the centers of the nuclei when their surfaces touch is 

 
15 15 15

Al 1.90 10  m 3.60 10  m 5.50 10  mr r r

          . 

 

From energy conservation, the amount of energy required is 

 
9 2 2 19 19

Al

15

0
12 6

1 (8.99 10 N m C )(2 1.6 10 C)(13 1.6 10 C)

4 5.50 10 m

1.09 10  J 6.79 10 eV

q q
K

r





 





     
 



   

 

 

87. Equation 24-43 gives the electrostatic potential energy between two uniformly 

charged spherical charges (in this case q1 = 2e and q2 = 90e) with r being the distance 

between their centers. Assuming the “uniformly charged spheres” condition is met in this 

instance, we write the equation in such a way that we can make use of k = 1/40 and the 

electronvolt unit: 
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U k
e e

r

e

r r
  

F
H

I
K





 2 90

8 99 10
3 2 10 90 2 59 109

19 7a fa f c h a f
.

. .V m

C

C
eV  

 

with r understood to be in meters. It is convenient to write this for r in femtometers, in 

which case U = 259/r MeV. This is shown plotted below. 

 

 
 

88. We take the speed to be constant, and apply the classical kinetic energy formula: 

 

    

2

1/315

8

22

2
2

22 /

1.2 10 m 100 2 938MeV

3.0 10 m/s 5MeV

4 10 s.

nmd d r mc
t r

v K c KK m





   






 

 

 

89. We solve for A from Eq. 42-3: 

 

A
r

r

F
HG
I
KJ 
F
HG
I
KJ 

0

3 3

3 6
27

.
.

fm

1.2 fm
 

 

90. The problem with Web-based services is that there are no guarantees of accuracy or 

that the Web page addresses will not change from the time this solution is written to the 

time someone reads this. Still, it is worth mentioning that a very accessible Web site for a 

wide variety of periodic table and isotope-related information is 

http://www.webelements.com. Two sites, http://nucleardata.nuclear.lu.se/nucleardata and 

http://www.nndc.bnl.gov/nndc/ensdf, are aimed more toward the nuclear professional. 

These are the sites where some of the information mentioned below was obtained. 
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(a) According to Appendix F, the atomic number 60 corresponds to the element 

neodymium (Nd). The first Web site mentioned above gives 
142

Nd, 
143

Nd, 
144

Nd, 
145

Nd, 
146

Nd, 
148

Nd, and 
150

Nd in its list of naturally occurring isotopes. Two of these, 
144

Nd and 
150

Nd, are not perfectly stable, but their half-lives are much longer than the age of the 

universe (detailed information on their half-lives, modes of decay, etc. are available at the 

last two Web sites referred to, above). 

 

(b) In this list, we are asked to put the nuclides that contain 60 neutrons and that are 

recognized to exist but not stable nuclei (this is why, for example, 
108

Cd is not included 

here). Although the problem does not ask for it, we include the half-lives of the nuclides 

in our list, though it must be admitted that not all reference sources agree on those values 

(we picked ones we regarded as “most reliable”). Thus, we have 
97

Rb (0.2 s), 
98

Sr (0.7 s), 
99

Y (2 s), 
100

Zr (7 s), 
101

Nb (7 s), 
102

Mo (11 minutes), 
103

Tc (54 s), 
105

Rh (35 hours), 
109

In 

(4 hours), 
110

Sn (4 hours), 
111

Sb (75 s), 
112

Te (2 minutes), 
113

I (7 s), 
114

Xe (10 s), 
115

Cs 

(1.4 s), and 
116

Ba (1.4 s). 

 

(c) We would include in this list: 
60

Zn, 
60

Cu, 
60

Ni, 
60

Co, 
60

Fe, 
60

Mn, 
60

Cr, and 
60

V. 

 

91. (a) In terms of the original value of u, the newly defined u is greater by a factor  

of 1.007825. So the mass of 
1
H would be 1.000000 u, the mass of 

12
C would be 

 

(12.000000/1.007825) u = 11.90683 u. 

 

(b) The mass of 
238

U would be (238.050785/ 1.007825) u = 236.2025 u. 

 

92. (a) The mass number A of a radionuclide changes by 4 in an  decay and is 

unchanged in a  decay. If the mass numbers of two radionuclides are given by 4n + k 

and 4n' + k (where k = 0, 1, 2, 3), then the heavier one can decay into the lighter one by a 

series of  (and ) decays, as their mass numbers differ by only an integer times 4. If A = 

4n + k, then after -decaying for m times, its mass number becomes  

 

A = 4n + k –  4m = 4(n –  m) + k, 

still in the same chain. 

 

(b) For 
235

U, 235 = 58  4 + 3 = 4n + 3. 

 

(c) For 
236

U, 236 = 59  4 = 4n.  

 

(d) For 
238

U, 238 = 59  4 + 2 = 4n + 2.  

 

(e) For 
239

Pu, 239 = 59  4 + 3 = 4n + 3.  

 

(f) For 
240

Pu, 240 = 60  4 = 4n.  

 

(g) For 
245

Cm, 245 = 61  4 + 1 = 4n + 1. 
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(h) For 
246

Cm, 246 = 61  4 + 2 = 4n + 2. 

 

(i) For 
249

Cf, 249 = 62  4 + 1 = 4n + 1. 

 

(j) For 
253

Fm, 253 = 63  4 + 1 = 4n + 1. 

 

93. The disintegration energy is 

 

Q m m c EK  

  

V Ti

u 48.94787 u MeV / u MeV

= 0.600MeV.

b g
b gb g

2

48 94852 9315 0 00547. . .  

 

94. We locate a nuclide from Table 42-1 by finding the coordinate (N, Z) of the 

corresponding point in Fig. 42-4. It is clear that all the nuclides listed in Table 42-1 are 

stable except the last two, 
227

Ac and 
239

Pu. 

 

95. (a) We use R = R0e
– t

 to find t: 

 

t
R

R

T R

R
   

1

2

14 28 3050

170
59 50 1 2 0


ln

ln
ln

.
ln ./ d

ln 2
d. 

 

(b) The required factor is 

 

 1/ 2
3.48d/14.28d ln 2ln 2/0 1.18.

t TtR
e e e

R

     

96. (a) From the decay series, we know that N210, the amount of 
210

Pb nuclei, changes 

because of two decays: the decay from 
226

Ra into 
210

Pb at the rate R226 = 226N226, and the 

decay from 
210

Pb into 
206

Pb at the rate R210 = 210N210. The first of these decays causes 

N210 to increase while the second one causes it to decrease. Thus, 

 

dN

dt
R R N N210

226 210 226 226 210 210     .  

 

(b) We set dN210/dt = R226 –  R210 = 0 to obtain R226/R210 = 1.00. 

 

(c) From R226 = 226N226 = R210 = 210N210, we obtain 

 

N

N

T

T

226

210

210

226

1 2226

1 2210

3160 10

22 6
708  








/

/

.

.
. .

y

y
 

 

(d) Since only 1.00% of the 
226

Ra remains, the ratio R226/R210 is 0.00100 of that of the 

equilibrium state computed in part (b). Thus the ratio is (0.0100)(1) = 0.0100. 
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(e) This is similar to part (d) above. Since only 1.00% of the 
226

Ra remains, the ratio 

N226/N210 is 1.00% of that of the equilibrium state computed in part (c), or (0.0100)(70.8) 

= 0.708. 

 

(f) Since the actual value of N226/N210 is 0.09, which much closer to 0.0100 than to 1, the 

sample of the lead pigment cannot be 300 years old. So Emmaus is not a Vermeer. 

 

97. (a) Replacing differentials with deltas in Eq. 42-12, we use the fact that N = – 12 

during t = 1.0 s to obtain 

 

184.8 10 / s
N

t
N

  
      

 

where N = 2.5  10
18

, mentioned at the second paragraph of Section 42-3, is used. 

 

(b) Equation 42-18 yields T1/2 = ln 2/ = 1.4  10
17

 s, or about 4.6 billion years. 

 

 

 

 

 


