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Chapter 16 
 

 

1. Let  y1 = 2.0 mm (corresponding to time t1) and y2 = –2.0 mm (corresponding to time t2).  

Then we find  

 

kx + 600t1  +  = sin
1

(2.0/6.0) 

and  

kx + 600t2  +  = sin
1

(–2.0/6.0) . 

 

Subtracting equations gives   

 

600(t1 – t2)  =  sin
1

(2.0/6.0) – sin
1

(–2.0/6.0). 

 

Thus we find t1 – t2  = 0.011 s  (or  1.1 ms). 

 

2. (a) The speed of the wave is the distance divided by the required time. Thus,  

 

 
853 seats

21.87 seats/s 22 seats/s
39 s

v    . 

 

(b) The width w is equal to the distance the wave has moved during the average time 

required by a spectator to stand and then sit. Thus, 

 

(21.87 seats/s)(1.8 s) 39 seatsw vt   . 

 

3. (a) The angular wave number is 12 2
3.49m .

1.80m
k  
  


 

 

(b) The speed of the wave is 
  1.80m 110rad s

31.5m s.
2 2

v f


    
 

 

 

4. The distance d between the beetle and the scorpion is related to the transverse speed tv  

and longitudinal speed v  as 

 t td v t v t   

 

where  tt  and t  are the  arrival times of the wave in the transverse and longitudinal 

directions, respectively. With 50 m/stv   and 150 m/sv  , we have 
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150 m/s
3.0

50 m/s

t

t

t v

t v
   . 

Thus, if  
3 33.0 2.0 4.0 10 s 2.0 10 s ,tt t t t t t t             

 

then 3(150 m/s)(2.0 10 s) 0.30 m 30 cm.d v t       

 

5. (a) The motion from maximum displacement to zero is one-fourth of a cycle. One-

fourth of a period is 0.170 s, so the period is T = 4(0.170 s) = 0.680 s. 

 

(b) The frequency is the reciprocal of the period: 

 

1 1
1.47 Hz.

0.680s
f

T
    

 

(c) A sinusoidal wave travels one wavelength in one period: 

 

1.40m
2.06m s.

0.680s
v

T
  


 

 

6. The slope that they are plotting is the physical slope of the sinusoidal waveshape (not 

to be confused with the more abstract “slope” of its time development; the physical slope 

is an x-derivative, whereas the more abstract “slope” would be the t-derivative).  Thus, 

where the figure shows a maximum slope equal to 0.2 (with no unit), it refers to the 

maximum of the following function: 

 

 sin( ) cos( )m m

dy d
y kx t y k kx t

dx dx
     . 

 
The problem additionally gives t = 0, which we can substitute into the above expression 

if desired.  In any case, the maximum of the above expression is ym k,  where 

 

 
2 2

15.7 rad/m
0.40 m

k
 


   . 

 

Therefore, setting ym k equal to 0.20 allows us to solve for the amplitude ym.  We find 

 

 
0.20

0.0127 m 1.3 cm
15.7 rad/m

my    . 

 

7. (a) From the simple harmonic motion relation um = ym, we have 
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16 m/s
400rad/s.

0.040 m
    

 

Since  = 2f, we obtain f = 64 Hz. 

 

(b) Using v = f, we find  = (80 m/s)/(64 Hz) = 1.26 m 1.3 m . 

 

(c) The amplitude of the transverse displacement is 24.0 cm 4.0 10 m.my      

 

(d) The wave number is k = 2/ = 5.0 rad/m. 

 

(e) As shown in (a), the angular frequency is 2(16 m/s) /(0.040 m) 4.0 10 rad/s.     

  

(f) The function describing the wave can be written as 

 

 0.040sin 5 400y x t     

 

where distances are in meters and time is in seconds. We adjust the phase constant  to 

satisfy the condition y = 0.040 at x = t = 0. Therefore, sin  = 1, for which the “simplest” 

root is  = /2. Consequently, the answer is 

 

0.040sin 5 400 .
2

y x t
 

   
 

 

 

(g) The sign in front of  is minus. 

 

8. Setting x = 0  in  u =  ym cos(k x  t + )  (see Eq. 16-21 or Eq. 16-28) gives 

  

u =  ym cos( t+) 

 
as the function being plotted in the graph.  We note that it has a positive “slope” 

(referring to its t-derivative) at t = 0, or  

 

   2cos sin( 0m m

du d
y t y t

dt dt
                 

 

at t = 0. This implies that – sin > 0 and consequently that  is in either the third or fourth 

quadrant. The graph shows (at t = 0)  u = 4 m/s, and (at some later t)  umax = 5 m/s.  We 

note that umax  = ym . Therefore, 

 

                u = umax cos( t + )|t = 0       =  cos
1 4

5
  =  0.6435 rad  
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(bear in mind that cos = cos()), and we must choose   =  0.64 rad  (since this is 

about  37° and is in fourth quadrant).  Of course, this answer added to 2n is still a valid 

answer (where n is any integer), so that, for example,  = 0.64 + 2 = .64 rad  is also an 

acceptable result. 

 

9. (a) The amplitude ym is half of the 6.00 mm vertical range shown in the figure, that is, 

3.0 mm.my   

 

(b) The speed of the wave is v = d/t = 15 m/s, where d = 0.060 m and t = 0.0040 s.  The 

angular wave number is k = 2 where   = 0.40 m.  Thus,  

 

k = 
2


  =  16 rad/m . 

 

(c) The angular frequency is found from  

 

 = k v = (16 rad/m)(15 m/s) = 2.4×10
2
 rad/s. 

 

(d) We choose the minus sign (between kx and t) in the argument of the sine function 

because the wave is shown traveling to the right (in the +x direction, see Section 16-5).  

Therefore, with SI units understood, we obtain 

 

y = ym sin(kxkvt)  0.0030 sin(16 x  2.4 ×10
2 

 t) . 

 

10. (a) The amplitude is ym = 6.0 cm. 

 

(b) We find  from 2/ = 0.020:  = 1.0×10
2
 cm. 

 

(c) Solving 2f =  = 4.0, we obtain f = 2.0 Hz. 

 

(d) The wave speed is v = f = (100 cm) (2.0 Hz) = 2.0×10
2
 cm/s. 

 

(e) The wave propagates in the –x direction, since the argument of the trig function is kx + 

t instead of kx – t (as in Eq. 16-2). 

 

(f) The maximum transverse speed (found from the time derivative of y) is 

 

  1

max 2 4.0 s 6.0cm 75cm s.mu fy       

 

(g) y(3.5 cm, 0.26 s) = (6.0 cm) sin[0.020(3.5) + 4.0(0.26)] = –2.0 cm. 

 



  CHAPTER 16 756 

11. From Eq. 16-10, a general expression for a sinusoidal wave traveling along the +x 

direction is  

 ( , ) sin( )my x t y kx t    . 

 

(a) The figure shows that at x = 0, 

(0, ) sin( )my t y t    is a positive sine function, that is, 

(0, ) sin .my t y t  Therefore, the phase constant must 

be   . At t = 0, we then have 

 

( ,0) sin( ) sinm my x y kx y kx    

 

which is a negative sine function. A plot of y(x, 0) is 

depicted on the right. 

 

(b) From the figure we see that the amplitude is ym = 4.0 cm.  

 

(c) The angular wave number is given by k = 2/ = /10 = 0.31 rad/cm. 

 

(d) The angular frequency is  = 2/T = /5 = 0.63 rad/s.  

 

(e) As found in part (a), the phase is   . 

 

(f) The sign is minus since the wave is traveling in the +x direction. 

 

(g) Since the frequency is f = 1/T = 0.10 s, the speed of the wave is v = f = 2.0 cm/s. 

 

(h) From the results above, the wave may be expressed as 

 

 ( , ) 4.0sin 4.0sin
10 5 10 5

x t x t
y x t

   


   
        

   
. 

 

Taking the derivative of y with respect to t, we find 

 

 ( , ) 4.0 cos
10 5

y x t
u x t

t t

     
     
    

 

 

which yields u(0, 5.0) = –2.5 cm/s. 

 

12. With length in centimeters and time in seconds, we have 

 

u =  
du

dt
  = (225) sin (x  15t) . 
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Squaring this and adding it to the square of 15y, we have 

 

u
2
 + (15y)

2
  =  (225 )

2
 [sin

2
 (x  15 t) + cos

2
 (x  15 t)] 

 

so that 

 2 2 2 2(225 ) (15 ) 15 15 .u y y       

 

Therefore, where y = 12, u must be  135.  Consequently, the speed there is 424 cm/s = 

4.24 m/s. 

 

13. Using v = f, we find the length of one cycle of the wave is  

 

 = 350/500 = 0.700 m = 700 mm. 

 

From f = 1/T, we find the time for one cycle of oscillation is T = 1/500 = 2.00  10
–3

 s = 

2.00 ms. 

 

(a) A cycle is equivalent to 2 radians, so that /3 rad corresponds to one-sixth of a cycle. 

The corresponding length, therefore, is /6 = (700 mm)/6 = 117 mm. 

 

(b) The interval 1.00 ms is half of T and thus corresponds to half of one cycle, or half of 

2 rad. Thus, the phase difference is (1/2)2 =  rad. 

 

14. (a) Comparing with Eq. 16-2, we see that k = 20/m and  = 600 rad/s. Therefore, the 

speed of the wave is (see Eq. 16-13) v = /k = 30 m/s. 

 

(b) From Eq. 16–26, we find 

 

2 2

15
0.017kg m 17g m.

30v
   


  

 

15. THINK Numerous physical properties of a traveling wave can be deduced from its 

wave function.   

 

EXPRESS We first recall that from Eq. 16-10, a general expression for a sinusoidal wave 

traveling along the +x direction is  

 

 ( , ) sin( )my x t y kx t     

 

where my  is the amplitude, 2 /k    is the angular wave number, 2 /T   is the 

angular frequency and is the phase constant. The wave speed is given by v =   , 

where  is the tension in the string and  is the linear mass density of the string. 
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ANALYZE (a) The amplitude of the wave is ym=0.120 mm. 

 

(b) The wavelength is  = v/f =   /f and the angular wave number is 

 

  12 0.50kg m
2 2 100Hz 141m .

10 N
k f 
     





 

 

(c) The frequency is f = 100 Hz, so the angular frequency is  

 

 = 2f = 2(100 Hz) = 628 rad/s. 

 

(d) We may write the string displacement in the form y = ym sin(kx + t). The plus sign is 

used since the wave is traveling in the negative x direction.  

 

LEARN In summary, the wave can be expressed as 

 

     1 10.120mm sin 141m  + 628s .y x t  
 

 

 

16. We use /v      to obtain 

 

 
2 2

2
2 1

1

180m/s
120 N 135N.

170m/s

v

v

   
     

  
   

 

17. (a) The wave speed is given by v = /T = /k, where  is the wavelength, T is the 

period,  is the angular frequency (2/T), and k is the angular wave number (2/). The 

displacement has the form y = ym sin(kx + t), so k = 2.0 m
–1

 and  = 30 rad/s. Thus  

 

v = (30 rad/s)/(2.0 m
–1

) = 15 m/s. 

 

(b) Since the wave speed is given by v =   , where  is the tension in the string and  

is the linear mass density of the string, the tension is 

 

   
22 41.6 10 kg m 15m s 0.036 N.v       

 

18. The volume of a cylinder of height  is V = r
2

= d
2

/4. The strings are long, 

narrow cylinders, one of diameter d1 and the other of diameter d2 (and corresponding 

linear densities 1 and 2). The mass is the (regular) density multiplied by the volume: m 

= V, so that the mass-per-unit length is  
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2 24

4

m d d 


 
    

and their ratio is 

 

2
2

1 1 1

2

2 2 2

4
.

4

d d

d d

 

 

 
   

 
 

 

Therefore, the ratio of diameters is 

 1 1

2 2

3.0
3.2.

0.29

d

d




    

 

19. THINK The speed of a transverse wave in a rope is related to the tension in the rope 

and the linear mass density of the rope. 

 

EXPRESS The wave speed v is given by v =   , where  is the tension in the rope 

and  is the rope’s linear mass density, which is defined as the mass per unit length of 

rope  = m/L.  

 

ANALYZE With a linear mass density of 

 

 = m/L = (0.00 kg)/(2.00 m) = 0.0300 kg/m, 

 

we find the wave speed to be 

 
500 N

129m s.
0.0300kg m

v



    

 

LEARN Since 1/v  , the thicker the rope (larger ), the slower the speed of the rope 

under the same tension .   
 

20. From v    , we have 

 
new newnew

old old old

2.
v

v

 

 
   

 

21. The pulses have the same speed v. Suppose one pulse starts from the left end of the 

wire at time t = 0. Its coordinate at time t is x1 = vt. The other pulse starts from the right 

end, at x = L, where L is the length of the wire, at time t = 30 ms. If this time is denoted 

by t0, then the coordinate of this wave at time t is x2 = L – v(t – t0). They meet when x1 = 

x2, or, what is the same, when vt = L – v(t – t0). We solve for the time they meet: t = (L + 

vt0)/2v and the coordinate of the meeting point is x = vt = (L + vt0)/2. Now, we calculate 

the wave speed: 
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(250 N)(10.0m)
158m/s.

0.100kg
  

L
v

m


 

 

Here  is the tension in the wire and L/m is the linear mass density of the wire. The 

coordinate of the meeting point is 

 
310.0m (158m/s) (30.0 10 s)

7.37m.
2

x
 

   

 

This is the distance from the left end of the wire. The distance from the right end is L – x 

= (10.0 m – 7.37 m ) = 2.63 m. 

 

22. (a) The general expression for y (x, t) for the wave is y (x, t) = ym sin(kx – t), which, 

at x = 10 cm, becomes y (x = 10 cm, t) = ym sin[k(10 cm – t)]. Comparing this with the 

expression given, we find  = 4.0 rad/s, or f = /2 = 0.64 Hz. 

 

(b) Since k(10 cm) = 1.0, the wave number is k = 0.10/cm. Consequently, the wavelength 

is  = 2/k = 63 cm. 

 

(c) The amplitude is 5.0 cm.my   

 

(d) In part (b), we have shown that the angular wave number is k = 0.10/cm. 

 

(e) The angular frequency is  = 4.0 rad/s. 

 

(f) The sign is minus since the wave is traveling in the +x direction. 

 

Summarizing the results obtained above by substituting the values of k and  into the 

general expression for y (x, t), with centimeters and seconds understood, we obtain 

 

( , ) 5.0sin (0.10 4.0 ).y x t x t   

 

(g) Since / / ,v k     the tension is 

 
2 1 2

2

2 1 2

(4.0g / cm)(4.0s )
6400g cm/s 0.064 N.

(0.10cm )




    

k

 
  

 

23. THINK Various properties of the sinusoidal wave can be deduced from the plot of its 

displacement as a function of position. 

 

EXPRESS In analyzing the properties of the wave, we first recall that from Eq. 16-10, a 

general expression for a sinusoidal wave traveling along the +x direction is  
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 ( , ) sin( )my x t y kx t     

 

where 
my  is the amplitude, 2 /k    is the angular wave number, 2 /T   is the 

angular frequency and is the phase constant. The wave speed is given by v =   , 

where  is the tension in the string and  is the linear mass density of the string. 

 

ANALYZE (a) We read the amplitude from the graph. It is about 5.0 cm. 

 

(b) We read the wavelength from the graph. The curve crosses y = 0 at about x = 15 cm 

and again with the same slope at about x = 55 cm, so  

 

 = (55 cm – 15 cm) = 40 cm = 0.40 m. 

 

(c) The wave speed is  

3

3.6 N
12 m/s.

25 10 kg/m
v



 
  


 

 

(d) The frequency is f = v/ = (12 m/s)/(0.40 m) = 30 Hz and the period is  

 

T = 1/f = 1/(30 Hz) = 0.033 s. 

 

(e) The maximum string speed is  

 

um = ym = 2fym = 2(30 Hz) (5.0 cm) = 940 cm/s = 9.4 m/s. 

 

(f) The angular wave number is k = 2/ = 2/(0.40 m) = 16 m
–1

. 

 

(g) The angular frequency is  = 2f = 2(30 Hz) = 1.9×10
2
 rad/s . 

 

(h) According to the graph, the displacement at x = 0 and t = 0 is 4.0  10
–2

 m. The 

formula for the displacement gives y(0, 0) = ym sin . We wish to select  so that  

 

(5.0  10
–2

 m)sin  = (4.0  10
–2

 m). 

 

The solution is either 0.93 rad or 2.21 rad. In the first case the function has a positive 

slope at x = 0 and matches the graph. In the second case it has negative slope and does not 

match the graph. We select  = 0.93 rad.  

 

(i) The string displacement has the form y (x, t) = ym sin(kx + t + ). A plus sign appears 

in the argument of the trigonometric function because the wave is moving in the negative 

x direction.  
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LEARN Summarizing the results obtained above, the wave function of the traveling 

wave can be written as 

 

 2 1 1( , ) 5.0 10 m sin (16m ) (190s ) 0.93 .       y x t x t  

 

24. (a) The tension in each string is given by  = Mg/2. Thus, the wave speed in string 1 is 

 
2

1

1 1

(500g)(9.80m/s )
28.6m/s.

2 2(3.00g/m)

Mg
v



 
     

 

(b) And the wave speed in string 2 is 

 
2

2

2

(500g)(9.80m/s )
22.1m/s.

2 2(5.00g/m)

Mg
v


    

 

(c) Let 1 1 1 2 2 2/(2 ) /(2 )v M g v M g    and M1 + M2 = M. We solve for M1 and 

obtain 

1

2 1

500g
187.5g 188g.

1 / 1 5.00 / 3.00

M
M

 
   

 
 

 

(d) And we solve for the second mass: M2 = M – M1 = (500 g – 187.5 g)  313 g. 

 

25. (a) The wave speed at any point on the rope is given by v =   , where  is the 

tension at that point and  is the linear mass density. Because the rope is hanging the 

tension varies from point to point. Consider a point on the rope a distance y from the 

bottom end. The forces acting on it are the weight of the rope below it, pulling down, and 

the tension, pulling up. Since the rope is in equilibrium, these forces balance. The weight 

of the rope below is given by gy, so the tension is  = gy. The wave speed is 

/ . v gy gy   

 

(b) The time dt for the wave to move past a length dy, a distance y from the bottom end, is 

dt dy v dy gy   and the total time for the wave to move the entire length of the rope 

is 

0
0

2 2 .

L

L dy y L
t

g ggy
    

 

26. Using Eq. 16–33 for the average power and Eq. 16–26 for the speed of the wave, we 

solve for f = /2: 
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avg

3

21 1 2(85.0W)
198 Hz.

2 2 (7.70 10 m)/ (36.0 N)(0.260kg / 2.70m)m

P
f

y   


  
  

 

 

27. We note from the graph (and from the fact that we are dealing with a cosine-squared, 

see Eq. 16-30) that the wave frequency is f = 
1

2 ms
 = 500 Hz, and that the wavelength = 

0.20 m.  We also note from the graph that the maximum value of dK/dt is 10 W.  Setting 

this equal to the maximum value of Eq. 16-29 (where we just set that cosine term equal to 

1) we find 
1

2
 v 2 

ym
2
 = 10 

 

with SI units understood.  Substituting in  0.002 kg/m,= 2f  and  v = f  , we solve 

for the wave amplitude:  

 
2 3

10
0.0032 m

2
my

f 
  . 

28. Comparing 
1 1( , ) (3.00 mm)sin[(4.00 m ) (7.00 s ) ]y x t x t    

 

to the general expression ( , ) sin( ),my x t y kx t   we see that 14.00 mk  and 

7.00 rad/s  . The speed of the wave is 

  
1/ (7.00 rad/s)/(4.00 m ) 1.75 m/s.v k     

 

29. The wave  
1 1 1/ 2( , ) (2.00 mm)[(20 m ) (4.0 s ) ]y x t x t    

 

is of the form ( )h kx t with angular wave number 120 mk   and angular 

frequency 4.0 rad/s  . Thus, the speed of the wave is 

  
1/ (4.0 rad/s)/(20 m ) 0.20 m/s.v k     

  

30. The wave 1 1( , ) (4.00 mm) [(30 m ) (6.0 s ) ]y x t h x t    is of the form ( )h kx t with 

angular wave number 130 mk   and angular frequency 6.0 rad/s  . Thus, the speed 

of the wave is  
1/ (6.0 rad/s)/(30 m ) 0.20 m/s.v k     

 

31. THINK By superposition principle, the resultant wave is the algebraic sum of the two 

interfering waves.  

 

EXPRESS The displacement of the string is given by  
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sin( ) sin( )m my y kx t y kx t           1 1
2 2

2 cos sinmy kx t     , 

 

where we have used  

    
1 1

sin sin 2sin cos
2 2

         . 

 

ANALYZE The two waves are out of phase by  = /2, so the amplitude is  

 

 1
2

2 cosmA y  2 cos( / 4) 1.41m my y   . 

 

LEARN The interference between two waves can be constructive or destructive, 

depending on their phase difference.   

 

32. (a) Let the phase difference be . Then from Eq. 16-52, 2ym cos(/2) = 1.50ym, which 

gives 

1 1.50
2cos 82.8 .

2

m

m

y

y
   
   

 
 

 

(b) Converting to radians, we have  = 1.45 rad. 

 

(c) In terms of wavelength (the length of each cycle, where each cycle corresponds to 2 

rad), this is equivalent to 1.45 rad/2 = 0.230 wavelength. 

 

33. (a) The amplitude of the second wave is 9.00 mmmy  , as stated in the problem. 

 

(b) The figure indicates that  = 40 cm = 0.40 m, which implies that the angular wave 

number is k = 2/0.40 = 16  rad/m.    

 

(c) The figure (along with information in the problem) indicates that the speed of each 

wave is v = dx/t = (56.0 cm)/(8.0 ms) = 70 m/s.  This, in turn, implies that the angular 

frequency is  

 = k v =1100 rad/s = 1.110
3
 rad/s. 

 

(d) The figure depicts two traveling waves (both going in the –x direction) of equal 

amplitude ym.  The amplitude of their resultant wave, as shown in the figure, is ym = 4.00 

mm.  Equation 16-52 applies: 

 

                  ym = 2ym  cos( 
1

2
 )       cos

1
(2.00/9.00) = 2.69 rad. 

 

(e) In making the plus-or-minus sign choice in y = ym sin(k x  t + ), we recall the 

discussion in section 16-5, where it was shown that sinusoidal waves traveling in the –x 

direction are of the form y = ym sin(k x  t + ).  Here,  should be thought of as the 
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phase difference between the two waves (that is,  = 0 for wave 1 and = 2.69 rad for 

wave 2).   

 

In summary, the waves have the forms (with SI units understood): 

 

y1 = (0.00900)sin(16 x t)   and   y2 = (0.00900)sin(16 x  t + ) . 

 

34. (a) We use Eq. 16-26 and Eq. 16-33 with  = 0.00200 kg/m and  ym = 0.00300 m.  

These give 775 m/sv      and   

Pavg = 
1

2
 v 

2
ym

2
 = 10 W. 

 

(b) In this situation, the waves are two separate string (no superposition occurs).  The 

answer is clearly twice that of part (a); P = 20 W. 

 

(c) Now they are on the same string.  If they are interfering constructively (as in Fig. 16-

13(a)) then the amplitude ym is doubled, which means its square ym
2
 increases by a factor 

of 4.  Thus, the answer now is four times that of part (a);  P = 40 W. 

 

(d) Equation 16-52 indicates in this case that the amplitude (for their superposition) is  

2 ymcos(0.2) = 1.618 times the original amplitude ym.  Squared, this results in an increase 

in the power by a factor of 2.618.  Thus, P = 26 W in this case. 

 

(e) Now the situation depicted in Fig. 16-13(b) applies, so P = 0. 

 

35. THINK We use phasors to add the two waves and calculate the amplitude of the 

resultant wave.  

 

EXPRESS The phasor diagram is shown below: y1m and y2m represent the original waves 

and ym represents the resultant wave. The phasors corresponding to the two constituent 

waves make an angle of 90° with each other, so the triangle is a right triangle. 

 

 
 

ANALYZE The Pythagorean theorem gives  
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2 2 2 2 2 2

1 2 (3.0cm) (4.0cm) (25cm)m m my y y     . 

 

Thus, the amplitude of the resultant wave is ym = 5.0 cm. 

 

LEARN When adding two waves, it is convenient to represent each wave with a phasor, 

which is a vector whose magnitude is equal to the amplitude of the wave. The same result, 

however, could also be obtained as follows: Writing the two waves as 1 3sin( )y kx t   

and 2 4sin( / 2) 4cos( )y kx t kx t       , we have, after a little algebra,  

 

1 2

3 4
3sin( ) 4cos( ) 5 sin( ) cos( )

5 5

5sin( )

y y y kx t kx t kx t kx t

kx t

   

 

 
          

 

  

 

 

where 1tan (4 /3)  . In deducing the phase , we set cos 3/5   and sin 4 /5  , and 

use the relation cos sin sin cos sin( )        . 

 

36. We see that y1 and y3  cancel (they are 180º) out of phase, and y2 cancels with y4 

because their phase difference is also equal to  rad (180º).  There is no resultant wave in 

this case. 

 

37. (a) Using the phasor technique, we think of these as two “vectors” (the first of 

“length” 4.6 mm and the second of “length” 5.60 mm) separated by an angle of  = 0.8 

radians (or 144º).  Standard techniques for adding vectors then lead to a resultant vector 

of length 3.29 mm. 

 

(b) The angle (relative to the first vector) is equal to 88.8º (or 1.55 rad).  

 

(c) Clearly, it should in “in phase” with the result we just calculated, so its phase angle 

relative to the first phasor should be also 88.8º (or 1.55 rad). 

 

38. (a) As shown in Figure 16-13(b) in the textbook, the least-amplitude resultant wave is 

obtained when the phase difference is  rad.  

 

(b) In this case, the amplitude is (8.0 mm – 5.0 mm) = 3.0 mm. 

 

(c) As shown in Figure 16-13(a) in the textbook, the greatest-amplitude resultant wave is 

obtained when the phase difference is 0 rad. 

 

(d) In the part (c) situation, the amplitude is (8.0 mm + 5.0 mm) = 13 mm. 

 

(e) Using phasor terminology, the angle “between them” in this case is /2 rad (90º), so 

the Pythagorean theorem applies: 
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2 2(8.0 mm) (5.0 mm)  = 9.4 mm . 

 

39. The phasor diagram is shown to the right. We use the cosine theorem: 

 2 2 2 2 2

1 2 1 2 1 2 1 22 cos 2 cos .m m m m m m m m my y y y y y y y y        

We solve for cos : 
 

2 2 2 2 2 2

1 2

1 2

(9.0mm) (5.0mm) (7.0mm)
cos 0.10.

2 2(5.0mm)(7.0mm)

m m m

m m

y y y

y y


   
  

 

The phase constant is therefore  = 84°. 

 

40. The string is flat each time the particle passes through its 

equilibrium position. A particle may travel up to its positive amplitude point and back to 

equilibrium during this time. This describes half of one complete cycle, so we conclude T 

= 2(0.50 s) = 1.0 s. Thus, f = 1/T = 1.0 Hz, and the wavelength is 

 

10cm/s
10 cm.

1.0Hz

v

f
     

 

41. THINK A string clamped at both ends can be made to oscillate in standing wave 

patterns. 

 

EXPRESS The wave speed is given by ,v    where  is the tension in the string and 

 is the linear mass density of the string. Since the mass density is the mass per unit 

length,  = M/L, where M is the mass of the string and L is its length. The possible 

wavelengths of a standing wave are given by n = 2L/n, where L is the length of the string 

and n is an integer. 

 

ANALYZE (a) The wave speed is  

 

(96.0 N) (8.40 m)
82.0 m/s.

0.120 kg

L
v

M
  


 

 

(b) The longest possible wavelength  for a standing wave is related to the length of the 

string by L = /2 (n = 1), so  = 2L = 2(8.40 m) = 16.8 m. 

 

(c) The corresponding frequency is f1 = v/ = (82.0 m/s)/(16.8 m) = 4.88 Hz. 

 

LEARN The resonant frequencies are given by  

 

1
2 / 2

n

v v v
f n nf

L n L
    ,  
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where f1 = v/ = v/2L. The oscillation mode with n = 1 is called the fundamental mode or 

the first harmonic. 

 

42. Use Eq. 16-66 (for the resonant frequencies) and Eq. 16-26 ( / )v    to find fn: 

 

2 2
n

nv n
f

L L




   

which gives f3 = (3/2L) i  . 

 

(a) When f = 4i, we get the new frequency 

 

3 3

3
2 .

2

f
f f

L




    

 

(b) And we get the new wavelength 3 3

3

2
.

3

v L

f


    


 

 

43. THINK A string clamped at both ends can be made to oscillate in standing wave 

patterns. 

 

EXPRESS Possible wavelengths are given by  n = 2L/n, where L is the length of the 

wire and n is an integer. The corresponding frequencies are fn = v/n = nv/2L, where v is 

the wave speed. The wave speed is given by / ,v L M     where  is the tension 

in the wire,  is the linear mass density of the wire, and M is the mass of the wire.  = 

M/L was used to obtain the last form. Thus,  

 

250 N
 (7.91 Hz).

2 2 2 (10.0 m) (0.100 kg)
n

n L n n
f n

L M LM

 
     

 

ANALYZE (a) The lowest frequency is 1 7.91 Hz.f   

 

(b) The second lowest frequency is 2 2(7.91 Hz) 15.8 Hz.f    

 

(c) The third lowest frequency is 3 3(7.91 Hz) 23.7 Hz.f    

 

LEARN The frequencies are integer multiples of the fundamental frequency f1. This 

means that the difference between any successive pair of the harmonic frequencies is 

equal to the fundamental frequency f1. 
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44. (a) The wave speed is given by 
3

7.00 N
66.1m/s.

2.00  10 kg/1.25m
v


  






 

 

(b) The wavelength of the wave with the lowest resonant frequency f1 is 1 = 2L, where L 

= 125 cm. Thus, 

1

1

66.1 m/s
26.4 Hz.

2(1.25 m)

v
f   


 

 

45. THINK The difference between any successive pair of the harmonic frequencies is 

equal to the fundamental frequency. 

 

EXPRESS The resonant wavelengths are given by n = 2L/n, where L is the length of the 

string and n is an integer, and the resonant frequencies are  

 

fn= v/ = nv/2L = nf1, 

 

where v is the wave speed. Suppose the lower frequency is associated with the integer n. 

Then, since there are no resonant frequencies between, the higher frequency is associated 

with n + 1. The frequency difference between successive modes is 

1 1
2

n n

v
f f f f

L
     . 

 

ANALYZE (a) The lowest possible resonant frequency is 

 

1 1 420 Hz 315 Hz 105 Hzn nf f f f       . 

 

(b) The longest possible wavelength is  = 2L. If f1 is the lowest possible frequency then  

 

v = f1 = (2L)f1 = 2(0.75 m)(105 Hz) = 158 m/s. 

 

LEARN Since 315 Hz = 3(105 Hz) and 420 Hz = 4(105 Hz), the two frequencies 

correspond to n = 3 and n = 4, respectively.   

  

46. The nth resonant frequency of string A is 

 

, ,
2 2

A
n A

A

v n
f n

l L




   

while for string B it is 

, ,

1
.

2 8 4

B
n B n A

B

v n
f n f

l L




    
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(a) Thus, we see f1,A = f4,B. That is, the fourth harmonic of B matches the frequency of A’s 

first harmonic. 

 

(b) Similarly, we find f2,A = f8,B. 

 

(c) No harmonic of B would match 
3,

3 3
.

2 2

A
A

A

v
f

l L




   

 

47. The harmonics are integer multiples of the fundamental, which implies that the 

difference between any successive pair of the harmonic frequencies is equal to the 

fundamental frequency.   Thus,  

f1 = (390 Hz – 325 Hz) = 65 Hz. 

 

This further implies that the next higher resonance above 195 Hz should be (195 Hz + 65 

Hz) = 260 Hz. 

 

48. Using Eq. 16-26, we find the wave speed to be  

 
665.2 10 N

4412m/s.
3.35kg/ m

v





    

 

The corresponding resonant frequencies are 

 

, 1,2,3,
2 2

n

nv n
f n

L L




    

 

(a) The wavelength of the wave with the lowest (fundamental) resonant frequency f1 is 1 

= 2L, where L = 347 m. Thus, 

 

1

1

4412 m/s
6.36 Hz.

2(347 m)

v
f   


 

 

(b) The frequency difference between successive modes is  

 

1

4412 m/s
6.36 Hz.

2 2(347 m)
n n

v
f f f

L
       

 

49. (a) Equation 16-26 gives the speed of the wave: 

 

2

3

150 N
144.34 m/s 1.44 10 m/s.

7.20 10 kg/m
v



 
    


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(b) From the figure, we find the wavelength of the standing wave to be  

 

 = (2/3)(90.0 cm) = 60.0 cm. 

(c) The frequency is 
21.44 10 m/s

241Hz.
0.600m

v
f


  


 

 

50. From the x = 0 plot (and the requirement of an anti-node at x = 0), we infer a standing 

wave function of the form 

( , ) (0.04)cos( )sin( ),y x t kx t   

 

where 2 /  rad/sT    , with length in meters and time in seconds. The parameter k is 

determined by the existence of the node at x = 0.10 (presumably the first node that one 

encounters as one moves from the origin in the positive x direction). This implies k(0.10) 

= /2 so that k = 5 rad/m. 

 

(a) With the parameters determined as discussed above and t = 0.50 s, we find 

 

(0.20 m, 0.50 s) 0.04cos( )sin( ) 0.040m .y kx t    

 

(b) The above equation yields (0.30 m, 0.50 s) 0.04cos( )sin( ) 0 .y kx t    

 

(c) We take the derivative with respect to time and obtain, at t = 0.50 s and x = 0.20 m, 

 

   0.04 cos cos 0
dy

u kx t
dt

     . 

 
 d) The above equation yields u = –0.13 m/s at t = 1.0 s. 

 

(e) The sketch of this function at t = 0.50 s for 0  x  0.40 m is shown next: 
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51. THINK In this problem, in order to produce the standing wave pattern, the two waves 

must have the same amplitude, the same angular frequency, and the same angular wave 

number, but they travel in opposite directions.  

 

EXPRESS We take the two waves to be  

 

y1 = ym sin(kx – t),   y2 = ym sin(kx + t). 

 

The superposition principle gives 

 

 1 2( , ) ( , ) ( , ) sin( ) sin( ) 2 sin cosm m my x t y x t y x t y kx t y kx t y kx t          . 

 

ANALYZE (a) The amplitude ym is half the maximum displacement of the standing 

wave, or (0.01 m)/2 = 5.0  10
–3

 m. 

 

(b) Since the standing wave has three loops, the string is three half-wavelengths long: L = 

3/2, or  = 2L/3. With L = 3.0m,  = 2.0 m. The angular wave number is  

 

k = 2/ = 2/(2.0 m) = 3.1 m
–1

. 

 

(c) If v is the wave speed, then the frequency is 

 
 

3 100m s3
50 Hz.

2 2 3.0m

v v
f

L
   


 

 

The angular frequency is the same as that of the standing wave, or  

 

 = 2 f = 2(50 Hz) = 314 rad/s. 

 

(d) If one of the waves has the form 2( , ) sin( )my x t y kx t  , then the other wave must 

have the form 1( , ) sin( )my x t y kx t  . The sign in front of  for '( , )y x t is minus. 

 

LEARN Using the results above, the two waves can be written as 

 

     3 1 1

1 5.0 10 m sin 3.14m 314sy x t     
 

 

and 

     3 1 1

2 5.0 10 m sin 3.14m 314s .y x t     
 

 

 

52. Since the rope is fixed at both ends, then the phrase “second-harmonic standing wave 

pattern” describes the oscillation shown in Figure 16-20(b), where (see Eq. 16-65) 

 

,
v

L f
L

   . 
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(a) Comparing the given function with Eq. 16-60, we obtain k = /2 and  = 12 rad/s. 

Since k = 2/ then 

2
4.0m 4.0m.

2
L

 
     


 

 

(b) Since  = 2f, then 2 12  rad/s,f    which yields 

 

 6.0Hz       24m/s.f v f      

 

(c) Using Eq. 16-26, we have 

200 N
    24 m/s

/(4.0 m)
v

m




    

which leads to m = 1.4 kg. 

 

(d) With 

3 3(24 m/s)
9.0Hz

2 2(4.0 m)

v
f

L
    

the period is T = 1/f = 0.11 s. 

 

53. (a) The amplitude of each of the traveling waves is half the maximum displacement of 

the string when the standing wave is present, or 0.25 cm. 

 

(b) Each traveling wave has an angular frequency of  = 40 rad/s and an angular wave 

number of k = /3 cm
–1

. The wave speed is  

 

v = /k = (40 rad/s)/(/3 cm
–1

) = 1.2×10
2
 cm/s. 

 

(c) The distance between nodes is half a wavelength: d = /2 = /k = /(/3 cm
–1

) = 3.0 

cm. Here 2/k was substituted for . 

 

(d) The string speed is given by  

 

u(x, t) = y/t = –ymsin(kx)sin(t). 

 

For the given coordinate and time, 

 

 1 1 9
(40  rad/s) (0.50cm) sin cm (1.5cm) sin  40 s s 0.

3 8
u        
                

 

 

54. Reference to point A as an anti-node suggests that this is a standing wave pattern and 

thus that the waves are traveling in opposite directions.  Thus, we expect one of them to 

be of the form y = ym sin(kx + t) and the other to be of the form y = ym sin(kx – t).   
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(a) Using Eq. 16-60, we conclude that ym = 
1

2
 (9.0 mm) = 4.5 mm, due to the fact that the 

amplitude of the standing wave is  
1

2
 (1.80 cm) = 0.90 cm = 9.0 mm.   

 

(b) Since one full cycle of the wave (one wavelength) is 40 cm,  k = 2  16 m
1

.   

 

(c) The problem tells us that the time of half a full period of motion is 6.0 ms, so T = 12 

ms and Eq. 16-5 gives = 5.2 10
2
 rad/s.   

 

(d) The two waves are therefore  

 

                                y1(x, t) = (4.5 mm) sin[(16 m
1

)x +  (520 s
1

)t]     

and 

y2(x, t) = (4.5 mm) sin[(16 m
1

)x –  (520 s
1

)t] . 

 

If one wave has the form ( , ) sin( )my x t y kx t  as in y1, then the other wave must be of 

the form ( , ) sin( )my x t y kx t   as in y2. Therefore, the sign in front of  is minus. 

 

55. Recalling the discussion in section 16-12, we observe that this problem presents us 

with a standing wave condition with amplitude 12 cm.  The angular wave number and 

frequency are noted by comparing the given waves with the form y = ym sin(k x  t).  

The anti-node moves through 12 cm in simple harmonic motion, just as a mass on a 

vertical spring would move from its upper turning point to its lower turning point, which 

occurs during a half-period.  Since the period T is related to the angular frequency by Eq. 

15-5, we have 

2 2
0.500 s.

4.00
T

 

 
     

 

Thus, in a time of  t = 
1

2
 T = 0.250 s, the wave moves a distance x = vt  where the speed of 

the wave is / 1.00 m/s.v k   Therefore, x = (1.00 m/s)(0.250 s) = 0.250 m. 

 

56. The nodes are located from vanishing of the spatial factor sin 5x = 0 for which the 

solutions are 

1 2 3
5 0, ,2 ,3 , 0, , , ,

5 5 5
x x        

 

(a) The smallest value of x that corresponds to a node is x = 0. 

 

 

(b) The second smallest value of x that corresponds to a node is x = 0.20 m. 

 

(c) The third smallest value of x that corresponds to a node is x = 0.40 m. 
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(d) Every point (except at a node) is in simple harmonic motion of frequency f = /2 = 

40/2 = 20 Hz. Therefore, the period of oscillation is T = 1/f = 0.050 s. 

 

(e) Comparing the given function with Eq. 16-58 through Eq. 16-60, we obtain 

 

1 20.020sin(5 40 ) and 0.020sin(5 40 )y x t y x t         

 

for the two traveling waves. Thus, we infer from these that the speed is v = /k = 40/5 

= 8.0 m/s. 

 

(f) And we see the amplitude is ym = 0.020 m. 

 

(g) The derivative of the given function with respect to time is 

 

(0.040)(40 )sin(5 )sin(40 )
y

u x t
t


     


 

 

which vanishes (for all x) at times such as sin(40t) = 0. Thus, 

 

1 2 3
40 0, ,2 ,3 , 0, , , ,

40 40 40
t t        

 

Thus, the first time in which all points on the string have zero transverse velocity is when  

t = 0 s. 

 

(h) The second time in which all points on the string have zero transverse velocity is 

when t = 1/40 s = 0.025 s. 

 

(i) The third time in which all points on the string have zero transverse velocity is when  

t = 2/40 s = 0.050 s. 

 

57. (a) The angular frequency is  = 8.00/2 = 4.00 rad/s, so the frequency is  

 

f = /2 = (4.00 rad/s)/2 = 2.00 Hz. 

 

(b) The angular wave number is k = 2.00/2 = 1.00 m
–1

, so the wavelength is  

 

 = 2/k = 2/(1.00 m
–1

) = 2.00 m. 

 

(c) The wave speed is 

(2.00m)(2.00Hz) = 4.00 m/s.v f    
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(d) We need to add two cosine functions. First convert them to sine functions using cos  

= sin ( + /2), then apply  

 

cos cos sin sin 2sin cos
2 2 2 2

2cos cos .
2 2

   
   

   

            
            

       

    
    

   

 

 

Letting  = kx and  = t, we find 

 

cos( ) cos( ) 2 cos( )cos( ).m m my kx t y kx t y kx t       

 

Nodes occur where cos(kx) = 0 or kx = n + /2, where n is an integer (including zero). 

Since k = 1.0 m
–1

, this means  1
2

(1.00m)x n  . Thus, the smallest value of x that 

corresponds to a node is x = 0.500 m (n = 0).  

 

(e) The second smallest value of x that corresponds to a node is x = 1.50 m (n = 1).  

 

(f) The third smallest value of x that corresponds to a node is x = 2.50 m (n = 2). 

 

(g) The displacement is a maximum where cos(kx) = 1. This means kx = n, where n is 

an integer. Thus, x = n(1.00 m). The smallest value of x that corresponds to an anti-node 

(maximum) is x = 0 (n = 0).  

 

(h) The second smallest value of x that corresponds to an anti-node (maximum) is 

1.00 mx  (n = 1).  

 

(i) The third smallest value of x that corresponds to an anti-node (maximum) is 

2.00 mx  (n = 2). 

 

58. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 

frequencies can be written as 

 

 , 1,2,3,
2 2 2

nv n n mg
f n

L L L



 
     

 

(a) The mass that allows the oscillator to set up the 4th harmonic ( 4n  ) on the string is  

 

 
2 2 2 2

2 2 2

4

4 4(1.20 m) (120 Hz) (0.00160 kg/m)
0.846 kg

(4) (9.80 m/s )n

L f
m

n g





    

 

(b) If the mass of the block is 1.00 kgm  , the corresponding n is  
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2 2 2 2

2

4 4(1.20 m) (120 Hz) (0.00160 kg/m)
3.68

9.80 m/s

L f
n

g


    

 

which is not an integer. Therefore, the mass cannot set up a standing wave on the string. 

 

59. (a) The frequency of the wave is the same for both sections of the wire. The wave 

speed and wavelength, however, are both different in different sections. Suppose there are 

n1 loops in the aluminum section of the wire. Then,  

 

L1 = n11/2 = n1v1/2f, 

 

where 1 is the wavelength and v1 is the wave speed in that section. In this consideration, 

we have substituted 1 = v1/f, where f is the frequency. Thus f = n1v1/2L1. A similar 

expression holds for the steel section: f = n2v2/2L2. Since the frequency is the same for the 

two sections, n1v1/L1 = n2v2/L2. Now the wave speed in the aluminum section is given 

by 1 1/ ,v    where 1 is the linear mass density of the aluminum wire. The mass of 

aluminum in the wire is given by m1 = 1AL1, where 1 is the mass density (mass per unit 

volume) for aluminum and A is the cross-sectional area of the wire. Thus  

 

1 = 1AL1/L1 = 1A 

 

and 1 1/ .v A   A similar expression holds for the wave speed in the steel section: 

2 2/ .v A   We note that the cross-sectional area and the tension are the same for the 

two sections. The equality of the frequencies for the two sections now leads to 

1 1 1 2 2 2/ / ,n L n L   where A has been canceled from both sides. The ratio of the 

integers is 

 

 

3 3

2 22

3 3
1 1 1

0.866m 7.80 10 kg/m
2.50.

0.600m 2.60 10 kg/m

Ln

n L






  


 

 

The smallest integers that have this ratio are n1 = 2 and n2 = 5. The frequency is 

 

 1 1 1 1 1 1/ 2 / 2 / .f n v L n L A    

 

The tension is provided by the hanging block and is   = mg, where m is the mass of the 

block. Thus, 

 

  
  

2

1

3 3 6 2
1 1

10.0kg 9.80m/s2
324Hz.

2 2 0.600m 2.60 10 kg/m 1.00 10 m

n mg
f

L A 
  

 
 

 



  CHAPTER 16 778 

(b) The standing wave pattern has two loops in the aluminum section and five loops in 

the steel section, or seven loops in all. There are eight nodes, counting the end points. 

 

60. With the string fixed on both ends, using Eq. 16-66 and Eq. 16-26, the resonant 

frequencies can be written as 

 

 , 1,2,3,
2 2 2

nv n n mg
f n

L L L



 
     

 

The mass that allows the oscillator to set up the nth harmonic on the string is  

 

 
2 2

2

4L f
m

n g


 . 

 

Thus, we see that the block mass is inversely proportional to the harmonic number 

squared.  Thus, if the 447 gram block corresponds to harmonic number n, then 

 

447

286.1
  = 

(n + 1)
2

 n
2   =  

n
2
 + 2n + 1

 n
2    =   1 + 

2n + 1

 n
2   . 

 

Therefore,  
447

286.1
  – 1 = 0.5624  must equal an odd integer (2n + 1) divided by a squared 

integer (n
2
).  That is, multiplying 0.5624 by a square (such as 1, 4, 9, 16, etc.) should give 

us a number very close (within experimental uncertainty) to an odd number (1, 3, 5, …).  

Trying this out in succession (starting with multiplication by 1, then by 4, …), we find 

that multiplication by 16 gives a value very close to 9; we conclude n = 4 (so n
2
 = 16 and 

2n + 1 = 9).  Plugging in m = 0.447 kg, n = 4, and the other values given in the problem, 

we find  

 = 0.000845 kg/m = 0.845 g/m. 

 

61. To oscillate in four loops means n = 4 in Eq. 16-65 (treating both ends of the string as 

effectively “fixed”). Thus,  = 2(0.90 m)/4 = 0.45 m. Therefore, the speed of the wave is 

v = f = 27 m/s. The mass-per-unit-length is  

 

 = m/L = (0.044 kg)/(0.90 m) = 0.049 kg/m. 

 

Thus, using Eq. 16-26, we obtain the tension:  

 

 = v
2
  = (27 m/s)

2
(0.049 kg/m) = 36 N. 

 

62. We write the expression for the displacement in the form y (x, t) = ym sin(kx – t).  

 

(a) The amplitude is ym = 2.0 cm = 0.020 m, as given in the problem. 
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(b) The angular wave number k is k = 2/ = 2/(0.10 m) = 63 m
–1

. 

 

(c) The angular frequency is  = 2f = 2(400 Hz) = 2510 rad/s = 2.510
3
 rad/s. 

 

(d) A minus sign is used before the t term in the argument of the sine function because 

the wave is traveling in the positive x direction.  

 

Using the results above, the wave may be written as 

 

        1 1, 2.00cm sin 62.8m 2510s .y x t x t    

 

(e) The (transverse) speed of a point on the cord is given by taking the derivative of y: 

 

   , cosm

y
u x t y kx t

t


   


   

 

which leads to a maximum speed of um = ym = (2510 rad/s)(0.020 m) = 50 m/s. 

 

(f) The speed of the wave is 

2510rad s
40m s.

62.8rad/m
v

T k


     

 

63. (a) Using v = f, we obtain 

240m/s
75 Hz.

3.2m
f    

 

(b) Since frequency is the reciprocal of the period, we find 

 

1 1
0.0133s 13ms.

75Hz
T

f
     

 

64. (a) At x = 2.3 m and t = 0.16 s the displacement is 

 

     ( , ) 0.15sin 0.79 2.3 13 0.16 m = 0.039m.y x t     

 

(b) We choose ym = 0.15 m, so that there would be nodes (where the wave amplitude is 

zero) in the string as a result. 

 

(c) The second wave must be traveling with the same speed and frequency. This implies 
10.79 mk  ,  

 

(d) and 13 rad/s  . 
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(e) The wave must be traveling in the –x direction, implying a plus sign in front of .  

 

Thus, its general form is y´ (x,t) = (0.15 m)sin(0.79x + 13t).  

 

(f) The displacement of the standing wave at x = 2.3 m and t = 0.16 s is 

 

( , ) 0.039m (0.15m)sin[(0.79)(2.3) 13(0.16)] 0.14m.y x t        

 

65. We use Eq. 16-2, Eq. 16-5, Eq. 16-9, Eq. 16-13, and take the derivative to obtain the 

transverse speed u. 

 

(a) The amplitude is ym = 2.0 mm. 

 

(b) Since  = 600 rad/s, the frequency is found to be f = 600/2  95 Hz. 

 

(c) Since k = 20 rad/m, the velocity of the wave is v = /k = 600/20 = 30 m/s in the +x 

direction. 

 

(d) The wavelength is  = 2/k  0.31 m, or 31 cm. 

 

(e) We obtain 

cos( )m m m

dy
u y kx t u y

dt
         

 

so that the maximum transverse speed is um = (600)(2.0) = 1200 mm/s, or 1.2 m/s. 

 

66. Setting x = 0  in  y = ym sin(k x  t + ) gives y = ym sin( t + ) as the function 

being plotted in the graph.  We note that it has a positive “slope” (referring to its t-

derivative) at t = 0, or 

                  

  sin cos 0m m

dy d
y t y t

dt dt
               

 

at t = 0. This implies that  – cos   > 0 and consequently that  is in either the second or 

third quadrant. The graph shows (at t = 0) y = 2.00 mm, and (at some later t) ym = 6.00 

mm.  Therefore, 

y = ym sin( t + )|t = 0        = sin
1

( 
1

3
 ) =  0.34 rad   or   2.8 rad 

 

(bear in mind that sin = sin()), and we must choose  = 2.8 rad  because this is 

about 161° and is in second quadrant. Of course, this answer added to 2n is still a valid 

answer (where n is any integer), so that, for example,  = 2.8 – 2 = 3.48 rad is also an 

acceptable result. 
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67. We compare the resultant wave given with the standard expression (Eq. 16–52) to 

obtain  1 1
2

20m 2 / ,2 cos 3.0mmmk y     , and 1
2

0.820rad . 

 

(a) Therefore,  = 2/k = 0.31 m. 

 

(b) The phase difference is  = 1.64 rad. 

 

(c) And the amplitude is ym = 2.2 mm. 

 

68. (a) Recalling the discussion in Section 16-5, we see that the speed of the wave given 

by a function with argument x – 5.0t (where x is in centimeters and t is in seconds) must 

be 5.0 cm/s . 

 

(b) In part (c), we show several “snapshots” of the wave: the one on the left is as shown 

in Figure 16-44 (at t = 0), the middle one is at t = 1.0 s, and the rightmost one is at 

2.0 st  . It is clear that the wave is traveling to the right (the +x direction). 

 

(c) The third picture in the sequence below shows the pulse at 2.0 s. The horizontal scale 

(and, presumably, the vertical one also) is in centimeters. 

 

 
 

(d) The leading edge of the pulse reaches x = 10 cm at t = (10 – 4.0)/5 = 1.2 s. The 

particle (say, of the string that carries the pulse) at that location reaches a maximum 

displacement h = 2 cm at t = (10 – 3.0)/5 = 1.4 s. Finally, the trailing edge of the pulse 

departs from x = 10 cm at t = (10 – 1.0)/5 = 1.8 s. Thus, we find for h(t) at x = 10 cm 

(with the horizontal axis, t, in seconds): 
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69. THINK We use phasors to add the three waves and calculate the amplitude of the 

resultant wave.  

 

EXPRESS The phasor diagram is shown here: y1, y2, and y3 represent the original waves 

and ym represents the resultant wave.  

 
The horizontal component of the resultant is ymh = y1 – y3 = y1 – y1/3 = 2y1/3. The vertical 

component is ymv = y2 = y1/2.  

 

ANALYZE (a) The amplitude of the resultant is 

 
2 2

2 2 1 1
1 1

2 5
0.83 .

3 2 6
m mh mv

y y
y y y y y

   
        

   
 

 

(b) The phase constant for the resultant is 

 

1 1 11

1

2 3
tan tan tan 0.644 rad 37 .

2 3 4

mv

mh

y y

y y
        
          

   
 

(c) The resultant wave is 

1

5
sin ( 0.644 rad).

6
y y kx t    

 

The graph below shows the wave at time t = 0. As time goes on it moves to the right with 

speed v = /k. 
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LEARN In adding the three sinusoidal waves, it is convenient to represent each wave 

with a phasor, which is a vector whose magnitude is equal to the amplitude of the wave. 

However, adding the three terms explicitly gives, after a little algebra, 

 

1 2 3 1 1 1

1 1 1

1 1

1

1

1 1
sin( ) sin( / 2) sin( )

2 3

1 1
sin( ) cos( ) sin( )

2 3

2 1
sin( ) cos( )

3 2

5 4 3
sin( ) cos( )

6 5 5

5
sin( )

6

y y y y kx t y kx t y kx t

y kx t y kx t y kx t

y kx t y kx t

y kx t kx t

y kx t

    

  

 

 

 

         

     

   

 
    

 

  

 

where  1tan 3/ 4 0.644 rad   . In deducing the phase , we set cos 4 /5   and 

sin 3/5  , and use the relation cos sin sin cos sin( )        . The result indeed 

agrees with that obtained in (c). 

 

70. Setting x = 0  in  ay = –² y, where y = ym sin(k x  t + ) gives  

 

ay = –² ym sin( t + ) 

 

as the function being plotted in the graph.  We note that it has a negative “slope” 

(referring to its t-derivative) at t = 0, or 

                  

   3² sin cos 0
y

m m

da d
y t y t

dt dt
                

 

at  t = 0. This implies that cos < 0 and consequently that  is in either the second or third 

quadrant. The graph shows (at t = 0) ay = 100 m/s², and (at another t) amax = 400 m/s².  

Therefore, 

        

ay = amax sin( t + )|t = 0         =  sin
1

( 
1

4
 ) =  0.25 rad   or   2.9 rad 

 

(bear in mind that sin = sin()), and we must choose  = 2.9 rad  because this is 

about 166° and is in the second quadrant.  Of course, this answer added to 2n is still a 

valid answer (where n is any integer), so that, for example,  = 2.9 – 2 = 3.4 rad is also 

an acceptable result. 
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71. (a) Let the displacement of the string be of the form y(x, t) = ym sin (kx – t). The 

velocity of a point on the string is  

 

u(x, t) = y/t = –ym cos(kx – t) 

 

and its maximum value is um = ym. For this wave the frequency is f = 120 Hz and the 

angular frequency is  = 2f = 2 (120 Hz) = 754 rad/s. Since the bar moves through a 

distance of 1.00 cm, the amplitude is half of that, or ym = 5.00  10
–3

 m. The maximum 

speed is  

um = (754 rad/s) (5.00  10
–3

 m) = 3.77 m/s. 

 

(b) Consider the string at coordinate x and at time t and suppose it makes the angle  with 

the x axis. The tension is along the string and makes the same angle with the x axis. Its 

transverse component is trans =  sin . Now  is given by tan  = y/x = kym cos(kx – t) 

and its maximum value is given by tan m = kym. We must calculate the angular wave 

number k. It is given by k = /v, where v is the wave speed. The wave speed is given by 

/ ,v    where  is the tension in the rope and  is the linear mass density of the rope. 

Using the data given, 

90.0 N
27.4m/s

0.120kg/m
 v  

and 

1754rad/s
27.5m .

27.4m/s
k    

Thus, 
1 3tan (27.5m )(5.00 10 m) 0.138   m  

 

and  = 7.83°. The maximum value of the transverse component of the tension in the 

string is  

trans = (90.0 N) sin 7.83° = 12.3 N. 

 

We note that sin  is nearly the same as tan  because  is small. We can approximate the 

maximum value of the transverse component of the tension by kym. 

 

(c) We consider the string at x. The transverse component of the tension pulling on it due 

to the string to the left is –y/x) = –kym cos(kx – t) and it reaches its maximum value 

when cos(kx – t) = –1. The wave speed is  

 

u = y/t = –ym cos (kx – t) 

 

and it also reaches its maximum value when cos(kx – t) = –1. The two quantities reach 

their maximum values at the same value of the phase. When cos(kx – t) = –1 the value 

of sin(kx – t) is zero and the displacement of the string is y = 0. 
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(d) When the string at any point moves through a small displacement y, the tension does 

work W = trans y. The rate at which it does work is 

 

trans trans .
W y

P u
t t

 
 

  
 

 

 

P has its maximum value when the transverse component trans of the tension and the 

string speed u have their maximum values. Hence the maximum power is (12.3 N)(3.77 

m/s) = 46.4 W. 

 

(e) As shown above, y = 0 when the transverse component of the tension and the string 

speed have their maximum values. 

 

(f) The power transferred is zero when the transverse component of the tension and the 

string speed are zero. 

 

(g) P = 0 when cos(kx – t) = 0 and sin(kx – t) = 1 at that time. The string 

displacement is y = ym = 0.50 cm. 

 

72. We use Eq. 16-52 in interpreting the figure.   

 

(a) Since y’= 6.0 mm when  = 0, then Eq. 16-52 can be used to determine ym = 3.0 mm.   

 

(b) We note that y’= 0 when the shift distance is 10 cm; this occurs because cos() = 0 

there   = rad  or ½ cycle.  Since a full cycle corresponds to a distance of one full 

wavelength, this ½ cycle shift corresponds to a distance of .  Therefore,  = 20 cm   

k= 2/ = 31 m
1

.   

 

(c) Since f = 120 Hz,  = 2f  = 754 rad/s 27.5 10  rad/s.   

 

(d) The sign in front of  is minus since the waves are traveling in the +x direction. 

 

The results may be summarized as y = (3.0 mm) sin[(31.4 m
1

)x – (754 s
1

)t]] (this 

applies to each wave when they are in phase). 

 

73. We note that  

dy/dt = cos(kx – t + ), 

 

which we will refer to as u(x,t). so that the ratio of the function y(x,t) divided by u(x,t)  

is – tan(kx  t + )/.  With the given information (for x = 0 and t = 0) then we can take 

the inverse tangent of this ratio to solve for the phase constant: 

 

 1 1(0,0) (440)(0.0045)
tan tan 1.2 rad.

(0,0) 0.75

y

u


     
     

  
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74. We use 2 2 2 21
2

.mP y vf f     

 

(a) If the tension is quadrupled, then 2 1
2 1 1 1

1 1

4
2 .P P P P  

 

 
 

 

(b) If the frequency is halved, then 

2 2

2 1
2 1 1 1

1 1

/ 2 1
.

4

f f
P P P P

f f

   
     

   
 

 

75. (a) Let the cross-sectional area of the wire be A and the density of steel be . The 

tensile stress is given by /A where  is the tension in the wire. Also,  = A. Thus, 

 
8 2

2max max
max 3

7.00 10 N m
     3.00 10 m s

7800kg m

A
v

 

 


     . 

 

(b) The result does not depend on  the diameter of the wire. 

 

76. Repeating the steps of Eq. 16-47  Eq. 16-53, but applying 

 

cos cos 2cos cos
2 2

   
 

    
     

   
 

 

(see Appendix E) instead of Eq. 16-50, we obtain [0.10cos ]cos4y x t    , with SI units 

understood. 

 

(a) For non-negative x, the smallest value to produce cos x = 0 is x = 1/2, so the answer 

is x = 0.50 m. 

 

(b) Taking the derivative, 

  0.10cos 4 sin4
dy

u x t
dt


       . 

 

We observe that the last factor is zero when 31 1
4 2 4

0, , , ,t   Thus, the value of the first 

time the particle at x = 0 has zero velocity is t = 0. 

 

(c) Using the result obtained in (b), the second time where the velocity at x = 0 vanishes 

would be t = 0.25 s, 

 

(d) and the third time is t = 0.50 s. 
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77. THINK The speed of a transverse wave in the stretched rubber band is related to the 

tension in the band and the linear mass density of the band. 

 

EXPRESS The wave speed v is given by v = F  , where F is the tension in the rubber 

band and  is the band’s linear mass density, which is defined as the mass per unit length 

 = m/L. The fact that the band obeys Hooke’s law implies F k  , where k is the 

spring constant and   is the elongation. Thus, when a force F is applied, the rubber 

band has a length L   , where  is the unstretched length, resulting in a linear 

mass density /( )m   .  

 

ANALYZE (a) The wave speed is 
( )

.
/( )

   
  

 

F k k
v

m m
 

 

(b) The time required for the pulse to travel the length of the rubber band is 

2 ( ) 2 ( )
2 1 .

( ) /

m
t

v kk m

     
    

  
 

 

Thus if / 1 , then / 1/t    . On the other hand, if / 1 , then we 

have 2 / const.t m k   

 

LEARN When  , the applied force F k   is small while / constantm   , 

leading to a small wave speed. On the other hand, when  , /m    and 

/v F    , so that 2 /t m k , which is a constant. 

 

78. (a) For visible light 

 
8

14

min 9

max

3.0 10 m s
4.3 10 Hz

700 10 m

c
f




   
 

 

and 
8

14

max 9

min

3.0 10 m s
7.5 10 Hz.

400 10 m

c
f




   
 

 

(b) For radio waves 
8

min 6

max

3.0 10 m s
1.0m

300 10 Hz

c 
   

 
 

and 
8

2

max 6

min

3.0 10 m s
2.0 10 m.

1.5 10 Hz

c 
    

 
 

 

(c) For X rays 
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8
16

min 9

max

3.0 10 m s
6.0 10 Hz

5.0 10 m

c
f




   
 

 

and 
8

19

max 11

min

3.0 10 m s
3.0 10 Hz.

1.0 10 m

c
f




   
 

 

 

79. THINK A wire held rigidly at both ends can be made to oscillate in standing wave 

patterns. 

 

EXPRESS Possible wavelengths are given by  n = 2L/n, where L is the length of the 

wire and n is an integer. The corresponding frequencies are fn = v/n = nv/2L, where v is 

the wave speed. The wave speed is given by v    where  is the tension in the wire 

and  is the linear mass density of the wire.  

 

ANALYZE (a) The wave speed is 
3

120 N
144 m/s.

8.70 10 kg /1.50m
  


v




 

 

(b) For the one-loop standing wave we have 1 = 2L = 2(1.50 m) = 3.00 m.  

 

(c) For the two-loop standing wave 2 = L = 1.50 m. 

 

(d) The frequency for the one-loop wave is f1 = v/1 = (144 m/s)/(3.00 m) = 48.0 Hz. 

 

(e) The frequency for the two-loop wave is f2 = v/2 = (144 m/s)/(1.50 m) = 96.0 Hz. 

 

LEARN The one-loop and two-loop standing wave patterns are plotted below: 

  
 

80. By Eq. 16–66, the higher frequencies are integer multiples of the lowest (the 

fundamental).  

 

(a) The frequency of the second harmonic is f2 = 2(440) = 880 Hz. 

 

(b) The frequency of the third harmonic is f3 = 3(440) = 1320 Hz.  
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81. (a) The amplitude is ym = 1.00 cm = 0.0100 m, as given in the problem. 

 

(b) Since the frequency is f = 550 Hz, the angular frequency is  = 2f = 3.4610
3
 rad/s. 

 

(c) The angular wave number is 3/ (3.46 10  rad/s) /(330 m/s) 10.5 rad/mk v    . 

 

(d) Since the wave is traveling in the –x direction, the sign in front of  is plus and the 

argument of the trig function is kx + t.  

 

The results may be summarized as 

 

   

   

m m

3

, sin sin 2

0.010m sin 2 550Hz
330m s

            (0.010m) sin[(10.5 rad/s) (3.46 10  rad/s) ].

x
y x t y kx t y f t

v

x
t

x t

 



  
     

  

  
   

  

  

 

 

82. We orient one phasor along the x axis with length 3.0 mm and angle 0 and the other at 

70° (in the first quadrant) with length 5.0 mm. Adding the components, we obtain 

 

 (3.0  mm) (5.0  mm)cos 70 4.71mm along axis

(5.0 mm)sin (70 ) 4.70 mm  along axis.

x

y

  

 
 

 

(a) Thus, amplitude of the resultant wave is 2 2(4.71 mm) (4.70 mm) 6.7mm.    

 

(b) And the angle (phase constant) is tan
–1

 (4.70/4.71) = 45°. 

 

83. THINK The speed of a point on the cord is given by u(x, t) = y/t, where y (x, t) is 

displacement.   

 

EXPRESS We take the form of the displacement to be  

 

y (x, t) = ym sin(kx – t). 

 

The speed of a point on the cord is  

u(x, t) = y/t = –ym cos(kx – t), 

 

and its maximum value is um = ym. The wave speed, on the other hand, is given by v = 

/T = /k.  

 

(a) The ratio of the maximum particle speed to the wave speed is 
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2
.

/

m m m
m

u y y
ky

v k


  






 

 

(b) The ratio of the speeds depends only on ym/, the ratio of the amplitude to the 

wavelength.  

 

LEARN Different waves on different cords have the same ratio of speeds if they have the 

same amplitude and wavelength, regardless of the wave speeds, linear densities of the 

cords, and the tensions in the cords. 

 

84. (a) Since the string has four loops its length must be two wavelengths. That is,  = L/2, 

where  is the wavelength and L is the length of the string. The wavelength is related to 

the frequency f and wave speed v by  = v/f, so L/2 = v/f and  

 

L = 2v/f = 2(400 m/s)/(600 Hz) = 1.3 m. 

 

(b) We write the expression for the string displacement in the form y = ym sin(kx) cos(t), 

where ym is the maximum displacement, k is the angular wave number, and  is the 

angular frequency. The angular wave number is  

 

k = 2/ = 2f/v = 2(600 Hz)/(400 m/s) = 9.4m
–1

 

 

and the angular frequency is  

 

 = 2f = 2(600 Hz) = 3800 rad/s. 

 

With ym = 2.0 mm, the displacement is given by 

 
1 1( , ) (2.0mm)sin[(9.4m ) ]cos[(3800s ) ].y x t x t   

 

85. We make use of Eq. 16-65 with L = 120 cm.  

 

(a) The longest wavelength for waves traveling on the string  if standing waves are to be 

set up is 1 2 /1 240 cm.L    

 

(b) The second longest wavelength for waves traveling on the string  if standing waves 

are to be set up is 2 2 / 2 120 cm.L    

 

(c) The third longest wavelength for waves traveling on the string  if standing waves are 

to be set up is 3 2 /3 80.0 cm.L    

 

The three standing waves are shown next: 
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86. (a) Let the displacements of the wave at (y,t) be z(y,t). Then  

 

z(y,t) = zm sin(ky – t), 

 

where zm = 3.0 mm, k = 60 cm
–1

, and  = 2/T = 2/0.20 s = 10s
–1

. Thus 

 

   1 1( , ) (3.0mm)sin 60cm 10 s .z y t y t       

 

(b) The maximum transverse speed is (2 /0.20s)(3.0mm)=94mm/s.m mu z    

 

87. (a) With length in centimeters and time in seconds, we have 

 

60 cos 4 .
8

dy x
u t

dt

 
      

 
 

 

Thus, when x = 6 and 1
4

t  , we obtain 

60
60 cos 133

4 2
u

  
       

 

so that the speed there is 1.33 m/s. 

 

(b) The numerical coefficient of the cosine in the expression for u is –60. Thus, the 

maximum speed is 1.88 m/s. 

 

(c) Taking another derivative, 

2240 sin 4
8

du x
a t

dt

 
      

 
 

 

so that when x = 6 and t = 1
4

 we obtain a = –2402
 sin(/4), which yields a = 16.7 m/s

2
. 

 

(d) The numerical coefficient of the sine in the expression for a is –240
2
. Thus, the 

maximum acceleration is 23.7 m/s
2
. 

 

88. (a) This distance is determined by the longitudinal speed: 

 

  6 22000m/s 40 10 s 8.0 10 m.d v t        



  CHAPTER 16 792 

 

(b) Assuming the acceleration is constant (justified by the near-straightness of the curve a 

= 300/40  10
–6

) we find the stopping distance d: 

   
 

2 6

2 2
300 40 10

2
2 300

ov v ad d


     

 

which gives d = 6.010
–3

 m. This and the radius r form the legs of a right triangle (where 

r is opposite from  = 60°). Therefore, 

 

2tan 60 tan 60 1.0 10 m.
r

r d
d

        

89. Using Eq. 16-50, we have 

0.60cos sin 5 200
6 6

y x t
 

 
   

      
   

 

 

with length in meters and time in seconds (see Eq. 16-55 for comparison). 

 

(a) The amplitude is seen to be 0.60cos 0.3 3 0.52m.
6


   

(b) Since k = 5 and  = 200, then (using Eq. 16-12), 40m/s.v
k

 


 

 

(c) k = 2/ leads to  = 0.40 m. 

 

90. (a) The frequency is f = 1/T = 1/4 Hz, so v = f = 5.0 cm/s. 

 

(b) We refer to the graph to see that the maximum transverse speed (which we will refer 

to as um) is 5.0 cm/s. Using the simple harmonic motion relation um = ym = ym2f, we 

have 

1
5.0 2      3.2 cm.

4
m my y
 

    
 

 

  

(c) As already noted, f = 0.25 Hz. 

 

(d) Since k = 2/, we have k = 10 rad/m. There must be a sign difference between the t 

and x terms in the argument in order for the wave to travel to the right. The figure shows 

that at x = 0, the transverse velocity function is 0.050 sin / 2t . Therefore, the function 

u(x,t) is 

( , ) 0.050sin 10
2

u x t t x
 

   
 

 

 

with lengths in meters and time in seconds. Integrating this with respect to time yields 
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 2 0.050
( , ) cos 10

2
y x t t x C

 
     

  
 

 

where C is an integration constant (which we will assume to be zero). The sketch of this 

function at t = 2.0 s for 0  x  0.20 m is shown below. 

 

 
 

91. THINK The rope with both ends fixed and made to oscillate in fundamental mode 

has wavelength 2L  , where L is the length of the rope. 

 

EXPRESS We first observe that the anti-node at x = 1.0 m having zero displacement at t 

= 0 suggests the use of sine instead of cosine for the simple harmonic motion factor. We 

take the form of the displacement to be  

 

y(x, t) = ym sin(kx)sin(t). 

 

A point on the rope undergoes simple harmonic motion with a speed 

  

u(x, t) = y/t = ym sin(kx)cos(t). 

 

It has maximum speed um = ym as it passes through its "middle" point. On the other hand, 

the wave speed is v    where  is the tension in the rope and  is the linear mass 

density of the rope. For standing waves, possible wavelengths are given by n = 2L/n, 

where L is the length of the rope and n is an integer. The corresponding frequencies are fn 

= v/n = nv/2L, where v is the wave speed. For fundamental mode, we set n = 1. 

 

ANALYZE (a) With f = 5.0 Hz, we find the angular frequency to be  = 2f = 10 rad/s.  

Thus, if the maximum speed of a point on the rope is um = 5.0 m/s, then its amplitude is 

 

 
5.0 m/s

0.16 m
10 rad/s

m
m

u
y

 
   . 
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(b) Since the oscillation is in the fundamental mode, we have  = 2L = 4.0 m.  Therefore, 

the speed of waves along the rope is v = f = 20 m/s.  Then, with  = m/L = 0.60 kg/m, 

Eq. 16-26 leads to 

v



       =  v

2
 = 240 N 22.4 10 N  . 

(c) We note that for the fundamental, k = 2/ = /L. Now, if the fundamental mode is the 

only one present (so the amplitude calculated in part (a) is indeed the amplitude of the 

fundamental wave pattern) then we have 

 

 y = (0.16 m) sin 






x

2
 sin (10t) 1(0.16 m)sin[(1.57 m ) ]sin[(31.4 rad/s) ]x t  

 

LEARN The period of oscillation is 1/ 0.20 sT f  . The snapshots of the patterns at 

/ 4 0.05 st T   and 3 / 4 0.15 st T   are given below. At t = T/2 and T, the 

displacement is zero everywhere. 

 
 

/ 4 0.05 st T   

 
 

3 / 4 0.15 st T   

 

92. (a) The wave number for each wave is k = 25.1/m, which means  = 2/k = 250.3 mm. 

The angular frequency is  = 440/s; therefore, the period is T = 2/ = 14.3 ms. We plot 

the superposition of the two waves y = y1 + y2 over the time interval 0  t  15 ms. The 

first two graphs below show the oscillatory behavior at x = 0 (the graph on the left) and at 

x = /8  31 mm. The time unit is understood to be the millisecond and vertical axis (y) is 

in millimeters. 
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The following three graphs show the oscillation at x = /4 =62.6 mm  63 mm (graph on 

the left), at x = 3/8  94 mm (middle graph), and at x = /2  125 mm. 

 

 
 

(b) We can think of wave y1 as being made of two smaller waves going in the same 

direction, a wave y1a of amplitude 1.50 mm (the same as y2) and a wave y1b of amplitude 

1.00 mm. It is made clear in Section 16-12 that two equal-magnitude oppositely-moving 

waves form a standing wave pattern. Thus, waves y1a and y2 form a standing wave, which 

leaves y1b as the remaining traveling wave. Since the argument of y1b involves the 

subtraction kx – t, then y1b travels in the +x direction. 

 

(c) If y2 (which travels in the –x direction, which for simplicity will be called “leftward”) 

had the larger amplitude, then the system would consist of a standing wave plus a 

leftward moving wave. A simple way to obtain such a situation would be to interchange 

the amplitudes of the given waves. 

 

(d) Examining carefully the vertical axes, the graphs above certainly suggest that the 

largest amplitude of oscillation is ymax = 4.0 mm and occurs at x = /4 = 62.6 mm.  

 

(e) The smallest amplitude of oscillation is ymin = 1.0 mm and occurs at x = 0 and at  

 

x = /2 = 125 mm. 

 

(f) The largest amplitude can be related to the amplitudes of y1 and y2 in a simple way: 

 

ymax = y1m + y2m, 

 

where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original traveling waves. 

 

(g) The smallest amplitudes is  

ymin = y1m – y2m, 

 

where y1m = 2.5 mm and y2m = 1.5 mm are the amplitudes of the original traveling waves. 

 

93. (a) Centimeters are to be understood as the length unit and seconds as the time unit. 

Making sure our (graphing) calculator is in radians mode, we find 
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(b) The previous graph is at t = 0, and this next one is at t = 0.050 s. 

 
 

And the final one, shown below, is at t = 0.010 s. 

 
 

(c) The wave can be written as ( , ) sin( )my x t y kx t  , where /v k  is the speed of 

propagation. From the problem statement, we see that 2 / 0.40 5  rad/s    and 

2 /80 / 40 rad/cmk    . This yields 22.0 10  cm/s 2.0 m/sv   . 

 

(d) These graphs (as well as the discussion in the textbook) make it clear that the wave is 

traveling in the –x direction.  
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94. The speed of the transverse wave along the string is given by Eq. 16-26:  / ,v    

where  is the tension and  is the linear mass density of the string. Applying Newton’s 

second law to a small segment of the string, the radial restoring force is (see Eq. 16-23) 

 

 2( sin )
l

F
R

  


   

 

Since 2( ) / ,TF m v R   where vT is the tangential speed of the segment of mass ,m l    

and R is the radius of the circle, we have 

 
2

2( ) T
T

vl
l v

R R
   


     

 

On the other hand, the fact that /v    implies 2.v   Thus, we must have ,Tv v  

which in this case, is equal to 5.00 cm/s. Note that v is independent of the radius of the 

circular loop. 

 

95. (a) With total reflection, ,A B  and SWR .
A B

A B


 


 

 

(b) With no reflection, 0,B   and SWR 1.
A B A

A B A


  


 

 

(c) In terms of 2( / ) ,R B A  we can rewrite SWR as 

 
2

1 ( / ) 1 SWR 1
SWR

1 ( / ) SWR 11

A B B A R
R

A B B A R

    
      

    
 

 

With SWR = 1.50, we obtain 

 
2 2

SWR 1 1.50 1
0.040 4.0%.

SWR 1 1.50 1
R

    
      

    
 

 

96. (a) The speed of each individual wave is 

 

 
40 N

26.83 m/s.
(0.125 kg)/(2.25 m)

v



    

 

The average rate at which energy is transmitted from one side is 
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 2 2 2 3 2

avg,1

1 1 0.125 kg
(26.83 m/s)(2 120 Hz) (5.0 10 m) 10.6 W.

2 2 2.25 m
mP v y    

     
 

 

 

(b) From both sides, avg avg,12 2(10.6 W) 21.2 W.P P    

 

(c) The rate of change of kinetic energy from one side is given by Eq. 16-30: 

 

2 2 21 1
cos ( ).

2
m

dK
v y kx t

dt
     

 

Integrating over one period for both sides, we obtain  

 

avg2 2 2 2 21

0

2

2 cos ( )
2 2

21.2 W
8.83 10 J.

2(120 Hz)

T

m m

PdK T
K dt v y kx t dt v y

dt f
    



 
     

 

  

 
 


