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Chapter 30 
 

 

1. The flux B BA cos  does not change as the loop is rotated. Faraday’s law only 

leads to a nonzero induced emf when the flux is changing, so the result in this instance is 

zero. 

 

2. Using Faraday’s law, the induced emf is 
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3. THINK Changing the current in the solenoid changes the flux, and therefore, induces a 

current in the coil. 

 

EXPRESS Using Faraday’s law, the total induced emf is given by  

 

2

0 0 0( ) ( )Bd dB d di di
N NA NA ni N nA N n r

dt dt dt dt dt
    

  
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 
 

 

By Ohm’s law, the induced current in the coil is ind | | / ,i R  where R is the resistance of 

the coil. 

 

ANALYZE Substituting the values given, we obtain 

  

 
22

0

1.5 A
( ) (120)(4 T m A)(22000/m) 0.016 m

0.025 s

0.16V.

di
N n r

dt
     
       

 



 

 

Ohm’s law then yields ind

| | 0.016 V
0.030 A.

5.3
i

R


  


 

 

LEARN The direction of the induced current can be deduced from Lenz’s law, which 

states that the direction of the induced current is such that the magnetic field which it 

produces opposes the change in flux that induces the current.  

 

4. (a) We use  = –dB/dt = –r
2
dB/dt. For 0 < t < 2.0 s: 
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 
22 20.5T
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dB
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(b) For 2.0 s < t < 4.0 s:   dB/dt = 0. 

 

(c) For 4.0 s < t < 6.0 s: 
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



F
HG

I
KJ    r

dB

dt

2 2 2012
05

6 0 4 0
11 10.

.

. .
. .m

T

s s
Vb g  

 

5. The field (due to the current in the straight wire) is out of the page in the upper half of 

the circle and is into the page in the lower half of the circle, producing zero net flux, at 

any time. There is no induced current in the circle. 

 

6. From the datum at t = 0 in Fig. 30-37(b) we see 0.0015 A = Vbattery /R, which implies 

that the resistance is  

R = (6.00 V)/(0.0015 A) = 0.0040 . 

 

Now, the value of the current during 10 s < t < 20 s  leads us to equate 

  

(Vbattery +  induced)/R = 0.00050 A. 

 

This shows that the induced emf is  induced = 4.0 V.  Now we use Faraday’s law: 

 

 =  
dΦB

dt
 =  A 

dB

dt
 = A a . 

 

Plugging in  = 4.0 ×10
6 

V and A = 5.0 × 10
4 

m
2
, we obtain a = 0.0080 T/s. 

 

7. (a)  The magnitude of the emf is 

 

        
d

dt

d

dt
t t tB

6 0 7 0 12 7 0 12 2 0 7 0 312. . . . .c h b g mV.  

 

(b) Appealing to Lenz’s law (especially Fig. 30-5(a)) we see that the current flow in the 

loop is clockwise. Thus, the current is to the left through R. 

 

8. The resistance of the loop is 

 

 
 

 
8 3

2

m
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We use i = ||/R = |dB/dt|/R = (r
2
/R)|dB/dt|. Thus 
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  
 
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22

10A 1.1 10
1.4 T s.

m

dB iR
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 
  
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9. The amplitude of the induced emf in the loop is 

 
6 2

0 0

4

(6.8 10 m )(4 T m A)(85400 / m)(1.28 A)(212 rad/s)

1.98 10 V.

m A ni   



    

 

-7p 10
 

 

10. (a) The magnetic flux B  through the loop is given by  

 

  22 2 cos45B B r     2 2r B . 

Thus, 

 
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3

2
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(a) The direction of the induced current is clockwise when viewed along the direction of 
B . 

 

11. (a) It should be emphasized that the result, given in terms of sin(2 ft), could as easily 

be given in terms of cos(2ft) or even cos(2ft + ) where  is a phase constant as 

discussed in Chapter 15. The angular position  of the rotating coil is measured from 

some reference line (or plane), and which line one chooses will affect whether the 

magnetic flux should be written as BA cos, BA sin or BA cos( + ). Here our choice is 

such that B BA cos . Since the coil is rotating steadily,  increases linearly with time. 

Thus,  = t (equivalent to  = 2ft) if  is understood to be in radians (and would be 

the angular velocity). Since the area of the rectangular coil is A=ab, Faraday’s law leads 

to  

   
 

cos cos 2
2 sin 2

d BA d ft
N NBA N Bab f ft

dt dt

 
        

 

which is the desired result, shown in the problem statement. The second way this is 

written (0 sin(2ft)) is meant to emphasize that the voltage output is sinusoidal (in its 

time dependence) and has an amplitude of 0 = 2f NabB. 

 

(b) We solve  

0 = 150 V = 2f NabB 

 

when f = 60.0 rev/s and B = 0.500 T. The three unknowns are N, a, and b which occur in 

a product; thus, we obtain Nab = 0.796 m
2
.  
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12. To have an induced emf, the magnetic field must be perpendicular (or have a nonzero 

component perpendicular) to the coil, and must be changing with time.   

 

(a) For 2 ˆ(4.00 10 T/m) kB y  , / 0dB dt   and hence  = 0. 

 

(b) None. 

 

(c) For 2 ˆ(6.00 10 T/s) kB t  ,  

 

 =  
dΦB

dt
  =  A 

dB

dt
 =  (0.400 m × 0.250 m)(0.0600 T/s) = 6.00 mV, 

 

or || = 6.00 mV. 

 

(d) Clockwise. 

 

(e) For 2 ˆ(8.00 10 T/m s) kB yt   ,  B = (0.400)(0.0800t) ydy  = 31.00 10 t , 

 

in SI units. The induced emf is / 1.00 mV,d B dt    or || = 1.00 mV. 

 

(f) Clockwise. 

 

(g) 0    0B     . 

 

(h) None. 

 

(i) 0    0B     . 

 

(j) None. 

 

13. The amount of charge is 

 
3 2

2

1 1.20 10 m
( ) [ (0) ( )] [ (0) ( )] [1.60T ( 1.60T)]

13.0

2.95 10 C .

B B

A
q t t B B t

R R






       



 

 

 

14. Figure 30-42(b) demonstrates that /dB dt  (the slope of that line) is 0.003 T/s.  Thus, 

in absolute value, Faraday’s law becomes 

 

 
( )Bd d BA dB

A
dt dt dt




       
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where A = 8 ×10
4

 m
2
.  We related the induced emf to resistance and current using Ohm’s 

law.  The current is estimated from Fig. 30-42(c) to be i = /dq dt = 0.002 A (the slope of 

that line).  Therefore, the resistance of the loop is 

 

 
4 2| | | / | (8.0 10  m )(0.0030 T/s)

0.0012
0.0020 A

A dB dt
R

i i

 
     . 

 

15. (a) Let L be the length of a side of the square circuit. Then the magnetic flux through 

the circuit is B L B 2 2/ , and the induced emf is 

 
2

.
2

B
i

d L dB

dt dt



     

 

Now B = 0.042 – 0.870t and dB/dt = –0.870 T/s. Thus, 

 

 i 
( .

( . /
2 00

2
0870

m)
T s) = 1.74 V.

2

 

 

The magnetic field is out of the page and decreasing so the induced emf is 

counterclockwise around the circuit, in the same direction as the emf of the battery. The 

total emf is  

 + i = 20.0 V + 1.74 V = 21.7 V. 

 

(b) The current is in the sense of the total emf (counterclockwise). 

 

16. (a) Since the flux arises from a dot product of vectors, the result of one sign for B1 

and B2 and of the opposite sign for B3 (we choose the minus sign for the flux from B1 and 

B2, and therefore a plus sign for the flux from B3).  The induced emf is 

 

=   
dΦB

dt
  =  A 







dB1

dt
  +  

dB2

dt
   

dB3

dt
 

=(0.10 m)(0.20 m)(2.0 × 10
6 

T/s  + 1.0 ×10
6 

T/s 5.0×10
6 

T/s) 

=4.0×10
8 

V. 

 

The minus sign means that the effect is dominated by the changes in B3. Its magnitude 

(using Ohm’s law) is || /R = 8.0 A.  

 

(b) Consideration of Lenz’s law leads to the conclusion that the induced current is 

therefore counterclockwise.   

 

17. Equation 29-10 gives the field at the center of the large loop with R = 1.00 m and 

current i(t). This is approximately the field throughout the area (A = 2.00  10
–4

 m
2
) 

enclosed by the small loop. Thus, with B = 0i/2R and i(t) = i0 + kt, where i0 = 200 A and  
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k = (–200 A – 200 A)/1.00 s = – 400 A/s, 

we find 

 

(a) 
  

 

7

40 0
4 10 H/m 200A

( 0) 1.26 10 T,
2 2 1.00m

i
B t

R







      

 

(b) 
    

 

74 10 H/m 200A 400A/s 0.500s
( 0.500s) 0,

2 1.00m
B t

   
   and 

 

(c) 
    

 

7

4
4 10 H/m 200A 400A/s 1.00s

( 1.00s) 1.26 10 T,
2 1.00m

B t
 


   

     

 

or 4| ( 1.00s)| 1.26 10 T.B t     

 

(d) Yes, as indicated by the flip of sign of B(t) in (c). 

 

(e) Let the area of the small loop be a. Then B Ba ,  and Faraday’s law yields 

 

4 4
4 2

8

( )

1.26 10 T 1.26 10 T
(2.00 10 m )

1.00 s

5.04 10 V .

Bd d Ba dB B
a a

dt dt dt t


 




  
         

 

    
    

 

 

 

 

18. (a) The “height” of the triangular area  enclosed by the rails and bar is the same as the 

distance traveled in time v: d = vt, where v = 5.20 m/s. We also note that the “base” of 

that triangle (the distance between the intersection points of the bar with the rails) is 2d. 

Thus, the area of the triangle is 

 

A vt vt v t  
1

2

1

2
2 2 2( ( )( ) .base)(height)  

 

Since the field is a uniform B = 0.350 T, then the magnitude of the flux (in SI units) is  

 

B = BA = (0.350)(5.20)
2
t
2
 = 9.46t

2
. 

 

At t = 3.00 s, we obtain B = 85.2 Wb. 

 

(b) The magnitude of the emf is the (absolute value of) Faraday’s law: 
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   
d

dt

dt

dt
tB

9 46 18 9
2

. .  

 

in SI units. At t = 3.00 s, this yields  = 56.8 V. 

 

(c) Our calculation in part (b) shows that n = 1. 

 

19. First we write B = BA cos . We note that the angular position  of the rotating coil 

is measured from some reference line or plane, and we are implicitly making such a 

choice by writing the magnetic flux as BA cos  (as opposed to, say, BA sin ). Since the 

coil is rotating steadily,  increases linearly with time. Thus,  = t if  is understood to 

be in radians (here,  = 2f is the angular velocity of the coil in radians per second, and f 

= 1000 rev/min  16.7 rev/s is the frequency). Since the area of the rectangular coil is A = 

(0.500 m)  (0.300 m) = 0.150 m
2
, Faraday’s law leads to 

 




    N
d BA

dt
NBA

d ft

dt
NBA f ft

cos cos
sin

b g b g b g2
2 2


   

 

which means it has a voltage amplitude of 

 

    2 3

max 2 2 16.7rev s 100turns 0.15m 3.5T 5.50 10 V .fNAB       

 

20. We note that 1 gauss = 10
–4

 T. The amount of charge is 

 

4 2
5

2 cos 20
( ) [ cos 20 ( cos 20 )]

2(1000)(0.590 10 T) (0.100m) (cos 20 )
1.55 10 C .

85.0 140

N NBA
q t BA BA

R R





    

  
  

 

 

 

Note that the axis of the coil is at 20°, not 70°, from the magnetic field of the Earth. 

 

21. (a) The frequency is 

 

 
(40 rev/s)(2  rad/rev)

40 Hz
2 2

f
 

 
   . 

 

(b) First, we define angle relative to the plane of Fig. 30-46, such that the semicircular 

wire is in the  = 0 position and a quarter of a period (of revolution) later it will be in the 

 = /2 position (where its midpoint will reach a distance of a above the plane of the 

figure). At the moment it is in the  = /2 position, the area enclosed by the “circuit” will 

appear to us (as we look down at the figure) to that of a simple rectangle (call this area A0, 

which is the area it will again appear to enclose when the wire is in the  = 3/2 position). 
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Since the area of the semicircle is a
2
/2, then the area (as it appears to us) enclosed by the 

circuit, as a function of our angle , is 

A A
a

 0

2

2


cos  

 

where (since  is increasing at a steady rate) the angle depends linearly on time, which 

we can write either as  = t or  = 2ft if we take t = 0 to be a moment when the arc is 

in the  = 0 position. Since 

B  is uniform (in space) and constant (in time), Faraday’s law 

leads to 

   
2 2

0 ( / 2)cos cos 2

2

B
d A a d ftd dA a

B B B
dt dt dt dt

 


  
         

 

which yields  = B2
a

2
f sin(2ft). This (due to the sinusoidal dependence) reinforces the 

conclusion in part (a) and also (due to the factors in front of the sine) provides the voltage 

amplitude:  

 2 2 2 2 3(0.020 T) (0.020 m) (40/ s) 3.2 10 V.m B a f        

 

22. Since 
cos

sin
d d

dt dt

 
  , Faraday's law (with N = 1) becomes  

 

 
( cos )

sin
d d BA d

BA
dt dt dt

 
 


     . 

 

Substituting the values given yields | = 0.018 V. 

 

23. THINK Increasing the separation between the two loops changes the flux through the 

smaller loop and, therefore, induces a current in the smaller loop. 

 

EXPRESS The magnetic flux through a surface is given by ,B B dA    where B  is 

the magnetic field and dA  is a vector of magnitude dA that is normal to a differential area 

dA. In the case where B  is uniform and perpendicular to the plane of the loop, .B BA    

 

In the region of the smaller loop the magnetic field produced by the larger loop may be 

taken to be uniform and equal to its value at the center of the smaller loop, on the axis. 

Equation 29-27, with z = x (taken to be much greater than R), gives 

B

iR

x

0

2

32
i , where 

the +x direction is upward in Fig. 30-47. The area of the smaller loop is A = r
2
. 

 

ANALYZE (a) The magnetic flux through the smaller loop is, to a good approximation, 

the product of this field and the area of the smaller loop: 
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2 2

0

3
.

2
B

ir R
BA

x


    

(b) The emf is given by Faraday’s law: 

 


  

   
F
HG

I
KJ
F
HG
I
KJ  
F
HG

I
KJ 
F
HG

I
KJ 

d

dt

ir R d

dt x

ir R

x

dx

dt

ir R v

x

B   0

2 2

3

0

2 2

4

0

2 2

42

1

2

3 3

2
.  

 

(c) As the smaller loop moves upward, the flux through it decreases. The induced current 

will be directed so as to produce a magnetic field that is upward through the smaller loop, 

in the same direction as the field of the larger loop. It will be counterclockwise as viewed 

from above, in the same direction as the current in the larger loop. 

 

LEARN The situation in this problem is like that shown in Fig. 30-5(d). The induced 

magnetic field is in the same direction as the initial magnetic field. 

 

24. (a) Since 

B B i  uniformly, then only the area “projected” onto the yz plane will 

contribute to the flux (due to the scalar [dot] product). This “projected” area corresponds 

to one-fourth of a circle. Thus, the magnetic fluxB  through the loop is 

 

B B dA r B  z   1

4

2 .  

Thus, 

 
2

2 2 3 51 1
| | m) (3.0 10 T / s) 2.4 10 V .

4 4 4

Bd d r dB
r B

dt dt dt


      
        

 
 

 

(b) We have a situation analogous to that shown in Fig. 30-5(a). Thus, the current in 

segment bc flows from c to b (following Lenz’s law). 

 

25. (a) We refer to the (very large) wire length as L and seek to compute the flux per 

meter: B/L. Using the right-hand rule discussed in Chapter 29, we see that the net field 

in the region between the axes of anti-parallel currents is the addition of the magnitudes 

of their individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident 

reflection symmetry in the problem, where the plane of symmetry is midway between the 

two wires (at what we will call x   2 , where   20 0020mm m. ); the net field at any 

point 0 2 x   is the same at its “mirror image” point  x . The central axis of one of 

the wires passes through the origin, and that of the other passes through x   . We make 

use of the symmetry by integrating over 0 2 x   and then multiplying by 2: 

 

   
2 2 2

0 0 2
2 2 2

d

B
d

B dA B Ldx B Ldx       
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where d = 0.0025 m is the diameter of each wire. We will use R = d/2, and r instead of x 

in the following steps. Thus, using the equations from Ch. 29 referred to above, we find 

 

/ 2
0 0 0 0

20

0 0

5 5

2 2
2 2 ) 2 2 )

1 2ln ln
2

0.23 10 T m 1.08 10 T m

R
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R

i i i i
r dr dr

L R r r r

i iR R

R
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which yields B/L = 1.3  10
–5

 T·m or 1.3  10
–5

 Wb/m. 

 

(b) The flux (per meter) existing within the regions of space occupied by one or the other 

wire was computed above to be 0.23  10
–5

 T·m. Thus, 

 
5

5

0.23 10 T m
0.17 17% .

1.3 10 T m





 
 

 
 

 

(c) What was described in part (a) as a symmetry plane at x   / 2  is now (in the case of 

parallel currents) a plane of vanishing field (the fields subtract from each other in the 

region between them, as the right-hand rule shows). The flux in the 0 2 x  /  region is 

now of opposite sign of the flux in the  / 2  x  region, which causes the total flux (or, 

in this case, flux per meter) to be zero. 

 

26. (a) First, we observe that a large portion of the figure contributes flux that “cancels 

out.” The field (due to the current in the long straight wire) through the part of the 

rectangle above the wire is out of the page (by the right-hand rule) and below the wire it 

is into the page. Thus, since the height of the part above the wire is b – a, then a strip 

below the wire (where the strip borders the long wire, and extends a distance b – a away 

from it) has exactly the equal but opposite flux that cancels the contribution from the part 

above the wire. Thus, we obtain the non-zero contributions to the flux: 

 

 0 0 ln .
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a
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 
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   
      

    
   

 

Faraday’s law, then, (with SI units and 3 significant figures understood) leads to 

 

 

0 0

20

0

ln ln
2 2

9
ln 10

2 2

9 10
ln .

2

B
ib bd d a a di

dt dt b a b a dt

b a d
t t

b a dt

b t a

b a

 


 









     
         

     

   
     

   

   
  

 

 



 

  

1301 

 

With a = 0.120 m and b = 0.160 m, then, at t = 3.00 s, the magnitude of the emf induced 

in the rectangular loop is 

 

 
 



F
HG

I
KJ  




4 10 016 9 3 10

2

012

016 012
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7

7

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c hb g b gc h.
ln

.

. .
. .V  

 

(b) We note that / 0di dt   at t = 3 s. The situation is roughly analogous to that shown in 

Fig. 30-5(c). From Lenz’s law, then, the induced emf (hence, the induced current) in the 

loop is counterclockwise. 

 

27. (a) Consider a (thin) strip of area of height dy and width   0 020. m . The strip is 

located at some 0  y  . The element of flux through the strip is 

 

d BdA t y dyB   4 2c hb g  

 

where SI units (and 2 significant figures) are understood. To find the total flux through 

the square loop, we integrate: 

 

 2 2 3

0
4 2 .B Bd t y dy t       

 

Thus, Faraday’s law yields 

  
d

dt
tB

4 3 .  

 

At t = 2.5 s, the magnitude of the induced emf is 8.0  10
–5

 V.  

 

(b) Its “direction” (or “sense’’) is clockwise, by Lenz’s law. 

 

28. (a) We assume the flux is entirely due to the field generated by the long straight wire 

(which is given by Eq. 29-17). We integrate according to Eq. 30-1, not worrying about 

the possibility of an overall minus sign since we are asked to find the absolute value of 

the flux. 

/ 2
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When 1.5r b , we have  

 

 8(4 T m A)(4.7A)(0.022m)
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(b) Implementing Faraday’s law involves taking a derivative of the flux in part (a), and 

recognizing that /dr dt v . The magnitude of the induced emf divided by the loop 

resistance then gives the induced current: 

 

0 0
loop 2 2

3

4 2

5

/ 2
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2 / 2 2 [ ( / 2) ]

(4 T m A)(4.7A)(0.022m)(0.0080m)(3.2 10 m/s)
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R R dt r b R r b
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  

  

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29. (a) Equation 30-8 leads to 

 

   BLv ( . .0350 00481T)(0.250 m)(0.55 m/ s) V . 

 

(b) By Ohm’s law, the induced current is  

 

i = 0.0481 V/18.0  = 0.00267 A. 

 

By Lenz’s law, the current is clockwise in Fig. 30-52. 

 

(c) Equation 26-27 leads to P = i
2
R = 0.000129 W. 

 

30. Equation 26-28 gives 
2
/R as the rate of energy transfer into thermal forms (dEth /dt, 

which, from Fig. 30-53(c), is roughly 40 nJ/s).  Interpreting  as the induced emf (in 

absolute value) in the single-turn loop (N = 1) from Faraday’s law, we have 

 

 
( )Bd d BA dB

A
dt dt dt




   . 

 

Equation 29-23 gives B = oni for the solenoid (and note that the field is zero outside of 

the solenoid, which implies that A = Acoil), so our expression for the magnitude of the 

induced emf becomes 

  coil
coil 0 coil 0 coil

didB d
A A ni nA

dt dt dt
     . 

 

where Fig. 30-53(b) suggests that dicoil/dt = 0.5 A/s. With n = 8000 (in SI units) and Acoil 

= (0.02)
2
  (note that the loop radius does not come into the computations of this problem, 

just the coil’s), we find V = 6.3 V. Returning to our earlier observations, we can now 

solve for the resistance:  

R = 
 2

/(dEth /dt) = 1.0 m. 

 

31. THINK Thermal energy is generated at the rate given by P = 2
/R (see Eq. 27-23), 

where  is the emf in the wire and R is the resistance of the wire.  
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EXPRESS Using Eq. 27-16, the resistance is given by R = L/A, where the resistivity is 

1.69  10
–8

 ·m (by Table 27-1) and A = d
2
/4 is the cross-sectional area of the wire (d = 

0.00100 m is the wire thickness). The area enclosed by the loop is 

 

A r
L

loop loop

2 
F
HG
I
KJ 

2

2

 

 

since the length of the wire (L = 0.500 m) is the circumference of the loop. This enclosed 

area is used in Faraday’s law to give the induced emf: 

 
2

loop
4

Bd dB L dB
A

dt dt dt



     


. 

 

ANALYZE The rate of change of the field is dB/dt = 0.0100 T/s. Thus, we obtain 
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22 2 2 2 2 3 3 2 3

2

2 8
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| | ( / 4 ) ( / ) (1.00 10  m) (0.500 m)
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/( / 4) 64 64 (1.69 10 m)

3.68 10 W.
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LEARN The rate of thermal energy generated is proportional to 2( / ) .dB dt  

 

32. Noting that |B| = B, we find the thermal energy is 

 
2 22 2 2

thermal

4 2 2 6 2
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33. (a) Letting x be the distance from the right end of the rails to the rod, we find an 

expression for the magnetic flux through the area enclosed by the rod and rails. By Eq. 

29-17, the field is B = 0i/2r, where r is the distance from the long straight wire. We 

consider an infinitesimal horizontal strip of length x and width dr, parallel to the wire and 

a distance r from it; it has area A = x dr and the flux is 

 

0

2
B

i
d BdA xdr

r




   . 

 

By Eq. 30-1, the total flux through the area enclosed by the rod and rails is 
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According to Faraday’s law the emf induced in the loop is 
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(b) By Ohm’s law, the induced current is 

 

   4 4/ 2.40 10 V / 0.400 6.00 10 A.i R         

 

Since the flux is increasing, the magnetic field produced by the induced current must be 

into the page in the region enclosed by the rod and rails. This means the current is 

clockwise. 

 

(c) Thermal energy is being generated at the rate  

 

   
2

2 46.00 10 A 0.400P i R      71.44 10 W.  

  

(d) Since the rod moves with constant velocity, the net force on it is zero. The force of the 

external agent must have the same magnitude as the magnetic force and must be in the 

opposite direction. The magnitude of the magnetic force on an infinitesimal segment of 

the rod, with length dr at a distance r from the long straight wire, is  

 

BdF  i B dr   0 / 2 .i i r dr   

 

We integrate to find the magnitude of the total magnetic force on the rod: 
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Since the field is out of the page and the current in the rod is upward in the diagram, the 

force associated with the magnetic field is toward the right. The external agent must 

therefore apply a force of 2.87  10
–8

 N, to the left. 

 

(e) By Eq. 7-48, the external agent does work at the rate  
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P = Fv = (2.87  10
–8

 N)(5.00 m/s) = 1.44  10
–7

 W. 

 

This is the same as the rate at which thermal energy is generated in the rod. All the 

energy supplied by the agent is converted to thermal energy. 

 

34. Noting that Fnet = BiL – mg = 0, we solve for the current: 

 

i
mg

BL R R

d

dt

B

R

dA

dt

Bv L

R

B t    
| |

,
 1 

 

 

which yields vt = mgR/B
2
L

2
. 

 

35. (a) Equation 30-8 leads to 

 

(1.2T)(0.10 m)(5.0 m/s) 0.60 V .BLv     

 

(b) By Lenz’s law, the induced emf is clockwise. In the rod itself, we would say the emf 

is directed up the page. 

 

(c) By Ohm’s law, the induced current is i = 0.60 V/0.40  = 1.5 A. 

 

(d) The direction is clockwise. 

 

(e) Equation 26-28 leads to P = i
2
R = 0.90 W. 

 

(f) From Eq. 29-2, we find that the force on the rod associated with the uniform magnetic 

field is directed rightward and has magnitude 

 

F iLB  ( . )( . .15 010 018A m)(1.2 T) N .  

 

To keep the rod moving at constant velocity, therefore, a leftward force (due to some 

external agent) having that same magnitude must be continuously supplied to the rod. 

 

(g) Using Eq. 7-48, we find the power associated with the force being exerted by the 

external agent:  

P = Fv = (0.18 N)(5.0 m/s) = 0.90 W, 

 

which is the same as our result from part (e). 

 

36. (a) For path 1, we have 
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(b) For path 2, the result is 

 

    
22 3 32 2

2
2

0.300m 8.50 10 T/s 2.40 10 VBd dB
E ds r

dt dt
   
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(c) For path 3, we have 
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37. THINK Changing magnetic field induces an electric field. 

 

EXPRESS The induced electric field is given by Eq. 30-20: .Bd
E ds

dt


    

 

ANALYZE (a) The point at which we are evaluating the field is inside the solenoid, so  

 

2 1
(2 ) ( ) .

2

dB dB
E r r E r

dt dt
       

 

The magnitude of the induced electric field is  

 

  3 51 1
| | 6.5 10 T/s 0.0220 m 7.15 10 V/m.

2 2

dB
E r
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(b) Now the point at which we are evaluating the field is outside the solenoid, so 
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2 1
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dB dB R
E r R E

dt dt r
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The magnitude of the induced field is  
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2
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0.0600m1 1

| | 6.5 10 T/s 1.43 10 V/m.
2 2 0.0820m

dB R
E
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LEARN The magnitude of the induced electric field as a 

function of r is shown to the right. Inside the solenoid, r < 

R, the field |E| is linear in r. However, outside the solenoid, 

r > R, | | 1/ .E r  

 

38. From the “kink” in the graph of Fig. 30-57, we 

conclude that the radius of the circular region is 2.0 cm.  

For values of r less than that, we have (from the absolute 

value of Eq. 30-20) 
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2( )
(2 ) Bd d BA dB

E r A r a
dt dt dt

 


     

 

which means that E/r = a/2.  This corresponds to the slope of that graph (the linear 

portion for small values of r) which we estimate to be 0.015 (in SI units). Thus, 

0.030 T/s.a   

 

39. The magnetic field B can be expressed as 

 

B t B B tb g b g  0 1 0sin ,   

 

where B0 = (30.0 T + 29.6 T)/2 = 29.8 T and B1 = (30.0 T – 29.6 T)/2 = 0.200 T. Then 

from Eq. 30-25 
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2
0 1 0 1 0sin cos .    b g b g  

 

We note that  = 2f and that the factor in front of the cosine is the maximum value of 

the field. Consequently, 

 

      2

max 1

1 1
2 0.200T 2 15 Hz 1.6 10 m 0.15 V/m.

2 2
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40. Since NB = Li, we obtain 
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N
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41. (a) We interpret the question as asking for N multiplied by the flux through one turn: 

 

 turns T m Wb.       N NBA NB rB  2 3 2 330 0 2 60 10 0100 2 45 10c h b gc hb gb g. . . .  

 

(b) Equation 30-33 leads to 

L
N
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.
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42. (a) We imagine dividing the one-turn solenoid into N small circular loops placed 

along the width W of the copper strip. Each loop carries a current i = i/N. Then the 

magnetic field inside the solenoid is  
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(b) Equation 30-33 leads to 
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43. We refer to the (very large) wire length as   and seek to compute the flux per meter:  

B / .  Using the right-hand rule discussed in Chapter 29, we see that the net field in the 

region between the axes of antiparallel currents is the addition of the magnitudes of their 

individual fields, as given by Eq. 29-17 and Eq. 29-20. There is an evident reflection 

symmetry in the problem, where the plane of symmetry is midway between the two wires 

(at x = d/2); the net field at any point 0 < x < d/2 is the same at its “mirror image” point 

d – x. The central axis of one of the wires passes through the origin, and that of the other 

passes through x = d. We make use of the symmetry by integrating over 0 < x < d/2 and 

then multiplying by 2: 
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where d = 0.0025 m is the diameter of each wire. We will use r instead of x in the 

following steps. Thus, using the equations from Ch. 29 referred to above, we find 
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where the first term is the flux within the wires and will be neglected (as the problem 

suggests). Thus, the flux is approximately B i d a a 0  / ln / . b gc h  Now, we use Eq. 

30-33 (with N = 1) to obtain the inductance per unit length: 

 
7

60 (4 10 T m/A) 142 1.53
ln ln 1.81 10 H/m.

1.53

BL d a

i a

 

 


       

       
   

 

 

44. Since  = –L(di/dt), we may obtain the desired induced emf by setting 

 

60V
5.0A/s,

12H

di

dt L


       

 

or | / | 5.0A/s.di dt   We might, for example, uniformly reduce the current from 2.0 A to 

zero in 40 ms. 
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45. (a) Speaking anthropomorphically, the coil wants to fight the changes—so if it wants 

to push current rightward (when the current is already going rightward) then i must be in 

the process of decreasing. 

 

(b) From Eq. 30-35 (in absolute value) we get 

 

L
di dt

    

/
.

17
68 10 4V

2.5kA / s
H.  

 

46. During periods of time when the current is varying linearly with time, Eq. 30-35 (in 

absolute values) becomes | | | / | .L i t     For simplicity, we omit the absolute value 

signs in the following. 

 

(a) For 0 < t < 2 ms, 

  



 


L

i

t





4 6 7 0 0

2 0 10
16 10

3

4
. .

.
.

H A

s
V.

b gb g
 

(b) For 2 ms < t < 5 ms, 

  



 


L

i

t





4 6 50 7 0

50 2 0 10
31 10

3

3
. . .

. .
.

H A A

s
V.

b gb g
b g  

(c) For 5 ms < t < 6 ms, 

  



 


L

i

t





4 6 0 50

6 0 50 10
2 3 10

3

4
. .

. .
.

H A

s
V.

b gb g
b g  

 

47. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 

proportional to resistance. Since the (independent) voltages for series elements add (V1 + 

V2), then inductances in series must add, eq 1 2L L L  , just as was the case for resistances. 

Note that to ensure the independence of the voltage values, it is important that the 

inductors not be too close together (the related topic of mutual inductance is treated in 

Section 30-12). The requirement is that magnetic field lines from one inductor should not 

have significant presence in any other. 

 

(b) Just as with resistors, L Lnn

N

eq   .
1

 

 

48. (a) Voltage is proportional to inductance (by Eq. 30-35) just as, for resistors, it is 

proportional to resistance. Now, the (independent) voltages for parallel elements are 

equal (V1 = V2), and the currents (which are generally functions of time) add (i1 (t) + i2 (t) 

= i(t)). This leads to the Eq. 27-21 for resistors. We note that this condition on the 

currents implies 

di t

dt

di t

dt

di t

dt

1 2b g b g b g
  . 
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Thus, although the inductance equation Eq. 30-35 involves the rate of change of current, 

as opposed to current itself, the conditions that led to the parallel resistor formula also 

apply to inductors. Therefore, 

1 1 1

1 2L L Leq

  .  

 

Note that to ensure the independence of the voltage values, it is important that the 

inductors not be too close together (the related topic of mutual inductance is treated in 

Section 30-12). The requirement is that the field of one inductor not to have significant 

influence (or “coupling’’) in the next. 

 

(b) Just as with resistors, 
1eq

1 1N

n nL L

 . 

 

49. Using the results from Problems 30-47 and 30-48, the equivalent resistance is 

 

 
2 3

eq 1 4 23 1 4

2 3

(50.0 mH)(20.0 mH)
30.0 mH 15.0 mH

50.0 mH 20.0 mH

59.3 mH.

L L
L L L L L L

L L
        

 



 

 

50. The steady state value of the current is also its maximum value, /R, which we denote 

as im. We are told that i = im/3 at t0 = 5.00 s. Equation 30-41 becomes  0 /
1 ,Lt

mi i e


   

which leads to 

 L

m

t

i i
 


 


0

1

500

1 3
12 3

ln /

.

/
.b g b g

s

ln 1
s.  

 

51. The current in the circuit is given by 0
Lt

i i e


 , where i0 is the current at time t = 0 

and L is the inductive time constant (L/R). We solve for L. Dividing by i0 and taking the 

natural logarithm of both sides, we obtain 

 

ln .
i

i

t

L0

F
HG
I
KJ     

This yields 

 L

t

i i
   




ln /

.

ln / .
.

0
3

10

10 10 10
0 217b g c h b ge j

s

A A
s. 

 

Therefore, R = L/L = 10 H/0.217 s = 46 . 

 

52. (a) Immediately after the switch is closed,  – L = iR. But i = 0 at this instant, so L = 

, or L/ = 1.00. 
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(b) 2.0 2.0( ) 0.135 ,L L Lt

L t e e e             or L/ = 0.135. 

 

(c) From ( ) Lt

L t e
  

  we obtain 

 

ln ln 2 ln 2 0.693       / 0.693.L L L

L L

t
t t


  

 

 
       

 
 

 

53. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. 

 

EXPRESS If the battery is switched into the circuit at t = 0, then the current at a later 

time t is given by 

 /
1 ,Lt

i e
R

 
   

where L = L/R.  

 

(a) We want to find the time at which i = 0.800/R. This means 

 
/ /

0.800 1 0.200.L Lt t
e e

  
     

 

Taking the natural logarithm of both sides, we obtain  

 

–(t/L) = ln(0.200) = –1.609. 

Thus, 
6

9

3

1.609 1.609(6.30 10 H)
1.609 8.45 10 s.

1.20 10
L

L
t

R





    
 

 

 

(b) At t = 1.0L the current in the circuit is 

 

 1.0 1.0 3

3

14.0V
1 (1 ) 7.37 10 A.

1.20 10
i e e

R

    
      

  
 

 

LEARN At t = 0, the current in the circuit is 

zero. However, after a very long time, the 

inductor acts like an ordinary connecting wire, so 

the current is 

 

0 3

14.0V
0.0117 A.

1.20 10
i

R


  

 
 

 

The current as a function of / Lt   is plotted to the 

right. 
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54. (a) The inductor prevents a fast build-up of the current through it, so immediately 

after the switch is closed, the current in the inductor is zero. It follows that 

 

1

1 2

100V
3.33A.

10.0 +20.0
i

R R


  

  
 

(b) 2 1 3.33A.i i   

 

(c) After a suitably long time, the current reaches steady state. Then, the emf across the 

inductor is zero, and we may imagine it replaced by a wire. The current in R3 is i1 – i2. 

Kirchhoff’s loop rule gives 

 

1 1 2 2

1 1 1 2 3

0

0.

i R i R

i R i i R





  

   
 

 

We solve these simultaneously for i1 and i2, and find  

 

    

        
2 3

1

1 2 1 3 2 3

100V 20.0 30.0

10.0 20.0 10.0 30.0 20.0 30.0

4.55A,

R R
i

R R R R R R

   
 

         



 

 

(d) and 

  

        
3

2

1 2 1 3 2 3

100V 30.0

10.0 20.0 10.0 30.0 20.0 30.0

2.73A.

R
i

R R R R R R

 
 

         



 

 

(e) The left-hand branch is now broken. We take the current (immediately) as zero in that 

branch when the switch is opened (that is, i1 = 0).  

 

(f) The current in R3 changes less rapidly because there is an inductor in its branch. In 

fact, immediately after the switch is opened it has the same value that it had before the 

switch was opened. That value is 4.55 A – 2.73 A = 1.82 A. The current in R2 is the same 

but in the opposite direction as that in R3, that is, i2 = –1.82 A. 

 

A long time later after the switch is reopened, there are no longer any sources of emf in 

the circuit, so all currents eventually drop to zero. Thus, 

 

(g) i1 = 0, and  

 

(h) i2 = 0. 

 

55. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. 
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EXPRESS Starting with zero current at t = 0 (the moment the switch is closed) the 

current in the circuit increases according to 

 

i
R

e t L   1 / ,c h  

 

where L = L/R is the inductive time constant and  is the battery emf.  

 

ANALYZE To calculate the time at which i = 0.9990/R, we solve for t: 

 

   /
0.990 1 ln 0.0010    6.91.Lt

L L

t t
e

R R

 

 


       

 

LEARN At t = 0, the current in the circuit is zero. However, after a very long time, the 

inductor acts like an ordinary connecting wire, so the current is 0 / .i R The current (in 

terms of 0/i i ) as a function of / Lt   is plotted below. 

 

 
 

56. From the graph we get /i = 2 ×10
4 

in SI units.  Therefore, with N = 25, we find the 

self-inductance is L = N/i  = 5 × 10
3 

H.  From the derivative of Eq. 30-41 (or a 

combination of that equation and Eq. 30-39) we find (using the symbol V to stand for the 

battery emf) 

di

dt
 = 

V

R

R

L
  e

t/L = 
V

L
e
t/L = 7.1 × 10

2 
A/s . 

 

57. (a) Before the fuse blows, the current through the resistor remains zero. We apply the 

loop theorem to the battery-fuse-inductor loop:  – L di/dt = 0. So i = t/L. As the fuse 

blows at t = t0, i = i0 = 3.0 A. Thus, 

 

  0
0

3.0A 5.0H
1.5 s.

10V

i L
t


    

 

(b) We do not show the graph here; qualitatively, it would be similar to Fig. 30-15. 
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58. Applying the loop theorem, 

 
F
HG
I
KJ L

di

dt
iR ,  

 

we solve for the (time-dependent) emf, with SI units understood: 

 

         

 

3.0 5.0 3.0 5.0 6.0 5.0 3.0 5.0 4.0

42 20 .

di d
L iR L t t R t

dt dt

t

         

 

 

 

59. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. We are interested in the currents in the resistor and the current in the inductor 

as a function of time.  

 

EXPRESS We assume i to be from left to right through the closed switch. We let i1 be 

the current in the resistor and take it to be downward. Let i2 be the current in the inductor, 

also assumed downward. The junction rule gives i = i1 + i2 and the loop rule gives i1R – 

L(di2/dt) = 0. According to the junction rule, (di1/dt) = – (di2/dt). We substitute into the 

loop equation to obtain 

L
di

dt
i R1
1 0  .  

 

This equation is similar to Eq. 30-46, and its solution is the function given as Eq. 30-47: 

i i e Rt L

1 0  ,  where i0 is the current through the resistor at t = 0, just after the switch is 

closed. Now just after the switch is closed, the inductor prevents the rapid build-up of 

current in its branch, so at that moment i2 = 0 and i1 = i. Thus i0 = i. 

 

ANALYZE (a) The currents in the resistor and the inductor as a function of time are: 

 

 1 2 1, 1 .Rt L Rt Li ie i i i i e       

(b) When i2 = i1, we have 

1
1 .

2

Rt L Rt L Rt Le e e       

 

Taking the natural logarithm of both sides and using  ln 1/ 2 ln 2 , we obtain 

 

ln 2 ln 2.
Rt L

t
L R

 
   

 
 

 

LEARN A plot of 1 /i i  (solid line, for resistor) and 2 /i i  (dashed line, for inductor) as a 

function of / Lt   is shown next. 
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60. (a) Our notation is as follows: h is the height of the toroid, a its inner radius, and b its 

outer radius. Since it has a square cross section, h = b – a = 0.12 m – 0.10 m = 0.02 m. 

We derive the flux using Eq. 29-24 and the self-inductance using Eq. 30-33: 

 

0 0 ln
2 2

b b

B
a a

Ni Nih b
B dA hdr

r a

 

 

   
      

  
   

and  

 
2

0 ln
2

B
N hN b

L
i a

  
   

  
. 

 

Now, since the inner circumference of the toroid is l = 2a = 2(10 cm)  62.8 cm, the 

number of turns of the toroid is roughly N  62.8 cm/1.0 mm = 628. Thus 

 

     
272

40
4 10 H m 628 0.02m 12

ln ln 2.9 10 H.
2 2 10

N h b
L

a



 




   

      
   

 

 

(b) Noting that the perimeter of a square is four times its sides, the total length   of the 

wire is   628 4 2 0 50b g b g. cm m , and the resistance of the wire is  

 

R = (50 m)(0.02 /m) = 1.0 . 

Thus, 

 L

L

R
 


 


2 9 10

2 9 10
4

4.
.

H

1.0
s.


 

 

61. THINK Inductance L is related to the inductive time constant of an RL circuit by 

,LL R  where R is the resistance in the circuit. The energy stored by an inductor 

carrying current i is given by 2 / 2.BU Li  

 

EXPRESS If the battery is applied at time t = 0 the current is given by 

 

i
R

e t L   1c h ,  
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where  is the emf of the battery, R is the resistance, and L is the inductive time constant 

(L/R). This leads to 

e
iR t iRt

L

L      
F
HG
I
KJ



  
1 1ln .  

Since 

ln ln
. .

.
. ,1 1

2 00 10 10 0 10

50 0
05108

3 3


F
HG
I
KJ  

 L
N
MM

O
Q
PP  


iR



A

V

c hc h
 

 

the inductive time constant is L = t/0.5108 = (5.00  10
–3

 s)/0.5108 = 9.79  10
–3

 s. 

 

ANALYZE (a) The inductance is 

 

  3 39.79 10 s 10.0 10 97.9H.LL R        

 

(b) The energy stored in the coil is 

 

  
2

2 3 41 1
97.9H 2.00 10 A 1.96 10 J.

2 2
BU Li        

 

LEARN Note the similarity between 21

2
BU Li  and 

2

,
2

C

q
U

C
  the electric energy 

stored in a capacitor.  

 

62. (a) From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 

inductor is 

 

 
   

21 2
2 1

1 1 .L L L Lt t t tB

L

d LidU di
Li L e e e e

dt dt dt R R R

     



     
       

  
 

Now,  

L = L/R = 2.0 H/10  = 0.20 s 

 

and  = 100 V, so the above expression yields dUB/dt = 2.4  10
2
 W when t = 0.10 s. 

 

(b) From Eq. 26-22 and Eq. 30-41, the rate at which the resistor is generating thermal 

energy is 

P i R
R

e R
R

et tL L

thermal      2
2

2

2
2

2

1 1
  c h c h . 

 

At t = 0.10 s, this yields Pthermal = 1.5  10
2
 W. 
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(c) By energy conservation, the rate of energy being supplied to the circuit by the battery 

is 

P P
dU

dt

B
battery thermal W.   39 102.  

 

We note that this result could alternatively have been found from Eq. 28-14 (with Eq. 30-

41). 

 

63. From Eq. 30-49 and Eq. 30-41, the rate at which the energy is being stored in the 

inductor is 

 

 
   

2 2/ 2 1
1 1L L L Lt t t tB

L

d LidU di
Li L e e e e

dt dt dt R R R

     



     
       

  
 

 

where L = L/R has been used. From Eq. 26-22 and Eq. 30-41, the rate at which the 

resistor is generating thermal energy is 

 

P i R
R

e R
R

et tL L

thermal      2
2

2

2
2

2

1 1
  c h c h . 

 

We equate this to dUB/dt, and solve for the time: 

 

     
2 2

2

1 1 ln 2 37.0ms ln 2 25.6ms.L L Lt t t

Le e e t
R R

   
  

        

 

64. Let U t Li tBb g b g 1
2

2 . We require the energy at time t to be half of its final value: 

U t U t LiB fb g b g  1
2

1
4

2 . This gives i t i fb g  2 . But 
/

( ) (1 )Lt

fi t i e


  , so 

 

1 1
1       ln 1 1.23.

2 2

Lt

L

t
e





  
      

 
 

 

65. (a) The energy delivered by the battery is the integral of Eq. 28-14 (where we use Eq. 

30-41 for the current): 

   

       

2 2
  

battery
 0  0

6.70 2.00 s 5.50 H2

1 1

5.50H 110.0V
2.00 s

6.70 6.70

18.7 J.

t t
Rt L Rt LL

P dt e dt t e
R R R

e

  

 

 
     

 

 
  
  
 



 

 

 

(b) The energy stored in the magnetic field is given by Eq. 30-49: 
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        

22
22 6.70 2.00 s 5.50 H21 1 1 10.0V

1 5.50H 1
2 2 2 6.70

5.10 J .

Rt L

BU Li t L e e
R

                  



 

 

(c) The difference of the previous two results gives the amount “lost” in the resistor:  

18.7 J – 5.10 J = 13.6 J. 

 

66. (a) The magnitude of the magnetic field at the center of the loop, using Eq. 29-9, is 

 

  

 

7

30

3

4 10 H m 100A
1.3 10 T .

2 2 50 10 m

i
B

R









   


 

 

(b) The energy per unit volume in the immediate vicinity of the center of the loop is 

 

 
 

2
32

3

7
0

1.3 10 T
0.63 J m .

2 2 4 10 H m
B

B
u

 






  


 

 

67. THINK The magnetic energy density is given by uB = B
2
/20, where B is the 

magnitude of the magnetic field at that point.  

 

EXPRESS Inside a solenoid, the magnitude of the magnetic field is B = 0ni, where  

 

n = (950 turns)/(0.850 m) = 1.118  10
3
 m

–1
. 

 

Thus, the energy density is 
22

2 20
0

0 0

( ) 1
.

2 2 2
B

niB
u n i




 
    

 

Since the magnetic field is uniform inside an ideal solenoid, the total energy stored in the 

field is UB = uB, where  is the volume of the solenoid. 

 

ANALYZE (a) Substituting the values given, we find the magnetic energy density to be 

 

u n iB       1

2

1

2
4 10 1118 10 6 60 34 20

2 2 7 3 1
2 2 3

  T m A m A J mc hc h b g. . . .  

 

(b) The volume  is calculated as the product of the cross-sectional area and the length. 

Thus, 

UB     34 2 17 0 10 0850 4 94 10
3 4 2 2. . . . .J m m m Jd ic hb g  
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LEARN Note the similarity between 
2

0

,
2

B

B
u


  the energy density at a point in a 

magnetic field, and  2

0

1
,

2
Eu E  the energy density at a point in an electric field. Both 

quantities are proportional to the square of the fields. 

 

68. The magnetic energy stored in the toroid is given by U LiB 
1
2

2 , where L is its 

inductance and i is the current. By Eq. 30-54, the energy is also given by UB = uB, 

where uB is the average energy density and  is the volume. Thus 

 

i
u

L

B 





2 2 70 0 0 0200

90 0 10
558

3 3

3

 . .

.
. .

J m m

H
A

c hc h
 

 

69. We set u E u BE B  1
2 0

2 1
2

2

0   and solve for the magnitude of the electric field: 

 

  
8

12 7
0 0

0.50T
1.5 10 V m .

8.85 10 F m 4 H m

B
E

   
   

 
 

 

70. It is important to note that the x that is used in the graph of Fig. 30-67(b) is not the x 

at which the energy density is being evaluated.  The x in Fig. 30-67(b) is the location of 

wire 2. The energy density (Eq. 30-54) is being evaluated at the coordinate origin 

throughout this problem.  We note the curve in Fig. 30-67(b) has a zero; this implies that 

the magnetic fields (caused by the individual currents) are in opposite directions (at the 

origin), which further implies that the currents have the same direction. Since the 

magnitudes of the fields must be equal (for them to cancel) when the x of Fig. 30-67(b) is 

equal to 0.20 m, then we have (using Eq. 29-4) B1 = B2, or  

 

 0 1 0 2

2 2 (0.20 m)

i i

d

 

 
  

      

which leads to (0.20 m) /3d   once we substitute 1 2 / 3i i  and simplify.  We can also 

use the given fact that when the energy density is completely caused by B1 (this occurs 

when x becomes infinitely large because then B2 = 0) its value is uB = 1.96  × 10
9 

(in SI 

units) in order to solve for B1: 

 1 02 BB   . 

 

(a) This combined with 1 0 1 / 2B i d   allows us to find wire 1’s current: i1  23 mA. 

 

(b) Since i2 = 3i1 then i2 = 70 mA (approximately). 
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71. (a) The energy per unit volume associated with the magnetic field is 

 

  

 

272 22
30 0

22 2 2 3
0 0

4 10 H m 10A1
1.0 J m .

2 2 2 8 8 2.5 10 m 2
B

i iB
u

R R

 

    





 
     

  
 

 

(b) The electric energy density is 

 

      
2

222 12 30 0
0

315

1 1
8.85 10 F m 10A 3.3 10 m

2 2 2 2

4.8 10 J m .

E

iR
u E J

 
  



            

 

 

 

Here we used J = i/A and R A   to obtain J iR  . 

 

72. (a) The flux in coil 1 is 

  
1 1

1

25mH 6.0mA
1.5 Wb.

100

L i

N
   

 

(b) The magnitude of the self-induced emf is 

 

   21
1 25mH 4.0 A s 1.0 10 mV.

di
L

dt
    

(c) In coil 2, we find 

 
  

1
21

2

3.0mH 6.0mA
90nWb

200

Mi

N
    . 

 

(d) The mutually induced emf is 

 

  1
21 3.0mH 4.0 A s 12mV.

di
M

dt
     

 

73. THINK If two coils are near each other, mutual induction can take place whereby a 

changing current in one coil can induce an emf in the other. 

 

EXPRESS The mutual inductance is given by 

 

2
1

di
M

dt
    

 

where 1 is the induced emf in coil 1 due to the changing current in coil 2. The flux 

linkage in coil 2 is 2 21 1.N Mi   
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ANALYZE (a) From the equation above, we find the mutual inductance to be 

 

1

2

| | 25.0mV
1.67mH.

15.0A s
M

di dt


    

 

(b) Similarly, the flux linkage in coil 2 is 

 

  2 21 1 1.67mH 3.60A 6.00mWb.N Mi     

 

LEARN The emf induced in one coil is proportional to the rate at which current in the 

other coil is changing: 

2 1
1 12 2 21,

di di
M M

dt dt
     . 

 

 The proportionality constants, 12M  and 21,M  are the same, 12 21 ,M M M  so we 

simply write  

2 1
1 2,

di di
M M

dt dt
     . 

 

74. We use 2 = –M di1/dt  M|i/t| to find M: 

 

M
i t

 









 1

3

3

30 10

6 0
13

V

A 2.5 10 s
H

.
.c h  

 

75. The flux over the loop cross section due to the current i in the wire is given by 

 

0 0
wire ln 1 .

2 2

a b a b

a a

il il b
B ldr dr

r a

 

 

   
    

 
   

Thus, 

M
N

i

N l b

a
  

F
HG
I
KJ

 0

2
1


ln .  

 

From the formula for M obtained above, we have 

 

   7

5
100 4 10 H m 0.30m 8.0

ln 1 1.3 10 H .
2 1.0

M







  

    
 

 

 

76. (a) The coil-solenoid mutual inductance is 
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 2

0 2

0 .
scs

cs

s s

N i n RN
M M R nN

i i

 
 


     

 

(b) As long as the magnetic field of the solenoid is entirely contained within the cross 

section of the coil we have sc = BsAs = BsR
2
, regardless of the shape, size, or possible 

lack of close-packing of the coil. 

 

77. THINK To find the equivalent inductance, we calculate the total emf across both 

coils. 

 

EXPRESS We assume the current to be changing at (nonzero) a rate di/dt. The induced 

emf’s can take on the following form: 

 

   1 1 2 2,
di di

L M L M
dt dt

        

 

The relative sign between L and M depends on how the coils are connected, as we shall 

see below. 

 

ANALYZE (a) The connection is shown in Fig. 30-70. First consider coil 1. The 

magnetic field due to the current in that coil points to the right. The magnetic field due to 

the current in coil 2 also points to the right. When the current increases, both fields 

increase and both changes in flux contribute emfs in the same direction. Thus, the 

induced emfs are 

   1 1 2 2, .
di di

L M L M
dt dt

        

 

Therefore, the total emf across both coils is 

 

       1 2 1 2 2L L M
di

dt
b g  

 

which is exactly the emf that would be produced if the coils were replaced by a single 

coil with inductance Leq = L1 + L2 + 2M. 

 

(b) We imagine reversing the leads of coil 2 so the current enters at the back of the coil 

rather than the front (as pictured in Fig. 30-70). Then the field produced by coil 2 at the 

site of coil 1 is opposite to the field produced by coil 1 itself. The fluxes have opposite 

signs. An increasing current in coil 1 tends to increase the flux in that coil, but an 

increasing current in coil 2 tends to decrease it. The emf across coil 1 is 

 

1 1  L M
di

dt
b g .  

Similarly, the emf across coil 2 is 



 

  

1323 

 2 2  L M
di

dt
b g .  

The total emf across both coils is 

    L L M
di

dt
1 2 2b g .  

 

This is the same as the emf that would be produced by a single coil with inductance  

 

Leq = L1 + L2 – 2M. 

 

LEARN The sign of the mutual inductance term is determined by the senses of the coil 

winding. The induced emfs can either reinforce one another (L + M), or oppose one 

another (L M). 

 

78. Taking the derivative of Eq. 30-41, we have 

 

/ / /
(1 )L L Lt t t

L

di d
e e e

dt dt R R L

    



   
    

 
. 

 

With L = L/R (Eq. 30-42), L = 0.023 H and   = 12 V, t = 0.00015 s, and di/dt = 280 A/s, 

we obtain e
t/L = 0.537.  Taking the natural log and rearranging leads to R = 95.4 . 

 

79. THINK The inductor in the RL circuit initially acts to oppose changes in current 

through it. 

 

EXPRESS When the switch S is just closed, V1 =  and no current flows through the 

inductor. A long time later, the currents have reached their equilibrium values and the 

inductor acts as an ordinary connecting wire; we can solve the multi-loop circuit problem 

by applying Kirchhoff’s junction and loop rules.  

 

ANALYZE (a) Applying the loop rule to the left loop gives 1 1 0,i R    so 

 

i1 = /R1 = 10 V/5.0  = 2.0 A. 

 

(b) Since now L = , we have i2 = 0. 

 

(c) The junction rule gives is = i1 + i2 = 2.0 A + 0 = 2.0 A. 

 

(d) Since VL = , the potential difference across resistor 2 is V2 =  – L = 0. 

 

(e) The potential difference across the inductor is VL =  = 10 V. 

 

(f) The rate of change of current is 2 10 V
2.0 A/s

5.0 H

Ldi V

dt L L


    .  
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(g) After a long time, we still have V1 = , so i1 = 2.0 A. 

 

(h) Since now VL = 0, i2 = R2 = 10 V/10  = 1.0 A. 

 

(i) The current through the switch is now is = i1 + i2 = 2.0 A + 1.0 A = 3.0 A. 

 

(j) Since VL = 0, V2 =  – VL =  = 10 V. 

 

(k) With the inductor acting as an ordinary connecting wire, we have VL = 0. 

 

(l) The rate of change of current in resistor 2 is 2 0Ldi V

dt L
  .  

 

LEARN In analyzing an RL circuit immediately after closing the switch and a very long 

time after that, there is no need to solve any differential equation.  

 

80. Using Eq. 30-41:  1 ,Lt
i e

R

 
   where L = 2.0 ns, we find 

 

1
ln 1.0 ns.

1 /
Lt

iR




 
  

 
 

 

81. Using Ohm’s law, we relate the induced current to the emf and (the absolute value of) 

Faraday’s law: 

 
| | 1 d

i
R R dt

 
  . 

 

As the loop is crossing the boundary between regions 1 and 2 (so that “x” amount of its 

length is in region 2 while “D – x” amount of its length remains in region 1) the flux is 

 

         B = xHB2 + (D – x)HB1= DHB1 + xH(B2 – B1) 

which means  

 
dΦB

dt
  = 

dx

dt
H(B2 – B1) = vH(B2 – B1)       i = vH(B2 – B1)/R. 

 

Similar considerations hold (replacing “B1” with 0 and  “B2” with B1) for the loop 

crossing initially from the zero-field region (to the left of Fig. 30-72(a)) into region 1.   

 

(a) In this latter case, appeal to Fig. 30-72(b) leads to  

 

     3.0 × 10
6 

A = (0.40 m/s)(0.015 m) B1 /(0.020 ) 

 

which yields B1 = 10 T. 
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(b) Lenz’s law considerations lead us to conclude that the direction of the region 1 field is 

out of the page. 

 

(c) Similarly, i = vH(B2 – B1)/R leads to 2 3.3 TB  .  

 

(d) The direction of 
2B   is out of the page.  

 

82. Faraday’s law (for a single turn, with B changing in time) gives  

 

2( )Bd d BA dB dB
A r

dt dt dt dt
 


        . 

 

In this problem, we find  /0 tBdB
e

dt





  .   Thus, 2 /0 tB
r e  



 .  

 

83. Equation 30-41 applies, and the problem requires 

 

iR = L 
di

dt
 =  – iR 

 

at some time t (where Eq. 30-39 has been used in that last step).  Thus, we have 2iR = , 
or 

  / /
2 2 (1 ) 2 1L Lt t
iR e R e

R

 
   
     

 
 

 

where Eq. 30-42 gives the inductive time constant as L = L/R.  We note that the emf  
cancels out of that final equation, and we are able to rearrange (and take the natural log) 

and solve.  We obtain t = 0.520 ms. 

 

84. In absolute value, Faraday’s law (for a single turn, with B changing in time) gives  

 

 2( )Bd d BA dB dB
A R

dt dt dt dt



    

 

for the magnitude of the induced emf.  Dividing it by R
2
 then allows us to relate this to 

the slope of the graph in Fig. 30-73(b) [particularly the first part of the graph], which we 

estimate to be 80 V/m
2
.  

 

(a) Thus,  
dB1

dt
  =  (80 V/m

2
)/    25 T/s . 

 

(b) Similar reasoning for region 2 (corresponding to the slope of the second part of the 

graph in Fig. 30-73(b)) leads to an emf equal to 
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2 21 2 2
1

dB dB dB
r R

dt dt dt
 

 
  

 
  

 

which means the second slope (which we estimate to be 40 V/m
2
) is equal to 2dB

dt
 .  

Therefore, 
 dB2

dt
  = (40 V/m

2
)/  13 T/s. 

 

(c) Considerations of Lenz’s law leads to the conclusion that B2 is increasing. 

 

85. THINK Changing magnetic field induces an electric field. 

 

EXPRESS The induced electric field is given by Eq. 30-20: 

 

 .Bd
E ds

dt


    

 

The electric field lines are circles that are concentric with the cylindrical region. Thus, 

 

2 1
(2 ) ( ) .

2

dB dB
E r r E r

dt dt
       

 

The force on the electron is ,F eE  so by Newton’s second law, the acceleration is 

/ .a eE m   

  

 ANALYZE (a) At point a,  

 

2 3 41
(5.0 10 m)( 10 10 T s) 2.5 10 V/m.

2 2

r dB
E

dt

   
       

 
 

 

With the normal taken to be into the page, in the direction of the magnetic field, the 

positive direction for E  is clockwise. Thus, the direction of the electric field at point a is 

to the left, that is 4 ˆ(2.5 10 V/m)i.E    The resulting acceleration is 

 

 
19 4

7 2

31

( 1.60 10 C)( 2.5 10 V/m) ˆ ˆi (4.4 10 m/s )i.
9.11 10 kg

a

eE
a

m

 



    
   


 

 

The acceleration is to the right.  

 

(b) At point b we have rb = 0, so the acceleration is zero. 
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(c) The electric field at point c has the same magnitude as the field in a, but with its 

direction reversed. Thus, the acceleration of the electron released at point c is  

 
7 2 ˆ(4.4 10 m s )i .c aa a    

 

LEARN Inside the cylindrical region, the induced electric field increases with r. 

Therefore, the greater the value of r, the greater the magnitude of acceleration. 

 

86. Because of the decay of current (Eq. 30-45) that occurs after the switches are closed 

on B, the flux will decay according to 

 

 1 2
/ /

1 10 2 20,L Lt t
e e

  
     

 

where each time constant is given by Eq. 30-42.  Setting the fluxes equal to each other 

and solving for time leads to 

 

20 10

2 2 1 1

ln( / ) ln(1.50)
81.1 s

( / ) ( / ) (30.0 / 0.0030 H) (25 / 0.0050 H)
t

R L R L


 
  

   
 . 

 

87. THINK Changing the area of the loop changes the flux through it. An induced emf is 

produced to oppose this change.  

 

EXPRESS The magnetic flux through the loop is B BA  , where B is the magnitude of 

the magnetic field and A is the area of the loop. According to Faraday’s law, the 

magnitude of the average induced emf is 

 

avg

| |
.B Bd B A

dt t t


   
  

 
 

 

 ANALYZE (a) substituting the values given, we obtain 

 

  
2

avg

2.0 T 0.20 m| |
0.40V.

0.20 s

B A

t



  


 

 

(b) The average induced current is i
R

avg

avg V

20 10
A. 






 0 40
20

3

.


 

 

LEARN By Lenz’s law, the more rapidly the area is changing, the greater the induced 

current in 

 

88. (a)  From Eq. 30-28, we have  
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9 2

3

(150)(50 10  T m )
3.75 mH

2.00 10 A

N
L

i





  
  


. 

 

(b) The answer for L (which should be considered the constant of proportionality in  

Eq. 30-35) does not change; it is still 3.75 mH. 

 

(c) The equations of Chapter 28 display a simple proportionality between magnetic field 

and the current that creates it.  Thus, if the current has doubled, so has the field (and 

consequently the flux).  The answer is 2(50) = 100 nWb. 

 

(d) The magnitude of the induced emf is (from Eq. 30-35)  

 

 3

max

(0.00375 H)(0.0030 A)(377 rad/s) 4.24 10 V
di

L
dt

   . 

 

89. (a) i0 = /R = 100 V/10  = 10 A. 

 

(b)   
22 21 1

02 2
2.0H 10A 1.0 10 JBU Li    . 

 

90. We write 0
Lt

i i e


  and note that i = 10% i0. We solve for t: 

 

t
i

i

L

R

i

i

i

i
L
F
HG
I
KJ 
F
HG
I
KJ 

F
HG

I
KJ  ln ln

.
ln

.
. .0 0 0

0

2 00

0100
154

H

3.00
s


 

 

91. THINK We have an RL circuit in which the inductor is in series with the battery.  

 

EXPRESS As the switch closes at t = 0, the current being zero in the inductor serves as 

an initial condition for the building-up of current in the circuit.  

 

ANALYZE (a) At t = 0, the current through the battery is also zero. 

 

(b) With no current anywhere in the circuit at t = 0, the loop rule requires the emf of the 

inductor L to cancel that of the battery ( = 40 V). Thus, the absolute value of Eq. 30-35 

yields 

2bat | | 40 V
8.0 10 A s .

0.050 H

L
di

dt L


     

 

(c) This circuit becomes equivalent to that analyzed in Section 30-9 when we replace the 

parallel set of 20000  resistors with R = 10000 . Now, with L = L/R = 5  10
–6

 s, we 

have t/L = 3/5, and we apply Eq. 30-41: 

 

 3 5 3

bat 1 1.8 10 A.i e
R

       
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(d) The rate of change of the current is figured from the loop rule (and Eq. 30-35): 

 

bat | | 0.Li R     

 

Using the values from part (c), we obtain |L|  22 V. Then, 

 

2bat | | 22 V
4.4 10 A s .

0.050 H

L
di

dt L


     

 

(e) As t  , the circuit reaches a steady-state condition, so that dibat/dt = 0 and L = 0. 

The loop rule then leads to 

3

bat bat

40 V
| | 0   4.0 10 A.

10000
Li R i        


 

 

(f) As t  , the circuit reaches a steady-state condition, dibat/dt = 0. 

 

LEARN In summary, at t = 0 immediately after the switch is closed, the inductor 

opposes any change in current, and with the inductor and the battery being connected in 

series, the induced emf in the inductor is equal to the emf of the battery, .L   A long 

time later after all the currents have reached their steady-state values, 0,L   and the 

inductor can be treated as an ordinary connecting wire. In this limit, the circuit can be 

analyzed as if L were not present.     

 

92. (a) L = /i = 26  10
–3

 Wb/5.5 A = 4.7  10
–3

 H. 

 

(b) We use Eq. 30-41 to solve for t: 

 

  3

3

2.5A 0.754.7 10 H
ln 1 ln 1 ln 1

0.75 6.0V

2.4 10 s.

L

iR L iR
t

R


 





    
            

     

 

 

 

93. The energy stored when the current is i is 21

2
BU Li , where L is the self-inductance.  

The rate at which this is developed is  

 

BdU di
Li

dt dt
  

 

where i is given by Eq. 30-41 and /di dt  is obtained by taking the derivative of that 

equation (or by using Eq. 30-37).  Thus, using the symbol V to stand for the battery 

voltage (12.0 volts) and R for the resistance (20.0 ), we have, at 1.61 ,Lt   
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   
2 2

/ / 1.61 1.61(12.0 V)
1 1 1.15 W

20.0
L Lt tBdU V

e e e e
dt R

        


. 

 

94. (a) The self-inductance per meter is 

 

     
2 22

0 4 H m 100turns cm 1.6cm 0.10H m.
L

n A      

 

(b) The induced emf per meter is 

 



 
  

L di

dt
010 13 13. . .H m A s V mb gb g  

 

95. (a) As the switch closes at t = 0, the current being zero in the inductors serves as an 

initial condition for the building-up of current in the circuit. Thus, the current through any 

element of this circuit is also zero at that instant. Consequently, the loop rule requires the 

emf (L1) of the L1 = 0.30 H inductor to cancel that of the battery. We now apply (the 

absolute value of) Eq. 30-35 

di

dt L

L
  
 1

1

6 0

0 30
20

.

.
.A s  

 

(b) What is being asked for is essentially the current in the battery when the emfs of the 

inductors vanish (as t  ). Applying the loop rule to the outer loop, with R1 = 8.0 , 

we have 

1 1 2

1

6.0V
0 0.75A.L Li R i

R
          

 

96. Since 2 ,A   we have / 2 /dA dt d dt . Thus, Faraday's law, with N = 1, becomes  

 

( )
2Bd d BA dA d

B B
dt dt dt dt




         

 

which yields = 0.0029 V. 

 

97. The self-inductance and resistance of the coil may be treated as a "pure" inductor in 

series with a "pure" resistor, in which case the situation described in the problem may be 

addressed by using Eq. 30-41.  The derivative of that solution is 

 

/ / /
(1 )L L Lt t t

L

di d
e e e

dt dt R R L

    



   
    

 
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With L = 0.28 ms (by Eq. 30-42), L = 0.050 H, and  = 45 V, we obtain di/dt = 12 A/s 

when t = 1.2 ms. 

 

98. (a)  From Eq. 30-35, we find L = (3.00 mV)/(5.00 A/s) = 0.600 mH. 

 

(b) Since N = iL (where = 40.0 Wb and i = 8.00 A), we obtain N = 120. 

 

99. We use 1 ly = 9.46  10
15

 m, and use the symbol  for volume. 

 

U u
B

B B  
 


 




 2

0

15
3

10
2

36

2

9 46 10 1 10

2 4
3 10



.
.

m T

H m
J

c h c h
c h 

 

 

100. (a) The total length of the closed loop formed by the two radii plus the arc is 

 

2 (2 ),L r r r      

 

where r is the radius. The total resistance is 

 

 

8

6 2

3

(2 ) (1.7 10 m)(0.24 m)(2 )

1.20 10 m

(3.4 10 )(2 ) .

L r
R

A A

   









   
  



   

 

 

(b) The area of the loop is 21
2

.A r   Thus, the magnetic flux through the loop is 

 

2 2 31 1
(0.150 T)(0.240 m) (4.32 10 ) Wb.

2 2
B BA Br          

 

(c) The induced emf is 

 

2 2 21 1 1

2 2 2

Bd d d
Br Br Br

dt dt dt


  

  
        

 
 

which gives 
2 2 2

3 3 2

| |

2 2(3.4 10 )(2 ) 2(3.4 10 )(2 / 2)

Br Br Br t
i

R R t

   

  
   

   
 

 

as the magnitude of the induced current. Note that in the last step, we have substituted 

t   and 21
2

,t   for constant angular acceleration . Differentiating i with respect 

to t gives  
2 2

3 2 2

(4 )
.

(3.4 10 )(4 )

di Br t

dt t

 






 
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The induced current is at a maximum when 24 0,t   or 4/ .t   At this instant, the 

angle is 

 21 1 4
2.0 rad.

2 2
t  



 
   

 
 

 

(d) When current is at a maximum, 4/ 4 .t        Thus,  

 
2 22 2 2

max 3 3

(0.150 T)(0.24 m) 4(12 rad/s )4 4
2.20 A.

2 2 2(3.4 10 )(2 ) 2(3.4 10 )(2 2.0)

Br Br Br
i

R R

  

 
    

   

 

101. (a) We use U LiB 
1
2

2  to solve for the self-inductance: 

 

L
U

i

B 









2 2 250 10

60 0 10
139

2

3

3
2

.

.
.

J

A
H.

c h
c h

 

 

(b) Since UB  i
2
, for UB to increase by a factor of 4, i must increase by a factor of 2. 

Therefore, i should be increased to 2(60.0 mA) = 120 mA. 

 


