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Chapter 17 
 

 

1. (a) The time for the sound to travel from the kicker to a spectator is given by d/v, where 

d is the distance and v is the speed of sound. The time for light to travel the same distance 

is given by d/c, where c is the speed of light. The delay between seeing and hearing the 

kick is t = (d/v) – (d/c). The speed of light is so much greater than the speed of sound 

that the delay can be approximated by t = d/v. This means d = v t. The distance from 

the kicker to spectator A is  

 

dA = v tA = (343 m/s)(0.23 s) = 79 m. 

 

(b) The distance from the kicker to spectator B is dB = v tB = (343 m/s)(0.12 s) = 41 m. 

 

(c) Lines from the kicker to each spectator and from one spectator to the other form a 

right triangle with the line joining the spectators as the hypotenuse, so the distance 

between the spectators is 

 

   
2 22 2 79m 41m 89mA BD d d     . 

 

2. The density of oxygen gas is 

3

3

0.0320kg
1.43kg/m .

0.0224m
   

From /v B   we find  

   
22 3 5317m/s 1.43kg/m 1.44 10 Pa.B v     

 

3. (a) When the speed is constant, we have v = d/t where v = 343 m/s is assumed. 

Therefore, with t = 15/2 s being the time for sound to travel to the far wall we obtain d = 

(343 m/s)  (15/2 s), which yields a distance of 2.6 km. 

 

(b) Just as the 1
2

factor in part (a) was 1/(n + 1) for n = 1 reflection, so also can we write 

 

 
  343 1515s

343m/s 1
1

d n
n d

 
    

 
 

 

for multiple reflections (with d in meters). For d = 25.7 m, we find n = 199 22.0 10  . 

 

4. The time it takes for a soldier in the rear end of the column to switch from the left to 

the right foot to stride forward is t = 1 min/120 = 1/120 min = 0.50 s. This is also the time 



  CHAPTER 17 800 

for the sound of the music to reach from the musicians (who are in the front) to the rear 

end of the column. Thus the length of the column is 

 
2(343m/s)(0.50s) =1.7  10 m.l vt    

 

5. THINK The S and P waves generated by the earthquake travel at different speeds. 

Knowing the speeds of the waves and the time difference of their arrival to the 

seismograph allows us to determine the location of the earthquake.    

 

EXPRESS Let d be the distance from the location of the earthquake to the seismograph. 

If vs is the speed of the S waves, then the time for these waves to reach the seismograph is 

ts. = d/vs. Similarly, the time for P waves to reach the seismograph is tp = d/vp. The time 

delay is  

t = (d/vs) – (d/vp) = d(vp – vs)/vsvp, 

 

ANALYZE With 4.5 km/ssv  , 8.0 km/spv   and 3.0 min 180 st   , we find the 

distance to be 

3(4.5  km/s)(8.0km/s)(180 s)
1.9 10 km.

( ) 8.0km/s 4.5km/s

s p

p s

v v t
d

v v


   

 
 

 

LEARN The distance to the earthquake is proportional to the difference in the arrival 

times of the P and S waves. 

 

6. Let  be the length of the rod. Then the time of travel for sound in air (speed vs) will be 

/s st v . And the time of travel for compression waves in the rod (speed vr) will be 

/r rt v . In these terms, the problem tells us that 

 

1 1
0.12s .s r

s r

t t
v v

 
    

 
 

 

Thus, with vs = 343 m/s and vr = 15vs = 5145 m/s, we find 44m . 

 

7. THINK The time elapsed before hearing the splash is the sum of the time it takes for 

the stone to hit the water in the well, and the time it takes for the sound wave to travel 

back to the listener.   

 

EXPRESS Let tf be the time for the stone to fall to the water and ts be the time for the 

sound of the splash to travel from the water to the top of the well. Then, the total time 

elapsed from dropping the stone to hearing the splash is t = tf + ts. If d is the depth of the 

well, then the kinematics of free fall gives  

21

2
fd gt    2 / .ft d g  
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The sound travels at a constant speed vs, so d = vsts, or ts = d/vs. Thus the total time is 

2 / / st d g d v  . This equation is to be solved for d.  

 

ANALYZE Rewriting the above expression as 2 / / sd g t d v   and squaring both 

sides, we obtain  

2d/g = t
2
 – 2(t/vs)d + (1 + 2

sv )d
2
. 

 

Now multiply by g 2

sv  and rearrange to get  

 

gd
2
 – 2vs(gt + vs)d + g 2

sv t
2
 = 0. 

 

This is a quadratic equation for d. Its solutions are 

 

 
22 2 2 22 ( ) 4 4

.
2

s s s s sv gt v v gt v g v t
d

g

   
  

 

The physical solution must yield d = 0 for t = 0, so we take the solution with the negative 

sign in front of the square root. Once values are substituted the result d = 40.7 m is 

obtained. 

 

LEARN The relation between the depth of the well and time is plotted below: 

 
 

8. Using Eqs. 16-13 and 17-3, the speed of sound can be expressed as 

 

 
B

v f


  , 

 

where ( / ) / .B dp dV V    Since , , andV    are not changed appreciably, the frequency 

ratio becomes 
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( / )

( / )

s s s s

i i i i

f v B dp dV

f v B dp dV
   . 

 

Thus, we have  
2 2

( / ) 1
9.00

( / ) 0.333

s i i

i s s

dV dp B f

dV dp B f

   
      

  
. 

 

9. Without loss of generality we take x = 0, and let t = 0 be when s = 0. This means the 

phase is = /2 and the function is s = (6.0 nm)sin(t) at x = 0.  Noting that = 3000 

rad/s, we note that at t = sin
1

(1/3)/ = 0.1133 ms the displacement is s = +2.0 nm.  

Doubling that time (so that we consider the excursion from –2.0 nm to +2.0 nm) we 

conclude that the time required is 2(0.1133 ms) = 0.23 ms.  

 

10. The key idea here is that the time delay t  is due to the distance d that each 

wavefront must travel to reach your left ear (L) after it reaches your right ear (R). 

 

(a) From the figure, we find 
sind D

t
v v


   . 

 

(b) Since the speed of sound in water is now wv , with 90   , we have 

 

sin90
w

w w

D D
t

v v


   . 

 

(c) The apparent angle can be found by substituting / wD v  for t : 

 

sin

w

D D
t

v v


   . 

 

Solving for   with 1482 m/swv   (see Table 17-1), we obtain 

 

 1 1 1343 m/s
sin sin sin (0.231) 13

1482 m/sw

v

v
      
       

  
. 

 

11. THINK The speed of sound in a medium is the product of the wavelength and 

frequency. 

 

EXPRESS The wavelength of the sound wave is given by  = v/f, where v is the speed of 

sound in the medium and f is the frequency,  

 

ANALYZE (a) The speed of sound in air (at 20 C ) is 343 m/sv  . Thus, we find 
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5

6

343m/s
7.62 10 m.

4.50 10 Hz

v

f

    


 

 

(b) The frequency of sound is the same for air and tissue. Now the speed of sound in 

tissue is  1500 m/sv  , the corresponding wavelength is 

  

4

6

1500m/s
3.33 10 m.

4.50 10 Hz

v

f

    


 

 

LEARN The speed of sound depends on the medium through which it propagates. Table 

17-1 provides a list of sound speed in various media. 

 

12. (a) The amplitude of a sinusoidal wave is the numerical coefficient of the sine (or 

cosine) function: pm = 1.50 Pa. 

 

(b) We identify k = 0.9 and  = 315 (in SI units), which leads to f = /2 = 158 Hz. 

 

(c) We also obtain  = 2/k = 2.22 m. 

 

(d) The speed of the wave is v = /k = 350 m/s. 

 

13. The problem says “At one instant...” and we choose that instant (without loss of 

generality) to be t = 0.  Thus, the displacement of “air molecule A” at that instant is  

 

sA = +sm = smcos(kxA  t + )|
t=0

 = smcos(kxA + ), 

 

where xA = 2.00 m. Regarding “air molecule B” we have  

 

sB = + 
1

3
 sm = sm cos( kxB  t + )|

t=0
 = sm cos( kxB + ). 

 

These statements lead to the following conditions: 

 

    kxA +  

kxB + cos
1

(1/3) = 1.231 

 

where xB = 2.07 m. Subtracting these equations leads to  

 

k(xB xA) = 1.231       k = 17.6 rad/m. 

 

Using the fact that k = 2 we find = 0.357 m, which means   

 

f = v/ = 343/0.357 = 960 Hz. 
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Another way to complete this problem (once k is found) is to use  kv =   and then the 

fact that  = f. 

 

14. (a) The period is T  = 2.0 ms (or 0.0020 s) and the amplitude is pm = 8.0 mPa (which 

is equivalent to 0.0080 N/m
2
).  From Eq. 17-15 we get 

 

 96.1 10  mm m
m

p p
s

v v T  

 
   

  
 

 

where  = 1.21 kg/m
3
 and v = 343 m/s. 

 

(b) The angular wave number is k = /v = 2/vT = 9.2 rad/m.   

 

(c) The angular frequency is  = 2/T = 3142 rad/s 33.1 10  rad/s  .  

 

The results may be summarized as s(x, t) = (6.1 nm) cos[(9.2 m
1

)x – (3.1  10
3
 s
1

)t].  

 

(d) Using similar reasoning, but with the new values for density (   = 1.35 kg/m
3
) and 

speed ( v= 320 m/s), we obtain 

 

 95.9 10  m.
(2 / )

m m
m

p p
s

v v T   

 
   

   
 

 

(e) The angular wave number is k = / 2 /v v T    = 9.8 rad/m.   

 

(f) The angular frequency is  = 2/T = 3142 rad/s 33.1 10  rad/s  . 

 

The new displacement function is s(x, t) = (5.9 nm) cos[(9.8 m
1

)x – (3.1  10
3
 s
1

)t]. 

 

15. (a) Consider a string of pulses returning to the stage. A pulse that came back just 

before the previous one has traveled an extra distance of 2w, taking an extra amount of 

time t = 2w/v. The frequency of the pulse is therefore 

 

 
21 343m/s

2.3 10 Hz.
2 2 0.75m

v
f

t w
    


 

 

(b) Since f  1/w, the frequency would be higher if w were smaller. 

 

16. Let the separation between the point and the two sources (labeled 1 and 2) be x1 and 

x2, respectively. Then the phase difference is 
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1 2 1 2
1 2

2 ( ) 2 (4.40m 4.00m)
2 2

(330m/s) / 540Hz

4.12rad.

x x x x
ft ft

 
    

  

    
           

   



 

 

17. Building on the theory developed in Section 17-5, we set / 1/ 2,  1,2,...L n n     

in order to have destructive interference. Since v = f, we can write this in terms of 

frequency: 

min,

(2 1)
( 1/ 2)(286 Hz)

2
n

n v
f n

L


  


 

 

where we have used v = 343 m/s (note the remarks made in the textbook at the beginning 

of the exercises and problems section) and L = (19.5 – 18.3 ) m = 1.2 m. 

 

(a) The lowest frequency that gives destructive interference is (n = 1) 

 

min,1 (1 1/ 2)(286 Hz) 143 Hz.f     

 

(b) The second lowest frequency that gives destructive interference is (n = 2) 

 

min,2 min,1(2 1/ 2)(286 Hz) 429 Hz 3(143 Hz) 3 .f f      

So the factor is 3. 

 

(c) The third lowest frequency that gives destructive interference is (n = 3) 

 

min,3 min,1(3 1/ 2)(286 Hz) 715 Hz 5(143 Hz) 5 .f f      

So the factor is 5. 

 

Now we set 1
2

/L   (even numbers) — which can be written more simply as “(all 

integers n = 1, 2,…)” — in order to establish constructive interference. Thus, 

 

max, (286 Hz).n

nv
f n

L
 


 

 

(d) The lowest frequency that gives constructive interference is (n =1) max,1 (286 Hz).f   

 

(e) The second lowest frequency that gives constructive interference is (n = 2) 

 

max,2 max,12(286 Hz) 572 Hz 2 .f f    

Thus, the factor is 2. 

 

(f) The third lowest frequency that gives constructive interference is (n = 3) 
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max,3 max,13(286 Hz) 858 Hz 3 .f f    

Thus, the factor is 3. 

 

18. (a) To be out of phase (and thus result in destructive interference if they superpose) 

means their path difference must be /2 (or 3/2 or 5/2 or …).  Here we see their path 

difference is L, so we must have (in the least possibility) L = /2, or q =L/ = 0.5. 

 

(b) As noted above, the next possibility is L = 3/2, or q =L/ = 1.5. 

 

19. (a) The problem is asking at how many angles will there be “loud” resultant waves, 

and at how many will there be “quiet” ones?  We note that at all points (at large distance 

from the origin) along the x axis there will be quiet ones; one way to see this is to note 

that the path-length difference (for the waves traveling from their respective sources) 

divided by wavelength gives the (dimensionless) value 3.5, implying a half-wavelength 

(180º) phase difference (destructive interference) between the waves.  To distinguish the 

destructive interference along the +x axis from the destructive interference along the –x 

axis, we label one with +3.5 and the other –3.5.  This labeling is useful in that it suggests 

that the complete enumeration of the quiet directions in the upper-half plane (including 

the x axis) is: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5.  Similarly, the complete 

enumeration of the loud directions in the upper-half plane is: –3, –2, –1, 0, +1, +2, +3.  

Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, then 

we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

 

(b) The discussion about the “quiet” directions was started in part (a).  The number of 

values in the list: –3.5, –2.5, –1.5, –0.5, +0.5, +1.5, +2.5, +3.5 along with  –2.5, –1.5, –0.5, 

+0.5, +1.5, +2.5 (for the lower-half plane) is 14.  There are 14 “quiet” directions. 

 

20. (a) The problem indicates that we should ignore the decrease in sound amplitude, 

which means that all waves passing through point P have equal amplitude.  Their 

superposition at P if d = /4 results in a net effect of zero there since there are four 

sources (so the first and third are /2 apart and thus interfere destructively; similarly for 

the second and fourth sources). 

 

(b) Their superposition at P if d = /2 also results in a net effect of zero there since there 

are an even number of sources (so the first and second being /2 apart will interfere 

destructively; similarly for the waves from the third and fourth sources). 

 

(c) If d =  then the waves from the first and second sources will arrive at P in phase; 

similar observations apply to the second and third, and to the third and fourth sources.  

Thus, four waves interfere constructively there with net amplitude equal to 4sm. 

 

21. THINK The sound waves from the two speakers undergo interference. Whether the 

interference is constructive or destructive depends on the path length difference, or the 

phase difference.  
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EXPRESS From the figure, we see that the distance from the closer speaker to the 

listener is L = d2, and the distance from the other speaker to the listener is 
2 2

1 2L d d   , 

where d1 is the distance between the speakers. The phase difference at the location of the 

listener is  = 2(L’ – L)/, where  is the wavelength. For a minimum in intensity at the 

listener,  = (2n + 1), where n is an integer. Thus,  

 

 
min

min

2 ( ) 2( )
(2 1)

2 1

L L L L
n

n


  



  
    


, 

and the frequency is 

 

   
min

2 2 2 2
min

1 2 2

(2 1) (2 1)(343m/s)
(2 1)(343Hz).

2 2 (2.00m) (3.75m) 3.75m

v n v n
f n

d d d

 
    
    

 

 

Now 20,000/343 = 58.3, so 2n + 1 must range from 0 to 57 for the frequency to be in the 

audible range (20 Hz to 20 kHz). This means n ranges from 0 to 28. 

 

On the other hand, for a maximum in intensity at the listener,  = 2n, where n is any 

positive integer. Thus  2 2

max 1 2 2(1/ )n d d d     and 

 

max
2 2 2 2

max 1 2 2

(343m/s)
(686Hz).

(2.00m) (3.75m) 3.75m

v nv n
f n

d d d
   
    

 

 

Since 20,000/686 = 29.2, n must be in the range from 1 to 29 for the frequency to be 

audible. 

 

ANALYZE (a) The lowest frequency that gives minimum signal is (n = 0) 

min,1 343 Hz.f    

 

(b) The second lowest frequency is (n = 1) 
min,2 min,1[2(1) 1](343 Hz) 1029 Hz 3 .f f     

Thus, the factor is 3.  

 

(c) The third lowest frequency is (n = 2) 
min,3 min,1[2(2) 1](343 Hz) 1715 Hz 5 .f f     

Thus, the factor is 5.  

 

(d) The lowest frequency that gives maximum signal is (n =1) 
max,1 686 Hz.f   

 

(e) The second lowest frequency is (n = 2) max,2 max,12(686 Hz) 1372 Hz 2 .f f    Thus, 

the factor is 2. 
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(f) The third lowest frequency is (n = 3) 
max,3 max,13(686 Hz) 2058 Hz 3 .f f    Thus, the 

factor is 3. 

 

LEARN We see that the interference of the two sound waves depends on their phase 

difference  = 2(L’ – L)/. The interference is fully constructive when  is a multiple of 

2, but fully destructive when  is an odd multiple of . 

 

22. At the location of the detector, the phase difference between the wave that traveled 

straight down the tube and the other one, which took the semi-circular detour, is 

 

2
( 2 ).k d r r


     


  

 

For r = rmin we have  = , which is the smallest phase difference for a destructive 

interference to occur. Thus, 

min

40.0cm
17.5cm.

2( 2) 2( 2)
r


  

   
 

 

23. (a) If point P is infinitely far away, then the small distance d between the two sources 

is of no consequence (they seem effectively to be the same distance away from P). Thus, 

there is no perceived phase difference. 

 

(b) Since the sources oscillate in phase, then the situation described in part (a) produces 

fully constructive interference. 

 

(c) For finite values of x, the difference in source positions becomes significant. The path 

lengths for waves to travel from S1 and S2 become now different. We interpret the 

question as asking for the behavior of the absolute value of the phase difference ||, in 

which case any change from zero (the answer for part (a)) is certainly an increase. 

 

The path length difference for waves traveling from S1 and S2 is 

 
2 2 for 0.d x x x      

 

The phase difference in “cycles” (in absolute value) is therefore 

 
2 2

.
d x x  

  
 

  

 

Thus, in terms of , the phase difference is identical to the path length difference: 

| | 0 . Consider / 2 . Then 
2 2 / 2d x x   . Squaring both sides, 

rearranging, and solving, we find 
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2

.
4

d
x


 


 

 

In general, if  for some multiplier   0, we find 

 
2 1 64.0

2 2

d
x  

 
    


 

 

where we have used d = 16.0 m and  = 2.00 m. 

 

(d) For 0.50 , or 0.50  , we have 0.50) m 127.5 m 128 mx     . 

 

(e) For 1.00 , or 1.00  , we have 1.00) m 63.0 mx    . 

 

(f) For 1.50 , or 1.50  , we have 1.50) m 41.2 mx    . 

 

Note that since whole cycle phase differences are equivalent (as far as the wave 

superposition goes) to zero phase difference, then the  = 1, 2 cases give constructive 

interference. A shift of a half-cycle brings “troughs” of one wave in superposition with 

“crests” of the other, thereby canceling the waves; therefore, the 3 51
2 2 2
, ,   cases 

produce destructive interference. 

 

24. (a) Equation 17-29 gives the relation between sound level  and intensity I, namely 

 

 ( /10dB) 12 2 ( /10dB) 12 ( /10dB) 2

010 (10 W/m )10 10 W/mI I         

 

Thus we find that for a  = 70 dB level we have a high intensity value of Ihigh = 10 W/m
2
.  

 

(b) Similarly, for a  = 50 dB level we have a low intensity value of Ilow = 0.10 W/m
2
. 

 

(c) Equation 17-27 gives the relation between the displacement amplitude and I.  Using 

the values for density and wave speed, we find sm = 70 nm for the high intensity case. 

 

(d) Similarly, for the low intensity case we have sm = 7.0 nm.   

 

We note that although the intensities differed by a factor of 100, the amplitudes differed 

by only a factor of 10. 

 

25. The intensity is given by 2 21
2

,mI v s    where  is the density of air, v is the speed of 

sound in air,  is the angular frequency, and sm is the displacement amplitude for the 

sound wave. Replace  with 2f and solve for sm: 
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6 2
8

2 2 2 3 2

1.00 10 W/m
3.68 10 m.

2 2 (1.21kg/m )(343m/s)(300Hz)
m

I
s

v f




   
 

 

 

26. (a) Since intensity is power divided by area, and for an isotropic source the area may 

be written A = 4r
2
 (the area of a sphere), then we have 

 

2

2

1.0W
0.080W/m .

4 (1.0m)

P
I

A
  


 

 

(b) This calculation may be done exactly as shown in part (a) (but with r = 2.5 m instead 

of r = 1.0 m), or it may be done by setting up a ratio. We illustrate the latter approach. 

Thus, 
22

2

/ 4 ( )

/ 4

I P r r

I P r r

   
   

  
 

 

leads to I = (0.080 W/m
2
)(1.0/2.5)

2
 = 0.013 W/m

2
. 

 

27. THINK The sound level increases by 10 dB when the intensity increases by a factor 

of 10.    

 

EXPRESS The sound level  is defined as (see Eq. 17-29): 

 

 
0

(10 dB) log
I

I
   

where 12 2

0 10 W/mI   is the standard reference intensity. In this problem, let I1 be the 

original intensity and I2 be the final intensity. The original sound level is 

1 1 0(10 dB)log( / )I I   and the final sound level is 2 = (10 dB) log(I2/I0). With 

2 1 30 dB    we have 

 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 30 dB, 

or  

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 30 dB. 

 

The above equation allows us to solve for the ratio I2/I1. On the other hand, combing Eqs. 

17-15 and 17-27 leads to the following relation between the intensity I and the pressure 

amplitude mp : 
 

2

1

2

mp
I

v


 . 

 

ANALYZE (a) Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain 

log(I2/I1) = 3. Now use each side as an exponent of 10 and recognize that 
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 2 1log

2 110 /
I I

I I . The result is I2/I1 = 10
3
. The intensity is increased by a factor of 

1.0×10
3
. 

 

(b) The pressure amplitude is proportional to the square root of the intensity so it is 

increased by a factor of 1000 32.  

 

LEARN From the definition of , we see that doubling sound intensity increases the 

sound level by (10 dB)log2 3.01 dB   . 

 

28. The sound level  is defined as (see Eq. 17-29): 

 

 
0

(10 dB) log
I

I
   

where 12 2

0 10 W/mI   is the standard reference intensity. In this problem, let the two 

intensities be I1 and I2 such that 2 1I I . The sound levels are 1 1 0(10 dB)log( / )I I   

and 2 = (10 dB) log(I2/I0). With 
2 1 1.0 dB    we have 

 

 (10 dB) log(I2/I0) = (10 dB) log(I1/I0) + 1.0 dB, 

or  

(10 dB) log(I2/I0) – (10 dB) log(I1/I0) = 1.0 dB. 

 

Divide by 10 dB and use log(I2/I0) – log(I1/I0) = log(I2/I1) to obtain log(I2/I1) = 0.1. Now 

use each side as an exponent of 10 and recognize that 
 2 1log

2 110 /
I I

I I . The result is  

 

 0.12

1

10 1.26
I

I
  . 

 

29. THINK Power is the time rate of energy transfer, and intensity is the rate of energy 

flow per unit area perpendicular to the flow.  

 

EXPRESS The rate at which energy flow across every sphere centered at the source is 

the same, regardless of the sphere radius, and is the same as the power output of the 

source. If P is the power output and I is the intensity a distance r from the source, then 
24P IA r I  , where A = 4r

2
 is the surface area of a sphere of radius r.  

 

ANALYZE With 2.50 mr   and  4 21.91 10 W/mI   , we find the power of the 

source to be  

P = 4(2.50 m)
2
 (1.91  10

–4
 W/m

2
) = 1.50  10

–2
 W. 

 

LEARN Since intensity falls off as 21/ r , the further away from the source, the weaker 

the intensity. 
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30. (a) The intensity is given by I = P/4r
2
 when the source is “point-like.” Therefore, at r 

= 3.00 m, 
6

9 2

2

1.00 10 W
8.84 10 W/m .

4 (3.00m)
I




  


 

(b) The sound level there is 
9 2

12 2

8.84 10 W/m
10 log 39.5dB.

1.00 10 W/m





 
  

 
  

 

31. We use  = 10 log (I/Io) with Io = 1  10
–12

 W/m
2
 and I = P/4r

2
 (an assumption we 

are asked to make in the problem). We estimate r  0.3 m (distance from knuckle to ear) 

and find 

   
2 12 2 6.2 64 0.3m 1 10 W/m 10 2 10 W 2 W.P         

 

32. (a) Since  = 2f, Eq. 17-15 leads to 

 

 
     

3

3

1.13 10 Pa
2

2 1665Hz 343m/s 1.21 kg/m
m m mp v f s s 


   


 

 

which yields sm = 0.26 nm. The nano prefix represents 10
–9

. We use the speed of sound 

and air density values given at the beginning of the exercises and problems section in the 

textbook. 

 

(b) We can plug into Eq. 17–27 or into its equivalent form, rewritten in terms of the 

pressure amplitude: 

   
  

2
2 3

2

3

1.13 10 Pa1 1
1.5 nW/m .

2 2 1.21kg/m 343m/s

mp
I

v


    

 

33. We use  = 10 log(I/Io) with Io = 1  10
–12

 W/m
2
 and Eq. 17–27 with  

 

 = 2f = 2(260 Hz), 

v = 343 m/s and  = 1.21 kg/m
3
. 

 

   
28.5 2 7

o

1
10 2       7.6 10 m 0.76 m.

2
m mI I v f s s         

 

34. Combining Eqs.17-28 and 17-29 we have  = 10 log






P

Io4r
2  .  Taking differences (for 

sounds A and B) we find 
 

 = 10 log






PA

Io4r
2   – 10 log







PB

Io4r
2  = 10 log





PA

PB
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using well-known properties of logarithms.  Thus, we see that  is independent of r and 

can be evaluated anywhere.   

 

(a) We can solve the above relation (once we know  = 5.0) for the ratio of powers; we 

find PA /PB  3.2.  

 

(b) At r = 1000 m it is easily seen (in the graph) that  = 5.0 dB.  This is the same  we 

expect to find, then, at r = 10 m.   

 

35. (a) The intensity is 

5 2

2 2

30.0W
5.97 10 W/m .

4 (4 )(200m)

P
I

r

   
 

 

 

(b) Let A (= 0.750 cm
2
) be the cross-sectional area of the microphone. Then the power 

intercepted by the microphone is 

 
5 2 2 4 2 2 90 (6.0 10 W/m )(0.750cm )(10 m /cm ) 4.48 10 W.P IA           

 

36. The difference in sound level is given by Eq. 17-37: 

 

(10 db) log
f

f i

i

I

I
  

 
     

 
. 

 

Thus, if 5.0 db  , then log( / ) 1/ 2f iI I  , which implies that 10f iI I . On the other 

hand, the intensity at a distance r from the source is 
24

P
I

r
 , where P  is the power of 

the source. A fixed P implies that 2 2

i i f fI r I r . Thus, with 1.2 m,ir   we obtain 

 
1/ 2

1/ 4
1

(1.2 m) 0.67 m
10

i
f i

f

I
r r

I

   
         

. 

 

37. (a) The average potential energy transport rate is the same as that of the kinetic energy.  

This implies that the (average) rate for the total energy is 

 







dE

dt avg
  = 2







dK

dt avg
  =  2 ( ¼ A v 2

 sm
2 

) 

 

using Eq. 17-44.  In this equation, we substitute  = 1.21 kg/m
3
, A = r

2
 = (0.020 m)

2
, v 

= 343 m/s, = 3000 rad/s, sm = 12 10
9

 m, and obtain  the answer 3.4  10
10 

W.   
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(b) The second string is in a separate tube, so there is no question about the waves 

superposing.  The total rate of energy, then, is just the addition of the two: 2(3.4  10
10

 

W) = 6.8  10
10 

W. 

 

(c) Now we do have superposition, with = 0, so the resultant amplitude is twice that of 

the individual wave, which leads to the energy transport rate being four times that of part 

(a).  We obtain 4(3.4  10
10 

W) = 1.4  10
9 

W. 

 

(d) In this case = 0.4, which means (using Eq. 17-39)   

 

sm = 2 sm cos() = 1.618sm. 

 

This means the energy transport rate is (1.618)
2
 = 2.618  times that of part (a).  We obtain 

2.618(3.4  10
10

 W) = 8.8  10
10 

W. 

 

(e) The situation is as shown in Fig. 17-14(b).  The answer is zero. 

 

38. The frequency is f = 686 Hz and the speed of sound is vsound = 343 m/s. If L is the 

length of the air-column, then using Eq. 17–41, the water height is (in unit of meters) 

 

(343)
1.00 1.00 1.00 (1.00 0.125 ) m

4 4(686)

nv n
h L n

f
         

 

where n = 1, 3, 5,… with only one end closed. 

 

(a) There are 4 values of n (n = 1, 3, 5, 7) which satisfies h > 0. 

 

(b) The smallest water height for resonance to occur corresponds to 7n   with 

0.125 mh  . 

 

(c) The second smallest water height corresponds to n = 5 with h  = 0.375 m. 

 

39. THINK Violin strings are fixed at both ends. A string clamped at both ends can be 

made to oscillate in standing wave patterns. 

 

EXPRESS When the string is fixed at both ends 

and set to vibrate at its fundamental, lowest 

resonant frequency, exactly one-half of a 

wavelength fits between the ends (see figure to the 

right). The wave speed is given by 

/ ,v f     where  is the tension in the 

string and  is the linear mass density of the string. 

 

 

 

ANALYZE (a) With  = 2L , we find the wave speed to be  
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v = f = 2Lf = 2(0.220 m)(920 Hz) = 405 m/s. 

 

(b) If M is the mass of the (uniform) string, then  = M/L. Thus, the string tension is 



 = v
2
 = (M/L)v

2
 = [(800  10

–6
 kg)/(0.220 m)] (405 m/s)

2
 = 596 N. 

 

(c) The wavelength is  = 2L = 2(0.220 m) = 0.440 m. 

 

(d) If va is the speed of sound in air, then the wavelength in air is  

 

a = va/f = (343 m/s)/(920 Hz) = 0.373 m. 

 

LEARN The frequency of the sound wave in air is the same as the frequency of 

oscillation of the string. However, the wavelengths of the wave on the string and the 

sound waves emitted by the string are different because their wave speeds are not the 

same. 

 

40. At the beginning of the exercises and problems section in the textbook, we are told to 

assume vsound = 343 m/s unless told otherwise. The second harmonic of pipe A is found 

from Eq. 17-39 with n = 2 and L = LA, and the third harmonic of pipe B is found from Eq. 

17-41 with n = 3 and L = LB. Since these frequencies are equal, we have 

 

sound sound2 3 3
.

2 4 4
B A

A B

v v
L L

L L
    

 

(a) Since the fundamental frequency for pipe A is 300 Hz, we immediately know that the 

second harmonic has f = 2(300 Hz) = 600 Hz. Using this, Eq. 17-39 gives  

 

LA = (2)(343 m/s)/2(600 s
1

) = 0.572 m. 

 

(b) The length of pipe B is 3
4

0.429m.B AL L   

 

41. (a) From Eq. 17–53, we have 

 

(1)(250m/s)
833Hz.

2 2(0.150m)

nv
f

L
    

 

(b) The frequency of the wave on the string is the same as the frequency of the sound 

wave it produces during its vibration. Consequently, the wavelength in air is 

 

sound 348m/s
0.418m.

833Hz

v

f
     
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42. The distance between nodes referred to in the problem means that /2 = 3.8 cm, or  

= 0.076 m.  Therefore, the frequency is  

 

f = v/ = (1500 m/s)/(0.076 m)  20  10
3 

Hz. 

 

43. THINK The pipe is open at both ends so there are displacement antinodes at both 

ends.  

 

EXPRESS If L is the pipe length and  is the wavelength then  = 2L/n, where n is an 

integer. That is, an integer number of half-wavelengths fit into the length of the pipe. If v 

is the speed of sound then the resonant frequencies are given by f = v/ = nv/2L. Now L = 

0.457 m, so  

 
(344 m/s)

(376.4 Hz)
2 2(0.457 m)

nv n
f n

L
   . 

 

ANALYZE (a) To find the resonant frequencies that lie between 1000 Hz and 2000 Hz, 

first set f = 1000 Hz and solve for n, then set f = 2000 Hz and again solve for n. The 

results are 2.66 and 5.32, which imply that n = 3, 4, and 5 are the appropriate values of n. 

Thus, there are 3 frequencies.   

 

(b) The lowest frequency at which resonance occurs corresponds to n = 3, or 

  

f = 3(376.4 Hz) = 1129 Hz . 

 

(c) The second lowest frequency at which resonance occurs corresponds to n = 4, or  

 

f = 4(376.4 Hz) = 1506 Hz . 

 

LEARN The third lowest frequency at which resonance occurs corresponds to n = 5, or  

 

f = 5(376.4 Hz) = 1882 Hz . 

 

Changing the length of the pipe can affect the number of resonant frequencies.   

 

44. (a) Using Eq. 17-39 with v = 343 m/s and n = 1, we find f = nv/2L = 86 Hz for the 

fundamental frequency in a nasal passage of length L = 2.0 m (subject to various 

assumptions about the nature of the passage as a “bent tube open at both ends”). 

 

(b) The sound would be perceptible as sound (as opposed to just a general vibration) of 

very low frequency. 

 

(c) Smaller L implies larger f by the formula cited above. Thus, the female's sound is of 

higher pitch (frequency). 
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45. (a) We note that 1.2 = 6/5.  This suggests that both even and odd harmonics are 

present, which means the pipe is open at both ends (see Eq. 17-39). 

 

(b) Here we observe 1.4 = 7/5. This suggests that only odd harmonics are present, which 

means the pipe is open at only one end (see Eq. 17-41). 

 

46. We observe that “third lowest … frequency” corresponds to harmonic number nA = 3 

for pipe A, which is open at both ends. Also,  “second lowest … frequency” corresponds 

to harmonic number nB = 3 for pipe B, which is closed at one end. 

 

(a) Since the frequency of B matches the frequency of A, using Eqs. 17-39 and 17-41, we 

have  

3 3

2 4
A B

A B

v v
f f

L L
    

 

which implies / 2 (1.20 m) / 2 0.60 m.B AL L   Using Eq. 17-40, the corresponding 

wavelength is 

 
4 4(0.60 m)

0.80 m
3 3

BL
    . 

  

The change from node to anti-node requires a distance of /4 so that every increment of 

0.20 m along the x-axis involves a switch between node and anti-node. Since the closed 

end is a node, the next node appears at x = 0.40 m, so there are 2 nodes. The situation 

corresponds to that illustrated in Fig. 17-14(b) with 3n  . 

 

(b) The smallest value of x where a node is present is x = 0. 

 

(c) The second smallest value of x where a node is present is x = 0.40 m. 

 

(d) Using v = 343 m/s, we find f3 = v/ = 429 Hz. Now, we find the fundamental resonant 

frequency by dividing by the harmonic number, f1 = f3/3 = 143 Hz. 

 

47. The top of the water is a displacement node and the top of the well is a displacement 

anti-node. At the lowest resonant frequency exactly one-fourth of a wavelength fits into 

the depth of the well. If d is the depth and  is the wavelength, then  = 4d. The 

frequency is f = v/ = v/4d, where v is the speed of sound. The speed of sound is given by 

/ ,v B   where B is the bulk modulus and  is the density of air in the well. Thus 

(1/ 4 ) /f d B  and 

5

3

1 1 1.33 10 Pa
12.4 m.

4 4(7.00Hz) 1.10kg/m

B
d

f 


    
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48. (a) Since the difference between consecutive harmonics is equal to the fundamental 

frequency (see section 17-6) then  f1 = (390 – 325) Hz = 65 Hz.  The next harmonic after 

195 Hz is therefore (195 + 65) Hz = 260 Hz. 

 

(b) Since fn = nf1,  then n = 260/65 = 4. 

 

(c) Only odd harmonics are present in tube B, so the difference between consecutive 

harmonics is equal to twice the fundamental frequency in this case (consider taking 

differences of Eq. 17-41 for various values of n). Therefore,  

 

f1 = 
1

2
 (1320 – 1080) Hz = 120 Hz. 

 

The next harmonic after 600 Hz is consequently [600 + 2(120)] Hz = 840 Hz. 

 

(d) Since  fn = nf1  (for n odd), then n = 840/120 = 7. 

 

49. THINK Violin strings are fixed at both ends. A string clamped at both ends can be 

made to oscillate in standing wave patterns. 

 

EXPRESS The resonant wavelengths are given by  = 2L/n, where L is the length of the 

string and n is an integer. The resonant frequencies are given by fn = v/ = nv/2L, where v 

is the wave speed on the string. Now /v    , where  is the tension in the string and  

is the linear mass density of the string. Thus ( / 2 ) /nf n L   .  

 

ANALYZE Suppose the lower frequency is associated with n1 and the higher frequency 

is associated with n2 = n1 + 1. There are no resonant frequencies between so you know 

that the integers associated with the given frequencies differ by 1. Thus, 

1 1( / 2 ) /nf n L    and 

2 1

1 11 1 1
.

2 2 2 2
n n

n n
f f

L L L L

   

   


      

 

This means 
2 1

(1/ 2 ) /n nf f L     and 

 

2 1

2 2 2 3 24 ( ) 4(0.300m) (0.650 10 kg/m)(1320Hz 880Hz)

45.3N.

n nL f f      


 

 

LEARN Since the difference between any successive pair of the harmonic frequencies is 

equal to the fundamental frequency: 
1 1

2
n n

v
f f f f

L
     , we find 

 

1 1320Hz 880Hz 440Hzf    . 
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Since 880 Hz = 2(440 Hz) and 1320 Hz = 3(440 Hz), the two frequencies correspond to 

1 2n   and 2 3n  , respectively.   

 

50. (a) Using Eq. 17-39 with n = 1 (for the fundamental mode of vibration) and 343 m/s 

for the speed of sound, we obtain 

 

sound

tube

(1) 343m/s
71.5Hz.

4 4(1.20m)

v
f

L
    

 

(b) For the wire (using Eq. 17-53) we have 

 

wire

wire wire

1

2 2

nv
f

L L




    

 

where  = mwire/Lwire. Recognizing that f = f both the wire and the air in the tube vibrate 

at the same frequency), we solve this for the tension : 
 

2 2 2 3wire
wire wire wire

wire

(2 ) 4 4(71.5Hz) (9.60 10 kg)(0.330m) 64.8N.
m

L f f m L
L

  
     

 
 

 

51. Let the period be T. Then the beat frequency is 1/ 440Hz 4.00beats/s.T    Therefore, 

T = 2.25  10
–3

 s. The string that is “too tightly stretched” has the higher tension and thus 

the higher (fundamental) frequency. 

 

52. Since the beat frequency equals the difference between the frequencies of the two 

tuning forks, the frequency of the first fork is either 381 Hz or 387 Hz. When mass is 

added to this fork its frequency decreases (recall, for example, that the frequency of a 

massspring oscillator is proportional to 1/ m ). Since the beat frequency also decreases, 

the frequency of the first fork must be greater than the frequency of the second. It must be 

387 Hz. 

 

53. THINK Beat arises when two waves detected have slightly different frequencies: 

beat 2 1f f f  . 

 

EXPRESS Each wire is vibrating in its fundamental mode so the wavelength is twice the 

length of the wire ( = 2L) and the frequency is  

 

/ (1/ 2 ) /f v L     , 
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where /v    is the wave speed for the wire,  is the tension in the wire, and  is the 

linear mass density of the wire. Suppose the tension in one wire is  and the oscillation 

frequency of that wire is f1. The tension in the other wire is  +  and its frequency is f2. 

You want to calculate / for f1 = 600 Hz and f2 = 606 Hz. Now, 1 (1/ 2 ) /f L    and 

2 (1/ 2 ) ( ) /f L     , so 

2 1/ ( ) / 1 ( / ).f f           

 

ANALYZE The fractional increase in tension is 

 
2 2

2 1/ ( / ) 1 [(606Hz) /(600Hz)] 1 0.020.f f        

 

LEARN Beat frequency beat 2 1f f f   is zero when 0  . The beat phenomenon is 

used by musicians to tune musical instruments. The instrument tuned is sounded against a 

standard frequency until beat disappears.   

 

54. (a) The number of different ways of picking up a pair of tuning forks out of a set of 

five is 5!/(2!3!) = 10. For each of the pairs selected, there will be one beat frequency. If 

these frequencies are all different from each other, we get the maximum possible number 

of 10. 

 

(b) First, we note that the minimum number occurs when the frequencies of these forks, 

labeled 1 through 5, increase in equal increments: fn = f1 + nf, where n = 2, 3, 4, 5. Now, 

there are only 4 different beat frequencies: fbeat = nf, where n = 1, 2, 3, 4. 

 

55. We use vS = r (with r = 0.600 m and  = 15.0 rad/s) for the linear speed during 

circular motion, and Eq. 17-47 for the Doppler effect (where f = 540 Hz, and v = 343 m/s 

for the speed of sound). 

 

(a) The lowest frequency is  

0
526 Hz

S

v
f f

v v

 
   

 
. 

(b) The highest frequency is 

0
555 Hz

S

v
f f

v v

 
   

 
. 

 

56. The Doppler effect formula, Eq. 17-47, and its accompanying rule for choosing  

signs, are discussed in Section 17-10. Using that notation, we have v = 343 m/s, vD = 2.44 

m/s, f = 1590 Hz, and f = 1600 Hz. Thus, 

 

   ( ) 4.61m/s.D
S D

S

v v f
f f v v v v

v v f

 
       

 
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57. In the general Doppler shift equation, the trooper’s speed is the source speed and the 

speeder’s speed is the detector’s speed. The Doppler effect formula, Eq. 17-47, and its 

accompanying rule for choosing  signs, are discussed in Section 17-10. Using that 

notation, we have v = 343 m/s,  

 

vD = vS =  160 km/h = (160000 m)/(3600 s) = 44.4 m/s, 

 

and f = 500 Hz. Thus, 

343 m/s 44.4 m/s
(500 Hz) 500Hz  0.

343 m/s 44.4 m/s
f f

 
      

 
 

 

58. We use Eq. 17-47 with f = 1200 Hz and v = 329 m/s. 

 

(a) In this case, vD = 65.8 m/s and vS = 29.9 m/s, and we choose signs so that f  is larger 

than f: 

3329 m/s 65.8 m/s
1.58 10 Hz.

329 m/s 29.9 m/s
f f

 
    

 
 

 

(b) The wavelength is  = v/f  = 0.208 m. 

 

(c) The wave (of frequency f ) “emitted” by the moving reflector (now treated as a 

“source,” so vS = 65.8 m/s) is returned to the detector (now treated as a detector, so vD = 

29.9 m/s) and registered as a new frequency f : 

 

3329 m/s 29.9 m/s
2.16 10 Hz.

329 m/s 65.8 m/s
f f

 
    

 
 

 

(d) This has wavelength /v f   = 0.152 m. 

 

59. We denote the speed of the French submarine by u1 and that of the U.S. sub by u2. 

 

(a) The frequency as detected by the U.S. sub is 

 

3 32
1 1

1

5470 km/h 70.00 km/h
(1.000 10 Hz) 1.022  10 Hz.

5470 km/h  50.00 km/h

v u
f f

v u

   
       

   
 

 

(b) If the French sub were stationary, the frequency of the reflected wave would be  

 

fr = f1(v+u2)/(v – u2). 

 

Since the French sub is moving toward the reflected signal with speed u1, then 
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3

1 1 2
1

2

3

( )( ) (1.000 10 Hz)(5470 50.00)(5470 70.00)

( ) (5470)(5470 70.00)

   1.045 10 Hz.

r r

v u v u v u
f f f

v v v u

      
    

  

 

 

 

60. We are combining two effects: the reception of a moving object (the truck of speed u 

= 45.0 m/s) of waves emitted by a stationary object (the motion detector), and the 

subsequent emission of those waves by the moving object (the truck), which are picked 

up by the stationary detector. This could be figured in two steps, but is more compactly 

computed in one step as shown here: 

 

final initial

343m/s  45m/s
(0.150MHz) 0.195MHz.

343m/s  45m/s

v u
f f

v u

   
     

    
 

 

61. As a result of the Doppler effect, the frequency of the reflected sound as heard by the 

bat is 

4 4bat

bat

/ 40
(3.9 10 Hz) 4.1 10 Hz.

/ 40
r

v u v v
f f

v u v v

   
       

   
 

 

62. The “third harmonic” refers to a resonant frequency f3 = 3 f1, where f1 is the 

fundamental lowest resonant frequency. When the source is stationary, with respect to the 

air, then Eq. 17-47 gives  

 1 dv
f f

v

 
   

 
 

 

where dv  is the speed of the detector (assumed to be moving away from the source, in the 

way we’ve written it, above).  The problem, then, wants us to find dv  such that f = f1 

when the emitted frequency is  f = f3.  That is, we require 1 – dv /v = 1/3.  Clearly, the 

solution to this is dv /v = 2/3 (independent of length and whether one or both ends are 

open [the latter point being due to the fact that the odd harmonics occur in both systems]). 

Thus, 

 

(a) For tube 1, dv =2v/3.  

 

(b) For tube 2, dv =2v /3. 

 

(c) For tube 3, dv =2v /3. 

 

(d) For tube 4, dv =2v /3. 
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63. In this case, the intruder is moving away from the source with a speed u satisfying u/v 

 1. The Doppler shift (with u = –0.950 m/s) leads to 

 

beat

2 | | 2(0.95m/s)(28.0 kHz)
) 155Hz

343m/s
r s s

u
f f f f

v
     . 

 

64. When the detector is stationary (with respect to the air) then Eq. 17-47 gives  

 

1 /s

f
f

v v
 


 

 

where vs is the speed of the source (assumed to be approaching the detector in the way 

we’ve written it, above).  The difference between the approach and the recession is 

 

 
2

2 /1 1
  

1 / 1 / 1 ( / )

s

s s s

v v
f f f f

v v v v v v

   
       

     
 

 

which, after setting  ( f f  )/f = 1/2, leads to an equation that can be solved for the ratio 

vs/v.  The result is 5  – 2   = 0.236.  Thus, vs/v = 0.236. 

 

65. The Doppler shift formula, Eq. 17-47, is valid only when both uS and uD are measured 

with respect to a stationary medium (i.e., no wind). To modify this formula in the 

presence of a wind, we switch to a new reference frame in which there is no wind. 

 

(a) When the wind is blowing from the source to the observer with a speed w, we have uS 

= uD = w in the new reference frame that moves together with the wind. Since the 

observer is now approaching the source while the source is backing off from the observer, 

we have, in the new reference frame, 

 

32.0 10 Hz.D

S

v u v w
f f f

v u v w

   
          

 

 

In other words, there is no Doppler shift. 

 

(b) In this case, all we need to do is to reverse the signs in front of both uD and uS. The 

result is that there is still no Doppler shift: 

 

32.0 10 Hz.D

S

v u v w
f f f

v u v w

   
          

 

 

In general, there will always be no Doppler shift as long as there is no relative motion 

between the observer and the source, regardless of whether a wind is present or not. 
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66. We use Eq. 17-47 with f = 500 Hz and v = 343 m/s. We choose signs to produce f  f. 

 

(a) The frequency heard in still air is 

 

343 m/s 30.5 m/s
(500 Hz) 598Hz.

343 m/s 30.5 m/s
f

 
   

 
 

 

(b) In a frame of reference where the air seems still, the velocity of the detector is 30.5 – 

30.5 = 0, and that of the source is 2(30.5). Therefore, 

 

343 m/s 0
(500 Hz) 608Hz.

343 m/s 2(30.5 m/s)
f

 
   

 
 

 

(c) We again pick a frame of reference where the air seems still. Now, the velocity of the 

source is 30.5 – 30.5 = 0, and that of the detector is 2(30.5). Consequently, 

 

343 m/s 2(30.5 m/s)
(500 Hz) 589Hz.

343 m/s 0
f

 
   

 
 

 

67. THINK The girl and her uncle hear different frequencies because of Doppler effect.  

 

EXPRESS The Doppler shifted frequency is given by 

 

,D

S

v v
f f

v v


   

 

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector 

(the uncle), and vS is the speed of the source (the locomotive). All speeds are relative to 

the air.  

 

ANALYZE (a) The uncle is at rest with respect to the air, so vD = 0. The speed of the 

source is vS = 10 m/s. Since the locomotive is moving away from the uncle the frequency 

decreases and we use the plus sign in the denominator. Thus 

 

343m/s
(500.0Hz) 485.8Hz.

343m/s + 10.00m/sS

v
f f

v v

 
    

  
 

 

(b) The girl is now the detector. Relative to the air she is moving with speed vD = 10.00 

m/s toward the source. This tends to increase the frequency and we use the plus sign in 

the numerator. The source is moving at vS = 10.00 m/s away from the girl. This tends to 

decrease the frequency and we use the plus sign in the denominator. Thus, (v + vD) =  
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(v + vS) and f = f = 500.0 Hz. 

 

(c) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the uncle. 

Use the plus sign in the denominator. Relative to the air the uncle is moving at vD =  

10.00 m/s toward the locomotive. Use the plus sign in the numerator. Thus 

 

343m/s + 10.00m/s
(500.0Hz) 486.2 Hz.

343m/s + 20.00m/s

D

S

v v
f f

v v

 
    

  
 

 

(d) Relative to the air the locomotive is moving at vS = 20.00 m/s away from the girl and 

the girl is moving at vD = 20.00 m/s toward the locomotive. Use the plus signs in both the 

numerator and the denominator. Thus, (v + vD) = (v + vS) and f = f = 500.0 Hz. 

 

LEARN The uncle, standing near the track, hears different frequencies, depending on the 

direction of the wind. On other hand, since the girl (a detector) is sitting in the train and 

there’s no relative motion between her and the source (locomotive whistle), she hears the 

same frequency as the source regardless of the wind direction. 

 

68. We note that 1350 km/h is vS  = 375 m/s.  Then, with  = 60º, Eq. 17-57 gives v = 

3.310
2
 m/s. 

 

69. THINK  Mach number is the ratio /Sv v , where 

Sv  is the speed of the source and v is the sound speed. 

A mach number of 1.5 means that the jet plane moves 

at a supersonic speed.   

 

EXPRESS The half angle  of the Mach cone is given 

by sin  = v/vS, where v is the speed of sound and vS is 

the speed of the plane. To calculate the time it takes 

for the shock wave to each you after the plane has 

passed directly overhead, let h be the altitude of the 

plane and suppose the Mach cone intersects Earth's 

surface a distance d behind the plane. The situation is shown in the diagram below, with P 

indicating the plane and O indicating the observer. 

 

The cone angle is related to h and d by tan  = h/d, so d = h/tan . The shock wave 

reaches O in the time the plane takes to fly the distance d. 

 

ANALYZE (a) Since vS = 1.5v, sin  = v/1.5v = 1/1.5. This means  = 42°. 

 

(b) The time required for the shock wave to reach you is  

5000 m
11s

tan 1.5(331m/s)tan42

d h
t

v v 
   


. 
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LEARN The shock wave generated by the supersonic jet produces an explosive sound 

called sonic boom, in which the air pressure first increases suddenly, and then drops 

suddenly below normal before returning to normal.  

 

70. The altitude H and the horizontal distance x for the legs of a right triangle, so we have  

 

tan tan 1.25 sinpH x v t vt      

 

where v is the speed of sound, vp is the speed of the plane, and  

 

1 1sin sin 53.1 .
1.25p

v v

v v
  

   
          

 

Thus the altitude is  

 

     4tan 1.25 330m/s 60s tan53.1 3.30 10 m.H x      

 

71. The source being a “point source” means Asphere = 4r
2
 is used in the intensity 

definition I = P/A, which further implies 

 
2

2

2 2 1

2

1 1 2

/ 4
.

/ 4

I P r r

I P r r

 
     

 

 

From the discussion in Section 17-5, we know that the intensity ratio between “barely 

audible” and the “painful threshold” is 10
–12

 = I2/I1. Thus, with r2 = 10000 m, we find  

 
12

1 2 10 0.01m 1 cm.r r     

 

72. The angle is sin
–1

(v/vs) = sin
–1

 (343/685) = 30°. 

 

73. The round-trip time is t = 2L/v, where we estimate from the chart that the time 

between clicks is 3 ms. Thus, with v = 1372 m/s, we find 1
2

2.1 mL vt  . 

 

74. We use /v B   to find the bulk modulus B: 

 

   
2

2 3 3 3 105.4 10 m/s 2.7 10 kg/m 7.9 10 Pa.B v       

 

75. The source being isotropic means Asphere = 4r
2
 is used in the intensity definition I = 

P/A, which further implies 
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2
2

2 2 1

2

1 1 2

/ 4
.

/ 4

I P r r

I P r r

 
     

 

 

(a) With I1 = 9.60  10
–4

 W/m
2
, r1 = 6.10 m, and r2 = 30.0 m, we find  

 

I2 = (9.60  10
–4

 W/m
2
)(6.10/30.0)

2
 = 3.97  10

–5
 W/m

2
. 

 

(b) Using Eq. 17-27 with I1 = 9.60  10
–4

 W/m
2
,  = 2(2000 Hz), v = 343 m/s, and  = 

1.21 kg/m
3
, we obtain 

7

2

2
1.71 10 m.m

I
s

v

  
 

 

 

(c) Equation 17-15 gives the pressure amplitude: 

 

0.893 Pa.m mp v s     

 

76. We use 12 = 1 – 2 = (10 dB) log(I1/I2). 

 

(a) Since 12 = (10 dB) log(I1/I2) = 37 dB, we get  

 

I1/I2 = 10
37 dB/10 dB

 = 10
3.7

 = 5.0  10
3
. 

 

(b) Since m mp s I   , we have 3

1 2 1 2/ / 5.0 10 71.m mp p I I       

 

(c) The displacement amplitude ratio is 1 2 1 2/ / 71.m ms s I I   

 

77. Any phase changes associated with the reflections themselves are rendered 

inconsequential by the fact that there is an even number of reflections. The additional 

path length traveled by wave A consists of the vertical legs in the zig-zag path: 2L. To be 

(minimally) out of phase means, therefore, that 2L = /2 (corresponding to a half-cycle, 

or 180°, phase difference). Thus, L = /4, or L/= 1/4 = 0.25. 

 

78. Since they are approaching each other, the sound produced (of emitted frequency f) by 

the flatcar-trumpet received by an observer on the ground will be of higher pitch f . In 

these terms, we are told f  – f = 4.0 Hz, and consequently that /f f   444/440 = 1.0091. 

With vS designating the speed of the flatcar and v = 343 m/s being the speed of sound, the 

Doppler equation leads to 

 

 
0 1.0091 1

343 m/s 3.1m/s.
1.0091

S

S

f v
v

f v v

  
   


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79. (a) Incorporating a term (/2) to account for the phase shift upon reflection, then the 

path difference for the waves (when they come back together) is 

 

L
2
 + (2d)

2 
  L + /2 = (path) . 

 

Setting this equal to the condition needed to destructive interference (/2, 3/2, 5/2 …) 

leads to d = 0, 2.10 m, …    Since the problem explicitly excludes the d = 0 possibility, 

then our answer is d = 2.10 m. 

 

(b) Setting this equal to the condition needed to constructive interference (, 2, 3 …) 

leads to d = 1.47 m, …   Our answer is d = 1.47 m. 

 

80. When the source is stationary (with respect to the air) then Eq. 17-47 gives  

 

1 dv
f f

v

 
   

 
, 

 

 where vd is the speed of the detector (assumed to be moving away from the source, in the 

way we’ve written it, above).  The difference between the approach and the recession is 

 

 1 1 2d d dv v v
f f f f

v v v

      
            

      
 

 

which, after setting  ( f f  )/f =1/2, leads to an equation that can be solved for the ratio 

vd /v.  The result is 1/4. Thus, vd /v = 0.250. 

 

81. THINK The pressure amplitude of the sound wave depends on the medium it 

propagates through. 

 

EXPRESS The intensity of a sound wave is given by 2 21
2

,mI v s   where  is the 

density of the medium, v is the speed of sound,  is the angular frequency, and sm is the 

displacement amplitude. The displacement and pressure amplitudes are related by pm = 

vsm, so sm = pm/v and I = (pm)
2
/2v. For waves of the same frequency the ratio of 

the intensity for propagation in water to the intensity for propagation in air is 

 
2

,w mw a a

a ma w w

I p v

I p v





 
  

 
 

 

where the subscript a denotes air and the subscript w denotes water.  

 

ANALYZE (a) In case where the intensities are equal, Ia = Iw, the ratio of the pressure 

amplitude is 
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3 3

3

(0.998 10 kg/m )(1482m/s)
59.7.

(1.21kg/m )(343m/s)

mw w w

ma a a

p v

p v

 
  






 

 

The speeds of sound are given in Table 17-1 and the densities are given in Table 14-1. 

 

(b) Now, if the pressure amplitudes are equal: pmw = pma, then the ratio of the 

intensities is 
3

4

3 3

(1.21kg/m )(343m/s)
2.81 10 .

(0.998 10 kg/m )(1482m/s)

w a a

a w w

I v

I v

   





 

 

LEARN The pressure amplitude of sound wave and the intensity depend on the density 

of the medium and the sound speed in the medium.   

 

82. The wave is written as ( , ) cos( )ms x t s kx t  . 

 

(a) The amplitude ms  is equal to the maximum displacement: 0.30 cmms  . 

 

(b) Since  = 24 cm, the angular wave number is 12 / 0.26 cmk     . 

 

(c) The angular frequency is 22 2 (25 Hz) 1.6 10  rad/sf      . 

 

(d) The speed of the wave is v = f = (24 cm)(25 Hz) = 6.0 × 10
2 

cm/s. 

 

(e) Since the direction of propagation is x , the sign is plus, so ( , ) cos( )ms x t s kx t  . 

 

83. THINK This problem deals with the principle of Doppler ultrasound. The technique 

can be used to measure blood flow and blood pressure by reflecting high-frequency, 

ultrasound sound waves off blood cells. 

 

EXPRESS The direction of blood flow can be determined by the Doppler shift in 

frequency. The reception of the ultrasound by the blood and the subsequent remitting of 

the signal by the blood back toward the detector is a two-step process which may be 

compactly written as  

x

x

v v
f f f

v v

 
    

 
 

where blood cos .xv v   If we write the ratio of frequencies as R = (f + f)/f, then the 

solution of the above equation for the speed of the blood is 

 

 

 blood

1

1 cos

R v
v

R 





. 
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ANALYZE (a) The blood is moving towards the right (towards the detector), because the 

Doppler shift in frequency is an increase: f  0. 

 

(b) With v = 1540 m/s,  = 20°, and R = 1 + (5495 Hz)/(5  10
6
 Hz) =1.0011, using the 

expression above, we find the speed of the blood to be 

 

 
 blood

1
0.90m/s

1 cos

R v
v

R


 

 
. 

 

(c) We interpret the question as asking how f (still taken to be positive, since the 

detector is in the “forward” direction) changes as the detection angle  changes. Since 

larger  means smaller horizontal component of velocity vx then we expect f to decrease 

towards zero as  is increased towards 90°. 

 

LEARN The expression for bloodv  can be inverted to give 

 

blood

blood

2 cos

cos

v
f f

v v





 
   

 
. 

 

The plot of the frequency shift f as a function of  is given below. Indeed we find f to 

decrease with increasing . 

 

 
 

84. (a) The time it takes for sound to travel in air is ta = L/v, while it takes tm = L/vm for 

the sound to travel in the metal. Thus, 

 

( )
.m

a m

m m

L v vL L
t t t

v v v v


       

 

(b) Using the values indicated (see Table 17-1), we obtain 

 

1.00s
364m. 

1/ 1/ 1/(343m/s)  1/(5941m/s)m

t
L

v v


  

 
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85. (a) The period is the reciprocal of the frequency: T = 1/f = 1/(90 Hz) = 1.1  10
–2

 s. 

 

(b) Using v = 343 m/s, we find  = v/f = 3.8 m. 

 

86. Let r stand for the ratio of the source speed to the speed of sound.  Then, Eq. 17-55 

(plus the fact that frequency is inversely proportional to wavelength) leads to 

 

2






1

1 + r
   =   

1

1 – r
  . 

 

Solving, we find r = 1/3.  Thus, vs/v = 0.33. 

 

87. THINK The siren is between you and the cliff, moving away from you and towards 

the cliff. You hear two frequencies, one directly from the siren and the other from the 

sound reflected off the cliff.  

 

EXPRESS The Doppler shifted frequency is given by 

 

,D

S

v v
f f

v v


   

 

where f is the unshifted frequency, v is the speed of sound, vD is the speed of the detector, 

and vS is the speed of the source. All speeds are relative to the air. Both “detectors” (you 

and the cliff) are stationary, so vD = 0 in Eq. 17–47. The source is the siren with 

10 m/sSv  . The problem asks us to use v = 330 m/s for the speed of sound. 

 

ANALYZE (a) With f = 1000 Hz, the frequency fy you hear becomes 

 

20 330 m/s
(1000 Hz) 970.6Hz 9.7 10 Hz.

330 m/s 10 m/s
y

S

v
f f

v v

   
       

   
 

 

(b) The frequency heard by an observer at the cliff (and thus the frequency of the sound 

reflected by the cliff, ultimately reaching your ears at some distance from the cliff) is 

 

30 330 m/s
(1000 Hz) 1031.3Hz 1.0 10 Hz.

330 m/s 10 m/s
c

S

v
f f

v v

   
       

   
 

 

(c) The beat frequency is beatf  fc – fy = 60 beats/s (which, due to specific features of the 

human ear, is too large to be perceptible). 

 

LEARN The beat frequency in this case can be written as 
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beat 2 2

2 S
c y

S S S

vvv v
f f f f f f

v v v v v v

   
       

     
 

Solving for the source speed, we obtain 

 

 

2 2

beat

beat

S

f f f
v v

f

   
 
 
 

 

  

For the beat frequency to be perceptible (
beat 20 Hzf  ), the source speed would have to 

be less than 3.3 m/s.  

 

88. When  = 0 it is clear that the superposition wave has amplitude 2pm. For the other 

cases, it is useful to write 

    1 2 sin sin 2 cos sin .
2 2

m mp p p t t p t
   

            
   

 
     

 

The factor in front of the sine function gives the amplitude pr. Thus, 

/ 2cos( / 2).r mp p     

 

(a) When 0  , / 2cos(0) 2.00.r mp p     

 

(b) When / 2  , / 2cos( / 4) 2 1.41.r mp p       

  

(c) When / 3  , / 2cos( / 6) 3 1.73.r mp p       

 

(d) When / 4  , / 2cos( /8) 1.85.r mp p      

 

89. (a) Adapting Eq. 17-39 to the notation of this chapter, we have 

 

sm  =  2 sm cos() = 2(12 nm) cos() = 20.78 nm. 

 

Thus, the amplitude of the resultant wave is roughly 21 nm. 

 

(b) The wavelength ( = 35 cm) does not change as a result of the superposition. 

 

(c) Recalling Eq. 17-47 (and the accompanying discussion) from the previous chapter, we 

conclude that the standing wave amplitude is 2(12 nm) = 24 nm when they are traveling 

in opposite directions. 

 

(d) Again, the wavelength ( = 35 cm) does not change as a result of the superposition. 
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90. (a) The separation distance between points A and B is one-quarter of a wavelength; 

therefore,  = 4(0.15 m) = 0.60 m.  The frequency, then, is   

 

f = v/ =  (343 m/s)/(0.60 m) = 572 Hz. 

 

(b) The separation distance between points C and D is one-half of a wavelength; therefore, 

 = 2(0.15 m) = 0.30 m.  The frequency, then, is   

 

f = v/ =  (343 m/s)/(0.30 m) = 1144 Hz, 

 

or approximately 1.14 kHz. 

 

91. Let the frequencies of sound heard by the person from the left and right forks be fl and 

fr, respectively. 

 

92. If the speeds of both forks are u, then fl,r = fv/(v  u) and 

 

   

   
beat 2 22 2

2 440Hz 3.00m/s 343m/s1 1 2
7.70Hz.

343m/s 3.00m/s
r l

fuv
f f f fv

v u v u v u

 
       

    
 

 

(b) If the speed of the listener is u, then fl,r = f(v  u)/v and 

 

 beat

3.00m/s
2 2 440Hz 7.70Hz.

343m/s
l r

u
f f f f

v

  
      

   
 

 

92. The rule: if you divide the time (in seconds) by 3, then you get (approximately) the 

straight-line distance d. We note that the speed of sound we are to use is given at the 

beginning of the problem section in the textbook, and that the speed of light is very much 

larger than the speed of sound. The proof of our rule is as follows: 

 

sound light sound

sound

.
343m/s 0.343km/s

d d d
t t t t

v
       

 

Cross-multiplying yields (approximately) (0.3 km/s)t = d, which (since 1/3  0.3) 

demonstrates why the rule works fairly well. 

 

93. THINK Acoustic interferometer can be used to demonstrate the interference of sound 

waves.  

 

EXPRESS When the right side of the instrument is pulled out a distance d the path 

length for sound waves increases by 2d. Since the interference pattern changes from a 

minimum to the next maximum, this distance must be half a wavelength of the sound. So 

2d = /2, where  is the wavelength. Thus  = 4d. 
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On the other hand, the intensity is given by 2 21
2

,mI v s   where  is the density of the 

medium, v is the speed of sound,  is the angular frequency, and sm is the displacement 

amplitude. Thus, sm is proportional to the square root of the intensity, and we write 

mI Cs , where C is a constant of proportionality. At the minimum, interference is 

destructive and the displacement amplitude is the difference in the amplitudes of the 

individual waves: sm = sSAD – sSBD, where the subscripts indicate the paths of the waves. 

At the maximum, the waves interfere constructively and the displacement amplitude is 

the sum of the amplitudes of the individual waves: sm = sSAD + sSBD.  

 

ANALYZE (a) The speed of sound is v = 343 m/s, so the frequency is  

 

f = v/ = v/4d = (343 m/s)/4(0.0165 m) = 5.2  10
3
 Hz. 

 

(b) At intensity minimum, we have 100 ( )SAD SBDC s s  , and 900 ( )SAD SBDC s s   at 

the maximum. Adding the equations give 

 

SADs   ( 100 900 / 2 20/ ,C C   

while subtracting them yields  

SBDs   ( 900 100) / 2 10/ .C C   

 

Thus, the ratio of the amplitudes is sSAD/sSBD = 2. 

 

(c) Any energy losses, such as might be caused by frictional forces of the walls on the air 

in the tubes, result in a decrease in the displacement amplitude. Those losses are greater 

on path B since it is longer than path A. 

 

LEARN We see that the sound waves propagated along the two paths in the 

interferometer can interfere constructively or destructively, depending on their path length 

difference. 

 

94. (a) Using m = 7.3  10
7
 kg, the initial gravitational potential energy is 

113.9 10  JU mgy   , where h = 550 m. Assuming this converts primarily into kinetic 

energy during the fall, then K = 3.9  10
11

 J just before impact with the ground. Using 

instead the mass estimate m = 1.7  10
8
 kg, we arrive at K = 9.2  10

11
 J. 

 

(b) The process of converting this kinetic energy into other forms of energy (during the 

impact with the ground) is assumed to take t = 0.50 s (and in the average sense, we take 

the “power” P to be wave-energy/t). With 20% of the energy going into creating a 

seismic wave, the intensity of the body wave is estimated to be 
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 

 
2

21
hemisphere 2

0.20 /
0.63W/m

4

K tP
I

A r


  


 

 

using r = 200  10
3
 m and the smaller value for K from part (a). Using instead the larger 

estimate for K, we obtain I = 1.5 W/m
2
. 

 

(c) The surface area of a cylinder of “height” d is 2rd, so the intensity of the surface 

wave is  

 
 

3 2

cylinder

0.20 /
25 10 W/m

2

K tP
I

A rd


   


 

 

using d = 5.0 m, r = 200  10
3
 m, and the smaller value for K from part (a). Using instead 

the larger estimate for K, we obtain I = 58 kW/m
2
. 

 

(d) Although several factors are involved in determining which seismic waves are most 

likely to be detected, we observe that on the basis of the above findings we should expect 

the more intense waves (the surface waves) to be more readily detected. 

 

95. THINK Intensity is power divided by area. For an isotropic source the area is the 

surface area of a sphere. 

 

EXPRESS If P is the power output and I is the intensity a distance r from the source, 

then P = IA = 4r
2
I, where A = 4r

2
 is the surface area of a sphere of radius r. On the 

other hand, the sound level   can be calculated using Eq. 17-29: 

 

 
0

(10 dB) log
I

I
   

where 12 2

0 10 W/mI   is the standard reference intensity. 

 

ANALYZE (a) With r = 10 m and 3 28.0 10 W/mI   , we have 

 
2 2 3 24 4 (10) (8.0 10 W/m ) 10W.P r I       

 

(b) Using the value of P obtained in (a), we find the intensity at 5.0 mr   to be   

 

2

2 2

10 W
0.032  W/m .

4 4  m

P
I

r
   

  
 

(c) Using Eq. 17–29 with I = 0.0080 W/m
2
, we find the sound level to be 

 
3 2

12 2

8.0 10 W/m
(10 dB)log 99dB

10 W/m






 
  

 
. 
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LEARN The ratio of the sound intensities at two different locations can be written as  

 
22

2

/ 4
.

/ 4

I P r r

I P r r

  
      

 

Similarly, the difference in sound level is given by (10 dB)log
I

I
  

 
      

. 

 

96. We note that waves 1 and 3 differ in phase by  radians (so they cancel upon 

superposition).  Waves 2 and 4 also differ in phase by  radians (and also cancel upon 

superposition).   Consequently, there is no resultant wave. 

 

97. Since they oscillate out of phase, then their waves will cancel (producing a node) at a 

point exactly midway between them (the midpoint of the system, where we choose x = 0). 

We note that Figure 17-13, and the n = 3 case of Figure 17-14(a) have this property (of a 

node at the midpoint). The distance x between nodes is /2, where  = v/f and f = 300 

Hz and v = 343 m/s. Thus, x = v/2f = 0.572 m.  

 

Therefore, nodes are found at the following positions: 

 

(0.572m),  0, 1, 2,...x n x n n       

 

(a) The shortest distance from the midpoint where nodes are found is x = 0.  

 

(b) The second shortest distance from the midpoint where nodes are found is x =0.572 m.  

 

(c) The third shortest distance from the midpoint where nodes are found is 2x = 1.14 m. 

 

98. (a) With f = 686 Hz and v = 343 m/s, then the “separation between adjacent 

wavefronts” is  = v/f = 0.50 m. 

 

(b) This is one of the effects that are part of the Doppler phenomena. Here, the 

wavelength shift (relative to its “true” value in part (a)) equals the source speed sv  (with 

appropriate  sign) relative to the speed of sound v : 

 

 sv

v






  . 

 

In front of the source, the shift in wavelength is  –(0.50 m)(110 m/s)/(343 m/s) = –0.16 m, 

and the wavefront separation is 0.50 m  – 0.16 m = 0.34 m.  

 

(c) Behind the source, the shift in wavelength is  +(0.50 m)(110 m/s)/(343 m/s) = +0.16 m, 

and the wavefront separation is 0.50 m + 0.16 m = 0.66 m. 
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99. We use I  r
–2

 appropriate for an isotropic source. We have 

 

 
2

2

1
,

2

r d

r D d

D dI

I D



 


   

where d = 50.0 m. We solve for  

 

     : 2 / 2 1 2 50.0m / 2 1 171m.D D d      

 

100. Pipe A (which can only support odd harmonics – see Eq. 17-41) has length LA.  Pipe 

B (which supports both odd and even harmonics [any value of n] – see Eq. 17-39) has 

length LB = 4LA . Taking ratios of these equations leads to the condition: 

 







n

2 B
 = ( )nodd

A
 . 

Solving for nB we have nB = 2nodd. 

 

(a) Thus, the smallest value of nB  at which a harmonic frequency of B matches that of A is 

nB = 2(1) = 2.  

 

(b) The second smallest value of nB  at which a harmonic frequency of B matches that of A 

is nB = 2(3) = 6. 

 

(c) The third smallest value of nB  at which a harmonic frequency of B matches that of A is 

nB = 2(5) = 10. 

 

101. (a) We observe that “third lowest … frequency” corresponds to harmonic number n 

= 5 for such a system. Using Eq. 17-41, we have 

 

 
5

750Hz
4 4 0.60 m

nv v
f

L
    

so that v = 3.6×10
2
 m/s. 

 

(b) As noted, n = 5; therefore, f1 = 750/5 = 150 Hz. 

 

102. (a) Let P be the power output of the source. This is the rate at which energy crosses 

the surface of any sphere centered at the source and is therefore equal to the product of 

the intensity I at the sphere surface and the area of the sphere. For a sphere of radius r, P 

= 4r
2
 I and I = P/4r

2
. The intensity is proportional to the square of the displacement 

amplitude sm. If we write 2

mI Cs , where C is a constant of proportionality, then 
2 2/ 4mCs P r  . Thus,  

 2/ 4 / 4 (1/ ).ms P r C P C r     
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The displacement amplitude is proportional to the reciprocal of the distance from the 

source. We take the wave to be sinusoidal. It travels radially outward from the source, 

with points on a sphere of radius r in phase. If  is the angular frequency and k is the 

angular wave number, then the time dependence is sin(kr – t). Letting / 4 ,b P C   the 

displacement wave is then given by 

 

1
( , ) sin( ) sin( ).

4

P b
s r t kr t kr t

C r r
   


   

 

(b) Since s and r both have dimensions of length and the trigonometric function is 

dimensionless, the dimensions of b must be length squared. 

 

103. Using Eq. 17-47 with great care (regarding its  sign conventions), we have 

 

 
340 m/s 80.0 m/s

(440 Hz) 400 Hz
340 m/s 54.0 m/s

f
 

   
 

. 

 

104. The source being isotropic means Asphere = 4r
2
 is used in the intensity definition I = 

P/A. Since intensity is proportional to the square of the amplitude (see Eq. 17-27), this 

further implies 
2 2

2

22 2 1

2

1 1 1 2

/ 4

/ 4

m

m

sI P r r

I s P r r

   
         

 

or sm2/sm1 = r1/r2. 

 

(a) I = P/4r
2
 = (10 W)/4(3.0 m)

2
 = 0.088 W/m

2
. 

 

(b) Using the notation A instead of sm for the amplitude, we find 

 

4

3

3.0m
0.75

4.0m

A

A
  . 

 

105. (a) The problem is asking at how many angles will there be “loud” resultant waves, 

and at how many will there be “quiet” ones?  We consider the resultant wave (at large 

distance from the origin) along the +x axis; we note that the path-length difference (for 

the waves traveling from their respective sources) divided by wavelength gives the 

(dimensionless) value n = 3.2, implying a sort of intermediate condition between 

constructive interference (which would follow if, say, n = 3) and destructive interference 

(such as the n = 3.5 situation found in the solution to the previous problem) between the 

waves.  To distinguish this resultant along the +x axis from the similar one along the –x 

axis, we label one with n = +3.2 and the other n = –3.2.  This labeling facilitates the 

complete enumeration of the loud directions in the upper-half plane: n = –3, –2, –1,  0, +1, 
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+2, +3.  Counting also the “other” –3, –2, –1,  0, +1, +2, +3 values for the lower-half plane, 

then we conclude there are a total of  7 + 7 = 14  “loud”  directions. 

 

(b) The labeling also helps us enumerate the quiet directions.  In the upper-half plane we 

find: n =  –2.5, –1.5, –0.5, +0.5, +1.5, +2.5.  This is duplicated in the lower half plane, so 

the total number of quiet directions is 6 + 6 = 12. 

 

106. We are combining two effects: the reception by a moving target with speed u of 

waves emitted by the stationary transmitter/detector, and the subsequent emission of 

those waves by the moving target, which are picked up by the stationary 

transmitter/detector. The first step gives 

S s

v u
f f

v


   

and the second step leads to  

r S s s

v v u v v u
f f f f

v u v v u v u

  
     
   

 

Solving for u, we get  

 

22.2 kHz 18.0 kHz
(343 m/s) 35.84 m/s

22.2 kHz 18.0 kHz

r s

r s

f f
u v

f f

    
     

   
 

 

107. The cork fillings are collected at the pressure anti-nodes when the standing waves 

are set up. The anti-nodes are separated by half a wavelength, / 2.d   Thus, the speed 

of the sound in the gas is 

 

 3(2 ) 2 2(4.46 10 Hz)(0.0920 m) 821m/sv f f d fd       

 

108. When the layer is at height H, a constructive interference implies that the path length 

difference must be an integer multiple of the wavelength: 

 

 2 2 2 2

1 2 ( / 2) 4n L d H d d H d d          

 

On the other hand, when the layer is at height H + h, a destructive interference implies 

that the path length difference must be an odd multiple of half the wavelength: 

 

2 2 2 2

2

1
2 ( ) ( / 2) 4( )

2
n L d H h d d H h d d
 

           
 

 

 

Subtracting the first equation from the second, we obtain 

 

2 2 2 21
4( ) 4

2
H h d H d       

or  
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109. The difference between the sound waves that travel along R1 and thus that bounce 

and travel along R2 is  

d = 25.0
2
 + 12.5

2 
 – 20.0

2
 + 12.5

2 
 + 

1

2
  

 

where the last term is included for the reflection effect (mentioned in the problem).   To 

produce constructive interference at D then we require d = m where m is an integer.  

Since  relates to frequency by the relation = v/f  (with v = 343 m/s) then we have an 

equation for a set of values (depending on m) for the frequency.  We find  

 

 f  =  39.3 Hz   for    m = 1 
 

 f  =  118 Hz    for    m = 2 
 

    f  =  196 Hz    for    m = 3 
 

    f  =  275 Hz    for    m = 4 

and so on.   

 

(a) The lowest frequency is f = 39.3 Hz. 

 

(b) The second lowest frequency is f = 118 Hz. 

 

110. (a) Since the source is moving toward the wall, the frequency of the sound as 

received at the wall is 

 

 
343m/s

' 440Hz 467 Hz.
343m/s 20.0m/sS

v
f f

v v

   
     

   
 

 

(b) Since the person is moving with a speed u toward the reflected sound with frequency  

f , the frequency registered at the source is 

 

 
343m/s 20.0m/s

' 467 Hz 494 Hz.
343m/s

r

v u
f f

v

   
     

   
 

 

111. We find the difference in the two applications of the Doppler formula: 

 

2 1

340 m/s 25 m/s 340 m/s 25 m/s
37 Hz

340m/s 15 m/s 340 m/s 15 m/s 340 m/s 15 m/s
f f f f

   
       

     
 

 

which leads to 24.8 10  Hzf   . 

 


