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Chapter 35 
 

 

1. The fact that wave W2 reflects two additional times has no substantive effect on the 

calculations, since two reflections amount to a 2(/2) =  phase difference, which is 

effectively not a phase difference at all. The substantive difference between W2 and W1 is 

the extra distance 2L traveled by W2. 

 

(a) For wave W2 to be a half-wavelength “behind” wave W1, we require 2L = /2, or L = 

/4 = (620 nm)/4 =155 nm using the wavelength value given in the problem. 

 

(b) Destructive interference will again appear if W2 is 3
2
  “behind” the other wave. In 

this case, 2 3 2 L  , and the difference is 

 

3 620 nm
310nm .

4 4 2 2
L L

  
       

 

2. We consider waves W2 and W1 with an initial effective phase difference (in 

wavelengths) equal to 1
2

, and seek positions of the sliver that cause the wave to 

constructively interfere (which corresponds to an integer-valued phase difference in 

wavelengths). Thus, the extra distance 2L traveled by W2 must amount to 31
2 2

,  , and so 

on. We may write this requirement succinctly as 

2 1
where 0,1, 2, .

4

m
L m


    

 

(a) Thus, the smallest value of /L   that results in the final waves being exactly in phase 

is when m = 0, which gives / 1/ 4 0.25L    . 

 

(b) The second smallest value of /L  that results in the final waves being exactly in 

phase is when m = 1, which gives / 3/ 4 0.75L    . 

 

(c) The third smallest value of /L  that results in the final waves being exactly in phase 

is when m = 2, which gives / 5/ 4 1.25L    . 

 

3. THINK The wavelength of light in a medium depends on the index of refraction of the 

medium. The nature of the interference, whether constructive or destructive, depends on 

the phase difference of the two waves. 

 

EXPRESS We take the phases of both waves to be zero at the front surfaces of the layers. 

The phase of the first wave at the back surface of the glass is given by 1 = k1L – t, 

where k1 (= 2/1) is the angular wave number and 1 is the wavelength in glass. 

Similarly, the phase of the second wave at the back surface of the plastic is given by 2 = 
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k2L – t, where k2 (= 2/2) is the angular wave number and 2 is the wavelength in 

plastic. The angular frequencies are the same since the waves have the same wavelength 

in air and the frequency of a wave does not change when the wave enters another medium. 

The phase difference is 

 1 2 1 2

1
2 .

 
k k L L 

 
     

 1 2

1
p 

l l
 

Now, 1 = air/n1, where air is the wavelength in air and n1 is the index of refraction of 

the glass. Similarly, 2 = air/n2, where n2 is the index of refraction of the plastic. This 

means that the phase difference is  

 1 2 1 2

air

2
.n n L


 


    

 

ANALYZE (a) The value of L that makes this 5.65 rad is 

 

L
n n








 




 1 2
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9
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2
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2
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b g
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c h
b g


   
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m

m.
.

.  

 

(b) A phase difference of 5.65 rad is less than 2 rad = 6.28 rad, the phase difference for 

completely constructive interference, but greater than  rad (= 3.14 rad), the phase 

difference for completely destructive interference. The interference is, therefore, 

intermediate, neither completely constructive nor completely destructive. It is, however, 

closer to completely constructive than to completely destructive. 

 

LEARN The phase difference of two light waves can change when they travel through 

different materials having different indices of refraction. 

 

4. Note that Snell’s law (the law of refraction) leads to 1 = 2 when n1 = n2.  The graph 

indicates that 2 = 30° (which is what the problem gives as the value of 1) occurs at n2 = 

1.5.  Thus, n1 = 1.5, and the speed with which light propagates in that medium is 

 
8

8

1

2.998 10 m s
2.0 10 m s.

1.5

c
v

n


     

 

5. Comparing the light speeds in sapphire and diamond, we obtain 

 

 8 71 1 1 1
2.998 10 m s 4.55 10 m s.

1.77 2.42
s d

s d

v v v c
n n

   
            

  
 

 

6. (a) The frequency of yellow sodium light is 

 
8

14

9

2.998 10 m s
5.09 10 Hz.

589 10 m

c
f

 


   


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(b) When traveling through the glass, its wavelength is 

 

589nm
388 nm.

1.52
n

n


     

 

(c) The light speed when traveling through the glass is 

 

  14 9 85.09 10 Hz 388 10 m 1.97 10 m s.nv f      l  

 

7. The index of refraction is found from Eq. 35-3: 

 

n
c

v
 






2 998 10

192 10
156

8

8

.

.
. .

m s

m s
 

 

8. (a) The time t2 it takes for pulse 2 to travel through the plastic is 

 

t
L

c

L

c

L

c

L

c

L

c
2

155 170 160 145

6 30
    

. . . .

.
.  

 

Similarly for pulse 1: 

t
L

c

L

c

L

c

L

c
1

2

159 165 150

6 33
   

. . .

.
.  

 

Thus, pulse 2 travels through the plastic in less time. 

 

(b) The time difference (as a multiple of L/c) is 

 

t t t
L

c

L

c

L

c
    2 1

6 33 6 30 0 03. . .
. 

 

Thus, the multiple is 0.03. 

 

9. (a) We wish to set Eq. 35-11 equal to 1/ 2,  since a half-wavelength phase difference is 

equivalent to a  radians difference. Thus, 

 

L
n n

min
.

.





 


 2 1

620

145
1550 155b g b g

nm

2 1.65
nm  m.  

 

(b) Since a phase difference of 
3

2
 (wavelengths) is effectively the same as what we 

required in part (a), then 
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L
n n

L


  
3

3 3 155 4 65
2 1


b g b gmin . . m m. 

 

10. (a) The exiting angle is 50º, the same as the incident angle, due to what one might call 

the “transitive” nature of Snell’s law:  n1 sin 1 = n2 sin 2 = n3 sin 3 = … 

  

(b) Due to the fact that the speed (in a certain medium) is c/n (where n is that medium’s 

index of refraction) and that speed is distance divided by time (while it’s constant), we 

find  

t = nL/c = (1.45)(25 × 10
19 

m)/(3.0 × 10
8
 m/s) = 1.4 × 10

13 
s = 0.14 ps. 

 

11. (a) Equation 35-11 (in absolute value) yields 

 

L
n n

 2 1

6

9
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(b) Similarly, 

L
n n

 2 1

6

9

850 10

500 10
172 162 170 




 




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m
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(c) In this case, we obtain 

 

L
n n

 2 1

6

9

325 10

500 10
179 159 130 




 





.
. . . .

m

m

c h b g  

 

(d) Since their phase differences were identical, the brightness should be the same for (a) 

and (b). Now, the phase difference in (c) differs from an integer by 0.30, which is also 

true for (a) and (b). Thus, their effective phase differences are equal, and the brightness in 

case (c) should be the same as that in (a) and (b). 

 

12. (a) We note that ray 1 travels an extra distance 4L more than ray 2.  To get the least 

possible L that will result in destructive interference, we set this extra distance equal to 

half of a wavelength: 

 
420.0 nm

4 52.50 nm
2 8 8

L L
 

     . 

 

(b) The next case occurs when that extra distance is set equal to 
3

2
 .  The result is 

 

3 3(420.0 nm)
157.5 nm

8 8
L


   . 

 

13. (a) We choose a horizontal x axis with its origin at the left edge of the plastic. 

Between x = 0 and x = L2 the phase difference is that given by Eq. 35-11 (with L in that 
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equation replaced with L2). Between x = L2 and x = L1 the phase difference is given by an 

expression similar to Eq. 35-11 but with L replaced with L1 – L2 and n2 replaced with 1 

(since the top ray in Fig. 35-36 is now traveling through air, which has index of refraction 

approximately equal to 1). Thus, combining these phase differences with  = 0.600 m, 

we have 

 

       2 1 2
2 1 1

3.50 m 4.00 m 3.50 m
1 1.60 1.40 1 1.40

0.600 m 0.600 m

0.833.

L L L
n n n

  

   

 
      



 

 

(b) Since the answer in part (a) is closer to an integer than to a half-integer, the 

interference is more nearly constructive than destructive. 

 

14. (a) For the maximum adjacent to the central one, we set m = 1 in Eq. 35-14 and obtain 

 

  1 1

1

1

1
sin sin 0.010rad.

100m

m

d
  



  
    

   

ll

l
 

 

(b) Since y1 = D tan 1 (see Fig. 35-10(a)), we obtain  

 

y1 = (500 mm) tan (0.010 rad) = 5.0 mm. 

 

The separation is y = y1 – y0 = y1 – 0 = 5.0 mm. 

 

15. THINK The interference at a point depends on the path-length difference of the light 

rays reaching that point from the two slits.  

 

EXPRESS The angular positions of the maxima of a two-slit interference pattern are 

given by sinL d m    , where L is the path-length difference, d is the slit separation, 

 is the wavelength, and m is an integer. If  is small, sin  may be approximated by  in 

radians. Then,  = m/d to good approximation. The angular separation of two adjacent 

maxima is  = /d.  

 

ANALYZE Let ' be the wavelength for which the angular separation is greater by10.0%. 

Then, 1.10/d = '/d. or 

' = 1.10 = 1.10(589 nm) = 648 nm. 

 

LEARN The angular separation   is proportional to the wavelength of the light. For 

small  , we have 

 


 


 
   

 
. 
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16. The distance between adjacent maxima is given by y = D/d (see Eqs. 35-17 and 

35-18). Dividing both sides by D, this becomes  = /d with  in radians. In the steps 

that follow, however, we will end up with an expression where degrees may be directly 

used. Thus, in the present case, 

0.20
0.15 .

1.33

n
n

d nd n

  


 
        

 

17. THINK Interference maxima occur at angles  such that d sin  = m, where m is an 

integer.  

 

EXPRESS Since d = 2.0 m and  = 0.50 m, this means that sin = 0.25m. We want all 

values of m (positive and negative) for which |0.25m|  1. These are –4, –3, –2, –1, 0, +1, 

+2, +3, and +4.  

 

ANALYZE For each of these except –4 and +4, there are two different values for . A 

single value of  (–90°) is associated with m = –4 and a single value (+90°) is associated 

with m = +4. There are sixteen different angles in all and, therefore, sixteen maxima. 

 

LEARN The angles at which the maxima occur are given by 

 

  1 1sin sin 0.25
m

m
d


   
  

 
 

 

Similarly, the condition for interference minima (destructive interference) is  

 

 
1

sin , 0,1,2,...
2

d m m 
 

   
 

 

 

18. (a) The phase difference (in wavelengths) is 

 

d sin/ = (4.24 µm)sin(20°)/(0.500 µm) = 2.90 . 

 

(b) Multiplying this by 2 gives = 18.2 rad. 

 

(c) The result from part (a) is greater than 
5

2
  (which would indicate the third minimum) 

and is less than 3 (which would correspond to the third side maximum). 

 

19. THINK The condition for a maximum in the two-slit interference pattern is d sin  = 

m, where d is the slit separation,  is the wavelength, m is an integer, and  is the angle 

made by the interfering rays with the forward direction.  

 

EXPRESS If  is small, sin  may be approximated by  in radians. Then,  = m/d, and 

the angular separation of adjacent maxima, one associated with the integer m and the 
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other associated with the integer m + 1, is given by  = /d. The separation on a screen a 

distance D away is given by  

y = D  = D/d. 

 

ANALYZE Thus, 

y 



 






500 10 540

120 10
2 25 10

9

3

3
m m

m
m = 2.25 mm.

c hb g.

.
.  

 

LEARN For small , the spacing is nearly uniform. However, away from the center of 

the pattern,  increases and the spacing gets larger. 

 

20. (a) We use Eq. 35-14 with m = 3: 

 

 
F
HG
I
KJ 





L
N
MM

O
Q
PP 

 




sin sin

.
.1 1

9

6

2 550 10

7 70 10
0 216

m

d

 m

m
rad.

c h
 

 

(b)  = (0.216) (180°/) = 12.4°. 

 

21. The maxima of a two-slit interference pattern are at angles  given by d sin  = m, 

where d is the slit separation,  is the wavelength, and m is an integer. If  is small, sin  

may be replaced by  in radians. Then, d = m. The angular separation of two maxima 

associated with different wavelengths but the same value of m is  

 

 = (m/d)(2 – 1), 

 

and their separation on a screen a distance D away is  

 

  y D D
mD

d
  

L
NM
O
QP 




L
NM

O
QP

    

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tan

.
.

    b g
b g c h3 10

600 10 480 10 7 2 10
3

9 9 5
m

5.0 10 m
m m m.

 

 

The small angle approximation tan    (in radians) is made. 

 

22. Imagine a y axis midway between the two sources in the figure. Thirty points of 

destructive interference (to be considered in the xy plane of the figure) implies there are 

7 1 7 15    on each side of the y axis.  There is no point of destructive interference on 

the y axis itself since the sources are in phase and any point on the y axis must therefore 

correspond to a zero phase difference (and corresponds to  = 0 in Eq. 35-14).  In other 

words, there are 7 “dark” points in the first quadrant, one along the +x axis, and 7 in the 

fourth quadrant, constituting the 15 dark points on the right-hand side of the y axis.  Since 

the y axis corresponds to a minimum phase difference, we can count (say, in the first 

quadrant) the m values for the destructive interference (in the sense of Eq. 35-16) 
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beginning with the one closest to the y axis and going clockwise until we reach the x axis 

(at any point beyond S2).  This leads us to assign m = 7 (in the sense of Eq. 35-16) to the 

point on the x axis itself (where the path difference for waves coming from the sources is 

simply equal to the separation of the sources, d); this would correspond to  = 90° in Eq. 

35-16.  Thus,  

d = ( 7 + 
1

2
  ) =  7.5     7.5

d


  . 

 

23. Initially, source A leads source B by 90°, which is equivalent to 1 4  wavelength. 

However, source A also lags behind source B since rA is longer than rB by 100 m, which 

is100 1 4m 400m  wavelength. So the net phase difference between A and B at the 

detector is zero. 

 

24. (a) We note that, just as in the usual discussion of the double slit pattern, the x = 0 

point on the screen (where that vertical line of length D in the picture intersects the screen) 

is a bright spot with phase difference equal to zero (it would be the middle fringe in the 

usual double slit pattern).  We are not considering x < 0 values here, so that negative 

phase differences are not relevant (and if we did wish to consider x < 0 values, we could 

limit our discussion to absolute values of the phase difference, so that, again, negative 

phase differences do not enter it). Thus, the x = 0 point is the one with the minimum 

phase difference. 

 

(b) As noted in part (a), the phase difference  = 0 at x = 0. 

 

(c) The path length difference is greatest at the rightmost “edge” of the screen (which is 

assumed to go on forever), so  is maximum at x = . 

 

(d) In considering x = , we can treat the rays from the sources as if they are essentially 

horizontal.  In this way, we see that the difference between the path lengths is simply the 

distance (2d) between the sources.  The problem specifies 2d = 6.00 , or 2d/ = 6.00. 

 

(e) Using the Pythagorean theorem, we have 

 
2 2 2 2( ) ( )

1.71
D x d D x d


 

   
    

 

where we have plugged in D = 20d = 3 and x = 6. Thus, the phase difference at that 

point is 1.71 wavelengths. 

 

(f) We note that the answer to part (e) is closer to 
3

2
  (destructive interference) than to 2 

(constructive interference), so that the point is “intermediate” but closer to a minimum than 

to a maximum. 
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25. Let the distance in question be x. The path difference (between rays originating from 

S1 and S2 and arriving at points on the x > 0 axis) is 

 

d x x m2 2 1

2
   

F
HG
I
KJ   

 

where we are requiring destructive interference (half-integer wavelength phase 

differences) and  0,1, 2, .m   After some algebraic steps, we solve for the distance in 

terms of m: 

x
d

m

m





2

2 1

2 1

4b g
b g




. 

 

To obtain the largest value of x, we set m = 0: 

 

 
22

3

0

3.00
8.75 8.75(900 nm) 7.88 10  nm 7.88 m

d
x

 
 

 


         

 
 

 

26. (a) We use Eq. 35-14 to find d: 

 

d sin = m            d = (4)(450 nm)/sin(90°) = 1800 nm . 

 

For the third-order spectrum, the wavelength that corresponds to  = 90° is 

 

 = d sin(90°)/3 = 600 nm . 

 

Any wavelength greater than this will not be seen.  Thus, 600 nm <    700 nm are 

absent. 

 

(b) The slit separation d needs to be decreased.  

 

(c) In this case, the 400 nm wavelength in the m = 4 diffraction is to occur at 90°.  Thus 

 

dnew sin = m             dnew = (4)(400 nm)/sin(90°)  =  1600 nm . 

 

This represents a change of   

 

|d| = d – dnew = 200 nm = 0.20 µm. 

 

27. Consider the two waves, one from each slit, that produce the seventh bright fringe in 

the absence of the mica. They are in phase at the slits and travel different distances to the 

seventh bright fringe, where they have a phase difference of 2m = 14. Now a piece of 

mica with thickness x is placed in front of one of the slits, and an additional phase 

difference between the waves develops. Specifically, their phases at the slits differ by 
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2 2 2
1










x x x
n

m

  b g  
 

where m is the wavelength in the mica and n is the index of refraction of the mica. The 

relationship m = /n is used to substitute for m. Since the waves are now in phase at the 

screen, 

2
1 14




x
n b g  

or 

x
n








 



7

1

7 550 10

158 1
6 64 10

9

6 m
m.

c h
.

.  

 

28. The problem asks for “the greatest value of x… exactly out of phase,” which is to be 

interpreted as the value of x where the curve shown in the figure passes through a phase 

value of  radians.  This happens as some point P on the x axis, which is, of course, a 

distance x from the top source and (using Pythagoras’ theorem) a distance d
2
 + x

2 
  from 

the bottom source.  The difference (in normal length units) is therefore d
2
 + x

2 
  – x, or 

(expressed in radians) is   
2


 ( d

2
 + x

2 
  – x) . 

 

We note (looking at the leftmost point in the graph) that at x = 0, this latter quantity 

equals 6, which means d = 3. Using this value for d, we now must solve the condition  

 

  2 22
d x x





   . 

 

Straightforward algebra then leads to x = (35/4), and using  = 400 nm we find x = 3500 

nm, or 3.5 m. 

 

29. THINK The intensity is proportional to the square of the resultant field amplitude.  

 

EXPRESS Let the electric field components of the two waves be written as 

 

 
1 10

2 20

sin

sin( ),

E E t

E E t



 



 
 

 

where E10 = 1.00, E20 = 2.00, and  = 60°. The resultant field is 1 2E E E  . We use 

phasor diagram to calculate the amplitude of E. 

 

ANALYZE The phasor diagram is shown next.  
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The resultant amplitude Em is given by the trigonometric 

law of cosines: 

 

 2 2 2

10 20 10 202 cos 180 .mE E E E E      

 

Thus, 

 

Em     100 2 00 2 100 2 00 120 2 65
2 2

. . . . cos . .b g b g b gb g  

 

 
 

LEARN Summing over the horizontal components of the two fields gives 

 

10 20cos0 cos60 1.00 (2.00)cos60 2.00hE E E        

 

Similarly, the sum over the vertical components is 

 

10 20sin0 sin60 1.00sin0 (2.00)sin60 1.732vE E E       . 

 

The resultant amplitude is  

 2 2(2.00) (1.732) 2.65mE    , 

 

which agrees with what we found above. The phase angle relative to the phasor 

representing E1 is  

1 1.732
tan 40.9

2.00
   
   

 
 

 

Thus, the resultant field can be written as (2.65)sin( 40.9 ).E t    

 

30. In adding these with the phasor method (as opposed to, say, trig identities), we may 

set t = 0 and add them as vectors: 

 

y

y

h

v

  

  

10 0 8 0 30 16 9

10 0 8 0 30 4 0

cos . cos .

sin . sin .
 

 

so that 

y y y

y

y

R h v

v

h

  


F
HG
I
KJ  

2 2

1

17 4

133

.

tan . .
 

Thus, 

y y y y t tR      1 2 17 4 133sin . sin .  b g b g . 
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Quoting the answer to two significant figures, we have  17sin 13y t   . 

 

31. In adding these with the phasor method (as opposed to, say, trig identities), we may 

set t = 0 and add them as vectors: 

 

y

y

h

v

     

     

10 0 15 30 50 45 265

10 0 15 30 50 45 4 0

cos cos . cos .

sin sin . sin .

b g
b g  

 

so that 
2 2

1

26.8 27

tan 8.5 .

R h v

v

h

y y y

y

y
 

   

 
   

 

 

 

Thus,    1 2 3 sin 27sin 8.5Ry y y y y t t          . 

   

32. (a) We can use phasor techniques or use trig identities.  Here we show the latter 

approach.  Since  

sin a + sin(a + b) = 2cos(b/2)sin(a + b/2), 

 

we find 

 1 2 02 cos( / 2)sin( / 2)E E E t      

 

where E0 = 2.00 µV/m, = 1.26 × 10
15 

rad/s, and 39.6 rad.  This shows that the 

electric field amplitude of the resultant wave is  

 

02 cos( / 2) 2(2.00 V/m)cos(19.2 rad) 2.33 V/mE E      . 

 

(b) Equation 35-22 leads to 
2

0 04 cos ( / 2) 1.35I I I   

 

at point P, and 
2

center 0 04 cos (0) 4I I I   

 

at the center. Thus, center/ 1.35/ 4 0.338I I   .   

 

(c) The phase difference (in wavelengths) is gotten from  in radians by dividing by 2  

Thus,  wavelengths.  Thus, point P is between the sixth side maximum 

(at which  wavelengths) and the seventh minimum (at which 
1

2
  wavelengths). 

 

(d) The rate is given by = 1.26 × 10
15 

rad/s. 
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(e) The angle between the phasors is 39.6 rad = 2270° (which would look like about 

110° when drawn in the usual way). 

 

33. With phasor techniques, this amounts to a vector addition problem 
   
R A B C    

where (in magnitude-angle notation) 
  
A B C        10 0 5 45 5 45b g b g b g, , ,and  

where the magnitudes are understood to be in V/m. We obtain the resultant (especially 

efficient on a vector-capable calculator in polar mode): 

 
R            10 0 5 45 5 45 171 0b g b g b g b g.  

 

which leads to 

E tR  171. sin V mb g b g  
 

where  = 2.0  10
14

 rad/s. 

 

34. (a) Referring to Figure 35-10(a) makes clear that  

 

 = tan
1

(y/D) = tan
1

(0.205/4) = 2.93°. 

 

Thus, the phase difference at point P is  = dsin = 0.397 wavelengths, which means it 

is between the central maximum (zero wavelength difference) and the first minimum ( 
1

2
  

wavelength difference).  Note that the above computation could have been simplified 

somewhat by avoiding the explicit use of the tangent and sine functions and making use 

of the small-angle approximation (tan  sin). 

 

(b) From Eq. 35-22, we get (with  = (0.397)(2) = 2.495 rad) 

 
2

0 04 cos ( / 2) 0.404I I I        

at point P and 
2

center 0 04 cos (0) 4I I I   

 

at the center. Thus, center/ 0.404/ 4 0.101I I   .   

 

35. THINK For complete destructive interference, we want the waves reflected from the 

front and back of the coating to differ in phase by an odd multiple of  rad.  

 

EXPRESS Each wave is incident on a medium of higher index of refraction from a 

medium of lower index, so both suffer phase changes of  rad on reflection. If L is the 

thickness of the coating, the wave reflected from the back surface travels a distance 2L 

farther than the wave reflected from the front. The phase difference is 2L(2/c), where 

c is the wavelength in the coating. If n is the index of refraction of the coating, c = /n, 

where  is the wavelength in vacuum, and the phase difference is 2nL(2/). We solve 
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2
2

2 1nL m



F
HG
I
KJ  b g  

 

for L. Here m is an integer. The result is L
m

n


2 1

4

b g
.  

 

ANALYZE To find the least thickness for which destructive interference occurs, we take 

m = 0. Then, 

 

9
7600 10 m

1.20 10 m.
4 1.25

L
n




   
l

4
 

 

LEARN A light ray reflected by a material changes phase by  rad (or 180°) if the 

refractive index of the material is greater than that of the medium in which the light is 

traveling.  

 

36. (a) On both sides of the soap is a medium with lower index (air) and we are 

examining the reflected light, so the condition for strong reflection is Eq. 35-36.  With 

lengths in nm, 

  =  
2n2L

m + 
1

2

   = 








  

3360    for m = 0

1120    for m = 1

672     for m = 2

480     for m = 3

373     for m = 4

305     for m = 5

 

 

from which we see the latter four values are in the given range. 

 

(b) We now turn to Eq. 35-37 and obtain 

 

  =  
2n2L

m
   =  








  

1680    for m = 1

840     for m = 2

560     for m = 3

420     for m = 4

336     for m = 5

 

 

from which we see the latter three values are in the given range. 

 

37. Light reflected from the front surface of the coating suffers a phase change of  rad 

while light reflected from the back surface does not change phase. If L is the thickness of 

the coating, light reflected from the back surface travels a distance 2L farther than light 

reflected from the front surface. The difference in phase of the two waves is 2L(2/c) – 

, where c is the wavelength in the coating. If  is the wavelength in vacuum, then c = 

/n, where n is the index of refraction of the coating. Thus, the phase difference is 
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2nL(2/) – . For fully constructive interference, this should be a multiple of 2. We 

solve 

2
2

2nL m


 


F
HG
I
KJ    

 

for L. Here m is an integer. The solution is 

L
m

n


2 1

4

b g
.  

 

To find the smallest coating thickness, we take m = 0. Then, 

 

L
n

 


 




4

560 10

4 2 00
7 00 10

9
8m

m
.

. .b g  

 

38. (a)  We are dealing with a thin film (material 2) in a situation where n1 > n2 > n3, 

looking for strong reflections; the appropriate condition is the one expressed by Eq. 35-

37.  Therefore, with lengths in nm and L = 500 and n2 = 1.7, we have 

 

  =  
2n2L

m
  =   








 

1700    for m = 1

850     for m = 2

567     for m = 3

425     for m = 4

 

 

from which we see the latter two values are in the given range. The longer wavelength 

(m=3) is 567 nm.   

 

(b) The shorter wavelength (m = 4) is 425 nm.   

 

(c) We assume the temperature dependence of the refraction index is negligible.  From 

the proportionality evident in the part (a) equation, longer L means longer . 

 

39. For constructive interference, we use Eq. 35-36:  

 

2 1 22n L m b g . 

 

For the smallest value of L, let m = 0: 

 

 
 

0

2

624nm
117nm 0.117 m.

2 4 1.33
L

n


 
     

 

(b) For the second smallest value, we set m = 1 and obtain 
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 
 1 0

2 2

1 1 2 3
3 3 0.1173 m 0.352 m.

2 2
L L

n n

 
 


      

 

40. The incident light is in a low index medium, the thin film of acetone has somewhat 

higher n = n2, and the last layer (the glass plate) has the highest refractive index. To see 

very little or no reflection, the condition 

 

 1
2

2

2 where 0,1, 2,L m m
n

  l  

 

must hold. This is the same as Eq. 35-36, which was developed for the opposite situation 

(constructive interference) regarding a thin film surrounded on both sides by air (a very 

different context from the one in this problem). By analogy, we expect Eq. 35-37 to apply 

in this problem to reflection maxima. Thus, using Eq. 35-37 with n2 = 1.25 and  = 700 

nm yields 

 

0, 280nm, 560nm, 840nm,1120nm,L   

 

for the first several m values. And the equation shown above (equivalent to Eq. 35-36) 

gives, with  = 600 nm, 

 
L 120nm,360nm,600nm,840nm,1080nm, 

 

for the first several m values. The lowest number these lists have in common is 

840 nm.L  

 

41. In this setup, we have 2 1n n and 2 3n n , and the condition for destructive 

interference is  

2 2

1 1
2      ,     0,1, 2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 342 nm

1 161 nm
2 2(1.59)

L
 

   
 

. 

 

42. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Thus, we get 
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2

2

4 4(285 nm)(1.60) 1824 nm  ( 0)

4 / 3 4(285 nm)(1.60) / 3 608 nm  ( 1)

Ln m

Ln m


  
 

  
. 

 

For the wavelength to be in the visible range, we choose m = 1 with 608 nm.    

 

43. When a thin film of thickness L and index of refraction n2 is placed between materials 

1 and 3 such that 1 2n n and 3 2n n  where n1 and n3 are the indexes of refraction of the 

materials, the general condition for destructive interference for a thin film is 

 

 2

2

2
2         ,      0,1,2,...

Ln
L m m

n m


     

 

where  is the wavelength of light as measured in air. Thus, we have, for 1m   

 

 22 2(200 nm)(1.40) 560 nmLn    . 

 

44. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

 

2 2

1 1
2      ,     0,1, 2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 587 nm

1 329 nm
2 2(1.34)

L
 

   
 

. 

 

45. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 612 nm

2 478 nm
2 2(1.60)

L
 

   
 

. 

 

46. In this setup, we have 2 1n n and 2 3n n , and the condition for destructive 

interference is  
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2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Therefore,  

 

 

2

2

2

4 4(415 nm)(1.59) 2639 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 880 nm  ( 1)

4 / 5 4(415 nm)(1.59) / 5 528 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

. 

 

For the wavelength to be in the visible range, we choose m = 3 with 528 nm.    

 

47. THINK For a complete destructive interference, we want the waves reflected from 

the front and back of material 2 of refractive index n2 to differ in phase by an odd 

multiple of  rad.  

 

EXPRESS In this setup, we have 2 1,n n  so there is no phase change from the first 

surface. On the other hand 2 3n n , so there is a phase change of  rad from the second 

surface. Since the second wave travels an extra distance of 2L, the phase difference is 

 

 
2

2
(2 )L


 


   

 

where 2 2/ n is the wavelength in medium 2. The condition for destructive 

interference is 

2

2
(2 ) (2 1) ,L m


 


    

or 

2

2

2
2     ,     0,1, 2,...

Ln
L m m

n m


     

 

ANALYZE Thus, we have  

 

 
2

2

2 2(380 nm)(1.34) 1018 nm  ( 1)

(380 nm)(1.34) 509 nm  ( 2)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 2 with 509 nm.    

 

LEARN In this setup, the condition for constructive interference is  

 

2

2
(2 ) 2 ,L m


 


   

or 
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2

1
2 ,  0,1, 2,...

2
L m m

n

 
   
 

 

 

48. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 632 nm

1 339 nm
2 2(1.40)

L
 

   
 

. 

 

49. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 382 nm

2 273 nm
2 2(1.75)

L
 

   
 

. 

 

50. In this setup, we have 2 1n n and 2 3n n , and the condition for destructive 

interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 482 nm

1 248 nm
2 2(1.46)

L
 

   
 

. 

 

51. THINK For a complete destructive interference, we want the waves reflected from 

the front and back of material 2 of refractive index n2 to differ in phase by an odd 

multiple of  rad.  

 

EXPRESS In this setup, we have 1 2n n and 2 3n n , which means that both waves are 

incident on a medium of higher refractive index from a medium of lower refractive index. 
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Thus, in both cases, there is a phase change of  rad from both surfaces. Since the second 

wave travels an additional distance of 2L, the phase difference is 

 

 
2

2
(2 )L





  

 

where 2 2/ n is the wavelength in medium 2. The condition for destructive 

interference is 

2

2
(2 ) (2 1) ,L m





   

or 

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

 

ANALYZE Thus,   

 
2

2

4 4(210 nm)(1.46) 1226 nm  ( 0)

4 / 3 4(210 nm)(1.46) / 3 409 nm  ( 1)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 1 with 409 nm.    

 

LEARN In this setup, the condition for constructive interference is 

 

2

2
(2 ) 2 ,L m





  

or 

2

2 ,  0,1, 2,...L m m
n


   

 

52. In this setup, we have 2 1n n and 2 3n n , and the condition for constructive 

interference is  

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Thus, we have  

 

 

2

2

2

4 4(325 nm)(1.75) 2275 nm  ( 0)

4 / 3 4(325 nm)(1.75) / 3 758 nm  ( 1)

4 / 5 4(325 nm)(1.75) / 5 455 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

. 

 

For the wavelength to be in the visible range, we choose m = 2 with 455 nm.    

 

53. We solve Eq. 35-36 with n2 = 1.33 and  = 600 nm for m = 1, 2, 3,…: 
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113 nm, 338nm, 564nm, 789nm,L   

 

And, we similarly solve Eq. 35-37 with the same n2 and  = 450 nm: 

 

0,169nm, 338nm, 508nm, 677nm,L   

 

The lowest number these lists have in common is L = 338 nm. 

 

54. The situation is analogous to that treated in Sample Problem — “Thin-film 

interference of a coating on a glass lens,” in the sense that the incident light is in a low 

index medium, the thin film of oil has somewhat higher n = n2, and the last layer (the 

glass plate) has the highest refractive index. To see very little or no reflection, according 

to the Sample Problem, the condition 

2

1
2 where 0,1, 2,

2
L m m

n

 
   
 

l
 

 

must hold. With  = 500 nm and n2 = 1.30, the possible answers for L are 

 

96nm, 288nm, 481nm, 673nm, 865nm,...L   

 

And, with  = 700 nm and the same value of n2, the possible answers for L are 

 

135nm, 404nm, 673nm, 942nm,...L   

 

The lowest number these lists have in common is L = 673 nm. 

 

55. THINK The index of refraction of oil is greater than that of the air, but smaller than 

that of the water. 

 

EXPRESS Let the indices of refraction of the air, oil and water be n1, n2, and n3, 

respectively. Since 1 2n n and 2 3n n , there is a phase change of  rad from both 

surfaces. Since the second wave travels an additional distance of 2L, the phase difference 

is 

 
2

2
(2 )L





  

 

where 2 2/ n is the wavelength in the oil. The condition for constructive interference 

is 

2

2
(2 ) 2 ,L m





  

or 
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2

2 ,  0,1, 2,...L m m
n


   

 

ANALYZE (a) For 1, 2,...,m   maximum reflection occurs for wavelengths 

 

  
2

2 1.20 460nm2
1104nm , 552nm, 368nm...

n L

m m
  l  

 

We note that only the 552 nm wavelength falls within the visible light range. 

 

(b) Maximum transmission into the water occurs for wavelengths for which reflection is a 

minimum. The condition for such destructive interference is given by 

 

2
1

2

4

2 12

2L m
n

n L

m
 
F
HG
I
KJ  



   

 

which yields  = 2208 nm, 736 nm, 442 nm … for the different values of m. We note that 

only the 442 nm wavelength (blue) is in the visible range, though we might expect some 

red contribution since the 736 nm is very close to the visible range. 

 

LEARN A light ray reflected by a material changes phase by  rad (or 180°) if the 

refractive index of the material is greater than that of the medium in which the light is 

traveling. Otherwise, there is no phase change. Note that refraction at an interface does 

not cause a phase shift. 

 

56. For constructive interference (which is obtained for = 600 nm) in this circumstance, 

we require 

 2
2 2

n

k k
L

n


   

 

where k = some positive odd integer  and n is the index of refraction of the thin film.  

Rearranging and plugging in L = 272.7 nm and the wavelength value, this gives 

 

(600 nm)
0.55

4 4(272.7 nm) 1.818

k k k
n k

L


    . 

 

Since we expect n > 1, then k = 1 is ruled out.  However, k = 3 seems reasonable, since it 

leads to n = 1.65, which is close to the “typical” values found in Table 34-1.  Taking this 

to be the correct index of refraction for the thin film, we now consider the destructive 

interference part of the question.  Now we have 2L = (integer)dest /n.  Thus,  

 

dest = (900 nm)/(integer). 
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We note that setting the integer equal to 1 yields a dest value outside the range of the 

visible spectrum.  A similar remark holds for setting the integer equal to 3.  Thus, we set 

it equal to 2 and obtain dest  = 450 nm. 

 

57. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2

2

41
2      ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

 

Therefore,  

 

 
2

2

4 4(285 nm)(1.60) 1824 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 608 nm  ( 1)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 1 with 608 nm.    

 

58. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 382 nm

2 273 nm
2 2(1.75)

L
 

   
 

. 

 

59. THINK Maximum transmission means constructive interference. 

 

EXPRESS As shown in Fig. 35-43, one wave travels a distance of 2L further than the 

other. This wave is reflected twice, once from the back surface (between materials 2 and 

3), and once from the front surface (between materials 1 and 2). Since 2 3n n , there is no 

phase change at the back-surface reflection. On the other hand, since 2 1n n , there is a 

phase change of  rad due to the front-surface reflection. The phase difference of the two 

waves as they leave material 2 is 

 
2

2
(2 )L


 


   

 

where 2 2/ n is the wavelength in material 2. The condition for constructive 

interference is 
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2

2
(2 ) 2 ,L m


 


   

or 

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

 

ANALYZE Thus, we have  

 

 

2

2

2

4 4(415 nm)(1.59) 2639 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 880 nm  ( 1)

4 / 5 4(415 nm)(1.59) / 5 528 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

. 

 

For the wavelength to be in the visible range, we choose m = 2 with 528 nm.    

 

LEARN similarly, the condition for destructive interference is  

 

2

2
(2 ) (2 1) ,L m


 


    

or 

2

2

2
2     ,     0,1, 2,...

Ln
L m m

n m


     

 

60. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2

2

2
2     ,     0,1,2,...

Ln
L m m

n m


     

Thus, we obtain  

 
2

2

2 2(380 nm)(1.34) 1018 nm  ( 1)

(380 nm)(1.34) 509 nm  ( 2)

Ln m

Ln m


  
 

  
. 

  

For the wavelength to be in the visible range, we choose m = 2 with 509 nm.    

 

61. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2

2

41
2      ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Therefore, 
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2

2

2

4 4(325 nm)(1.75) 2275 nm  ( 0)

4 / 3 4(415 nm)(1.59) / 3 758 nm  ( 1)

4 / 5 4(415 nm)(1.59) / 5 455 nm  ( 2)

Ln m

Ln m

Ln m



  


   
   

 

 

For the wavelength to be in the visible range, we choose m = 2 with 455 nm.    

 

62. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 342 nm

1 161 nm
2 2(1.59)

L
 

   
 

. 

 

63. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 482 nm

1 248 nm
2 2(1.46)

L
 

   
 

. 

 

64. In this setup, we have 2 1n n and 2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2

2

41
2     ,     0,1,2,...

2 2 1

Ln
L m m

n m




 
     

 
 

Thus, we have 

 

 
2

2

4 4(210 nm)(1.46) 1226 nm  ( 0)

4 / 3 4(210 nm)(1.46) / 3 409 nm  ( 1)

Ln m

Ln m


  
 

  
 

 

For the wavelength to be in the visible range, we choose m = 1 with 409 nm.    
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65. In this setup, we have 
2 1n n and 

2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 632 nm

1 339 nm
2 2(1.40)

L
 

   
 

. 

 

66. In this setup, we have 
2 1n n and 

2 3n n , and the condition for maximum 

transmission (minimum reflection) or constructive interference is  

 

2

2

2
2     ,     0,1,2,...

Ln
L m m

n m


     

Thus, we have (with m =1)  

 

 22 2(200 nm)(1.40) 560 nmLn    . 

 

67. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The second least thickness is (m = 1)  

 

 
1 587 nm

1 329 nm
2 2(1.34)

L
 

   
 

. 

 

68. In this setup, we have 2 1n n and 2 3n n , and the condition for minimum 

transmission (maximum reflection) or destructive interference is  

 

2 2

1 1
2      ,     0,1,2,...

2 2 2
L m L m m

n n

    
        
   

 

 

The third least thickness is (m = 2)  

 

 
1 612 nm

2 478 nm
2 2(1.60)

L
 

   
 

. 
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69. Assume the wedge-shaped film is in air, so the wave reflected from one surface 

undergoes a phase change of  rad while the wave reflected from the other surface does 

not. At a place where the film thickness is L, the condition for fully constructive 

interference is 2 1
2

nL m b g  where n is the index of refraction of the film,  is the 

wavelength in vacuum, and m is an integer. The ends of the film are bright. Suppose the 

end where the film is narrow has thickness L1 and the bright fringe there corresponds to m 

= m1. Suppose the end where the film is thick has thickness L2 and the bright fringe there 

corresponds to m = m2. Since there are ten bright fringes, m2 = m1 + 9. Subtract 

2 1 1
1
2

nL m b g  from 2 92 1
1
2

nL m  b g  to obtain 2n L = 9, where L = L2 – L1 is 

the change in the film thickness over its length. Thus, 

 

L
n

 


 



9 9 630 10

2 150
189 10

9

6


m
m.

c h
b g.

.  

 

70. (a) The third sentence of the problem implies mo = 9.5 in 2 do = mo initially.  Then, 

t = 15 s later, we have m = 9.0 in 2d = m.  This means  

 

|d| = do  d =  
1

2
 ( mo m)  = 155 nm . 

 

Thus, |d| divided by t gives 10.3 nm/s. 

 

(b) In this case, mf = 6 so that  

 

do  df =  
1

2
 (mo mf )  = 

7

4
  = 1085 nm = 1.09 µm. 

 

71. The (vertical) change between the center of one dark band and the next is 

 

4500 nm
250 nm 2.50 10 mm.

2 2
y

        

 

Thus, with the (horizontal) separation of dark bands given by x = 1.2 mm, we have 

 

     tan .




y

x
2 08 10 4 rad. 

 

Converting this angle into degrees, we arrive at  = 0.012°. 

 

72. We apply Eq. 35-27 to both scenarios: m = 4001 and n2 = nair, and m = 4000 and n2 = 

nvacuum = 1.00000: 

2 4001 4000L
n

L b g b g 
air

and 2 .  
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Since the 2L factor is the same in both cases, we set the right-hand sides of these 

expressions equal to each other and cancel the wavelength. Finally, we obtain 

 

nair  100000
4001

4000
100025. . .b g  

 

We remark that this same result can be obtained starting with Eq. 35-43 (which is 

developed in the textbook for a somewhat different situation) and using Eq. 35-42 to 

eliminate the 2L/ term. 

 

73. THINK A light ray reflected by a material changes phase by  rad (or 180°) if the 

refractive index of the material is greater than that of the medium in which the light is 

traveling.  

 

EXPRESS Consider the interference of waves reflected from the top and bottom surfaces 

of the air film. The wave reflected from the upper surface does not change phase on 

reflection but the wave reflected from the bottom surface changes phase by  rad. At a 

place where the thickness of the air film is L, the condition for fully constructive 

interference is 2 1
2

L m b g  where  (= 683 nm) is the wavelength and m is an integer. 

 

ANALYZE For L = 48 m, we find the value of m to be 

 
5

9

2 1 2(4.80 10 m) 1
140.

2 683 10 m 2

L
m








    


 

 

At the thin end of the air film, there is a bright fringe. It is associated with m = 0. There 

are, therefore, 140 bright fringes in all. 

 

LEARN The number of bright fringes increases with L, but decreases with . 

 

74. By the condition m = 2y where y is the thickness of the air film between the plates 

directly underneath the middle of a dark band), the edges of the plates (the edges where 

they are not touching) are y = 8/2 = 2400 nm apart (where we have assumed that the 

middle of the ninth dark band is at the edge).  Increasing that to y' = 3000 nm would 

correspond to m' = 2y'/ = 10 (counted as the eleventh dark band, since the first one 

corresponds to m = 0).  There are thus 11 dark fringes along the top plate. 

 

75. THINK The formation of Newton’s rings is due to the interference between the rays 

reflected from the flat glass plate and the curved lens surface.  

 

EXPRESS Consider the interference pattern formed by waves reflected from the upper 

and lower surfaces of the air wedge. The wave reflected from the lower surface 

undergoes a  rad phase change while the wave reflected from the upper surface does not. 
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At a place where the thickness of the wedge is d, the condition for a maximum in 

intensity is 2 1
2

d m b g  where  is the wavelength in air and m is an integer. Therefore,  

 

d = (2m + 1)/4. 

 

ANALYZE As the geometry of Fig. 35-46 shows, d R R r  2 2 ,  where R is the 

radius of curvature of the lens and r is the radius of a Newton’s ring. Thus, 

2 1 2 2m R R r   b g  .  First, we rearrange the terms so the equation becomes 

 

 2 2
2 1

.
4

m
R r R


  

l
 

 

Next, we square both sides, rearrange to solve for r
2
, then take the square root. We get 

 

r
m R m





2 1

2

2 1

16

2b g b g 

.  

 

If R is much larger than a wavelength, the first term dominates the second and 

 

r
m R


2 1

2

b g 
.  

 

LEARN Similarly, the radii of the dark fringes are given by 

 

.r mR  

 

76. (a) We find m from the last formula obtained in Problem 35-75: 

 

m
r

R
  










2 3
2

9

1

2

10 10

50 589 10

1

2
m

m m

c h
b gc h.

 

 

which (rounding down) yields m = 33. Since the first bright fringe corresponds to m = 0, 

m = 33 corresponds to the thirty-fourth bright fringe. 

 

(b) We now replace  by n = /nw. Thus, 

 

  
  

2
322

9

1.33 10 10 m1 1 1
45.

2 2 25.0m 589 10 m

w
n

n

n rr
m

R R






      

l l
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This corresponds to the forty-sixth bright fringe (see the remark at the end of our solution 

in part (a)). 

 

77. We solve for m using the formula r m R 2 1b g    obtained in Problem 35-75 and 

find m = r
2
/R – 1/2. Now, when m is changed to m + 20, r becomes r', so  

 

m + 20 = r' 
2
/R – 1/2. 

 

Taking the difference between the two equations above, we eliminate m and find 

 

R
r r


 









2 2 2 2

720

0 368 0162

20 546 10
100


. .cm cm

cm
cm.

b g b g
c h  

 

78. The time to change from one minimum to the next is t = 12 s. This involves a 

change in thickness L = /2n2 (see Eq. 35-37), and thus a change of volume  

 

V = r²L =
2

²

2

r

n

 
           

2

²

2

dV r

dt n t

 



 = 
(0.0180)² (550 x 10

-9
)

2(1.40) (12)
  

 

using SI units.  Thus, the rate of change of volume is 1.67 × 10
11 

m
3
/s. 

 

79. A shift of one fringe corresponds to a change in the optical path length of one 

wavelength. When the mirror moves a distance d, the path length changes by 2d since the 

light traverses the mirror arm twice. Let N be the number of fringes shifted. Then, 2d = 

N and 

  


  



2 2 0 233 10

792
588 10 588

3

7d

N

.
.

m
m nm .

c h
 

 

80. According to Eq. 35-43, the number of fringes shifted (N) due to the insertion of the 

film of thickness L is N = (2L / ) (n – 1). Therefore, 

 

L
N

n










2 1

589 7 0

2 140 1
52b g

b gb g
b g

nm
m

.

.
. .  

 

81. THINK The wavelength in air is different from the wavelength in vacuum. 

 

EXPRESS Let 1 be the phase difference of the waves in the two arms when the tube has 

air in it, and let 2 be the phase difference when the tube is evacuated. If  is the 

wavelength in vacuum, then the wavelength in air is /n, where n is the index of 

refraction of air. This means 

 1 2 2
2 2 4 1

  
L
NM

O
QP 


L

n n L











b g
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where L is the length of the tube. The factor 2 arises because the light traverses the tube 

twice, once on the way to a mirror and once after reflection from the mirror. Each shift by 

one fringe corresponds to a change in phase of 2 rad, so if the interference pattern shifts 

by N fringes as the tube is evacuated, then 

 

4 1
2






n L
N




b g
. 

 

ANALYZE Solving for n, we obtain 

 

n
N

L
   









1

2
1

60 500 10

2 50 10
100030

9

2

 m

m

c h
c h.

. .  

 

LEARN The interferometer provides an accurate way to measure the refractive index of 

the air (and other gases as well).  

 

82. We apply Eq. 35-42 to both wavelengths and take the difference: 

 

1 2

2 2 1 1
2 .

L L
N N L

   

 
     

    
 

 

We now require N1 – N2 = 1 and solve for L: 

 
1 1

51 1 1 1 1 1
2.91 10 nm 291 m.

2 2 588.9950 nm 589.5924 nm
L 

 

 

   
         

    
 

 

83. (a) The path length difference between rays 1 and 2 is 7d – 2d = 5d. For this to 

correspond to a half-wavelength requires 5d = /2, so that d = 50.0 nm. 

 

(b) The above requirement becomes 5d = /2n in the presence of the solution, with n = 

1.38. Therefore, d = 36.2 nm. 

 

84. (a) The minimum path length difference occurs when both rays are nearly vertical.  

This would correspond to a point as far up in the picture as possible.  Treating the screen 

as if it extended forever, then the point is at y = . 

 

(b) When both rays are nearly vertical, there is no path length difference between them.  

Thus at y = , the phase difference is  = 0. 

 

(c) At y = 0 (where the screen crosses the x axis) both rays are horizontal, with the ray 

from S1 being longer than the one from S2 by distance d.   
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(d) Since the problem specifies d = 6.00, then the phase difference here is  = 6.00 

wavelengths and is at its maximum value. 

 

(e) With D = 20use of the Pythagorean theorem leads to 

 

 =   
L1  L2


   = 

d² + (d + D)²  d² + D²


   = 5.80 

 

which means the rays reaching the point  y = d have a phase difference of roughly 5.8  

wavelengths. 

 

(f) The result of the previous part is “intermediate” — closer to 6 (constructive 

interference) than to 5 
1

2
  (destructive interference). 

 

85. THINK The angle between adjacent fringes depends the wavelength of the light and 

the distance between the slits. 

 

EXPRESS The angular positions of the maxima of a two-slit interference pattern are 

given by sinL d m    , where L is the path-length difference, d is the slit separation, 

 is the wavelength, and m is an integer. If  is small, sin  may be approximated by  in 

radians. Then,  = m/d to good approximation. The angular separation of two adjacent 

maxima is  = /d. When the arrangement is immersed in water, the wavelength 

changes to ' = /n, and the equation above becomes 

 

d





  . 

 

ANALYZE Dividing the equation by  = /d,  we obtain 

 



















n

.  

 

Therefore, with n = 1.33 and  = 0.30°, we find ' = 0.23°. 

 

LEARN The angular separation decreases with increasing index of refraction; the greater 

the value of n, the smaller the value of . 

 

86. (a) The graph shows part of a periodic pattern of half-cycle “length” n = 0.4.  Thus 

if we set n = 1.0 + 2n  = 1.8 then the maximum at n = 1.0 should repeat itself there.  

 

(b) Continuing the reasoning of part (a), adding another half-cycle “length” we get 

1.8 2.2n   for the answer. 
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(c) Since n = 0.4 represents a half-cycle, then n/2 represents a quarter-cycle.  To 

accumulate a total change of 2.0 – 1.0 = 1.0 (see problem statement), then we need 2n + 

n/2 = 5/4
th

 of a cycle, which corresponds to 1.25 wavelengths. 

 

87. THINK For a completely destructive interference, the intensity produced by the two 

waves is zero.  

 

EXPRESS When the interference between two waves is completely destructive, their 

phase difference is given by 

 

 (2 1) , 0,1, 2,...m m     

 

The equivalent condition is that their path-length difference is an odd multiple of / 2,  

where  is the wavelength of the light.    

 

ANALYZE (a) Looking at Fig. 35-52, we see that half of the periodic pattern is of length 

L = 750 nm (judging from the maximum at x = 0 to the minimum at x = 750 nm);  this 

suggests that L = /2, and the wavelength (the full length of the periodic pattern) is = 

2L = 1500 nm.  Thus, a maximum should be reached again at x = 1500 nm (and at x = 

3000nm, x = 4500 nm, …). 

  

(b) From our discussion in part (a), we expect a minimum to be reached at odd multiple 

of /2, or x = 750 nm + n(1500 nm), where n = 1, 2, 3 … .   For instance, for n = 1 we 

would find the minimum at x = 2250 nm. 

 

(c) With = 1500 nm (found in part (a)), we can express x = 1200 nm as x = 1200/1500 = 

0.80 wavelength. 

 

LEARN For a completely destructive interference, the phase difference between two 

light sources is an odd multiple of ; however, for a completely constructive interference, 

the phase difference is a multiple of 2 

 

88. (a) The difference in wavelengths, with and without the n = 1.4 material, is found 

using Eq. 35-9: 

 ( 1) 1.143
L

N n


    . 

 

The result is equal to a phase shift of (1.143)(360) = 411.4, or  

 

(b) more meaningfully, a shift of 411.4  360 = 51.4. 

 

89. THINK Since the index of refraction of water is greater than that of air, the wave that 

is reflected from the water surface suffers a phase change of  rad on reflection. 
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EXPRESS Suppose the wave that goes directly to the receiver travels a distance L1 and 

the reflected wave travels a distance L2. The last wave suffers a phase change on 

reflection of half a wavelength since water has higher refractive index than air. To obtain 

constructive interference at the receiver, the difference L2 – L1 must be an odd multiple of 

a half wavelength.  

 

ANALYZE Consider the diagram below.  

 
 

The right triangle on the left, formed by the vertical line from the water to the transmitter 

T, the ray incident on the water, and the water line, gives Da = a/ tan . The right triangle 

on the right, formed by the vertical line from the water to the receiver R, the reflected ray, 

and the water line leads to / tanbD x  . Since Da + Db = D, 

 

tan . 
a x

D
 

 

We use the identity sin
2
  = tan

2  / (1 + tan
2
 ) to show that  

 
2 2sin ( ) / ( )a x D a x     . 

This means 

L
a a D a x

a x
a2

2 2

 
 

sin

b g
 

and 

 
22

2 .
sin

b

x D a xx
L

a x

 
 


 

Therefore, 

L L L
a x D a x

a x
D a xa b2 2 2

2 2

2 2
  

  


  

b g b g b g .  

 

Using the binomial theorem, with D
2
 large and a

2
 + x

2
 small, we approximate this 

expression:  
2

2 / 2 .L D a x D    The distance traveled by the direct wave is 
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L D a x1

2 2
  b g . Using the binomial theorem, we approximate this expression: 

 
2

1 / 2 .L D a x D    Thus, 

 

L L D
a ax x

D
D

a ax x

D

ax

D
2 1

2 2 2 22

2

2

2

2
  

 
 

 
 .  

 

Setting this equal to m 1
2b g , where m is zero or a positive integer, we find 

  1
2

2x m D a  . 

 

LEARN Similarly, the condition for destructive interference is 

 

2 1

2
,

ax
L L m

D
    

or 

, 0,1, 2,...
2

D
x m m

a


   

 

90. (a) Since P1 is equidistant from S1  and S2 we conclude the sources are not in phase 

with each other.  Their phase difference is source = 0.60  rad, which may be expressed 

in terms of “wavelengths” (thinking of the   2 correspondence in discussing a full 

cycle) as  

source = (0.60 ) = 0.3  

 

(with S2 “leading” as the problem states).  Now S1  is closer to P2 than S2 is.  Source S1 is 

80 nm ( 80/400  = 0.2  ) from P2 while source S2 is 1360 nm ( 1360/400  = 3.4  ) 

from P2.  Here we find a difference of  path = 3.2  (with S1 “leading” since it is closer).  

Thus, the net difference is  

 

net = path –  source =  2.90 , 

or 2.90 wavelengths. 

 

(b) A whole number (like 3 wavelengths) would mean fully constructive, so our result is 

of the following nature: intermediate, but close to fully constructive. 

 

91. (a) Applying the law of refraction, we obtain sin 2 / sin 1 = sin 2 / sin 30° = vs/vd. 

Consequently, 

 

 1 1

2

3.0m s sin30sin30
sin sin 22 .

4.0m s

s

d

v

v
  

  
      

   
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(b) The angle of incidence is gradually reduced due to refraction, such as shown in the 

calculation above (from 30° to 22°). Eventually after several refractions, 2 will be 

virtually zero. This is why most waves come in normal to a shore. 

 

92. When the depth of the liquid (Lliq ) is zero, the phase difference  is 60 wavelengths; 

this must equal the difference between the number of wavelengths in length L = 40 µm 

(since the liquid initially fills the hole) of the plastic (for ray r1) and the number in that 

same length of the air (for ray r2).  That is, 

 

plastic air 60
Ln Ln

 
  . 

 

(a) Since = 400 × 10
9 

m and nair = 1 (to good approximation), we find nplastic = 1.6. 

 

(b) The slope of the graph can be used to determine nliq , but we show an approach more 

closely based on the above equation: 

 

 
plastic liq

20
Ln Ln

 
   

 

which makes use of the leftmost point of the graph.  This readily yields nliq = 1.4. 

 

93. THINK Knowing the slit separation and the distance between interference fringes 

allows us to calculate the wavelength of the light used.  

 

EXPRESS The condition for a minimum in the two-slit interference pattern is d sin  = 

(m + ½), where d is the slit separation,  is the wavelength, m is an integer, and  is the 

angle made by the interfering rays with the forward direction. If  is small, sin  may be 

approximated by  in radians. Then,  = (m + ½)/d, and the distance from the minimum 

to the central fringe is 

 
1

tan sin
2

D
y D D D m

d


  

 
     

 
, 

 

where D is the distance from the slits to the screen. For the first minimum m = 0 and for 

the tenth one, m = 9. The separation is 

 

1 1 9
9

2 2

D D D
y

d d d

   
     

 
. 

 

ANALYZE We solve for the wavelength: 

 

  
 


  

 



d y

D



9

015 10 18 10

9 50 10
6 0 10 600

3 3

2

7
.

.
m m

m
m  nm.

c hc h
c h  



 

 

1551 

 

LEARN The distance between two adjacent dark fringes, one associated with the integer 

m and the other associated with the integer m + 1, is  

 

y = D = D/d. 

 

94. A light ray traveling directly along the central axis reaches the end in time 

 

t
L

v

n L

c
direct  

1

1 .  

 

For the ray taking the critical zig-zag path, only its velocity component along the core 

axis direction contributes to reaching the other end of the fiber. That component is  

v1 cos ', so the time of travel for this ray is 

 

 

1
zig zag

2
1

1
cos 1 sin /

n LL
t

v c n 
 

 

 

 

using results from the previous solution. Plugging in sin  n n1

2

2

2  and simplifying, 

we obtain 

t
n L

c n n

n L

n c
zig zag  1

2 1

1

2

2/
.b g  

 

The difference is  
2

1 1 1 1
zig zag direct

2 2

1
n L n L n L n

t t t
n c c c n

 
       

 
 . 

  

With n1 = 1.58, n2 = 1.53, and L = 300 m, we obtain  

 

81 1

8

2

(1.58)(300 m) 1.58
1 1 5.16 10 s 51.6 ns

3.0 10 m/s 1.53

n L n
t

c n

   
          

   
. 

 

95. THINK The dark band corresponds to a completely destructive interference. 

 

EXPRESS When the interference between two waves is completely destructive, their 

phase difference is given by 

 

 (2 1) , 0,1, 2,...m m     

 

The equivalent condition is that their path-length difference is an odd multiple of / 2,  

where  is the wavelength of the light.    
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ANALYZE (a) A path length difference of /2 produces the first dark band, of 3/2 

produces the second dark band, and so on. Therefore, the fourth dark band corresponds to 

a path length difference of 7/2 = 1750 nm = 1.75 m. 

 

(b) In the small angle approximation (which we assume holds here), the fringes are 

equally spaced, so that if y denotes the distance from one maximum to the next, then the 

distance from the middle of the pattern to the fourth dark band must be 16.8 mm = 3.5 y. 

Therefore, we obtain y = (16.8 mm)/3.5 = 4.8 mm. 

 

LEARN The distance from the mth maximum to the central fringe is 

 

 
bright tan sin

D
y D D D m

d


      . 

 

Similarly, the distance from the mth minimum to the central fringe is  

 

dark

1

2

D
y m

d

 
  
 

. 

 

96. We use the formula obtained in Sample Problem — “Thin-film interference of a 

coating on a glass lens:” 

 
min

min

2

0.200     0.200.
4 4 1.25

L
L

n 

 
       

 

97. THINK The intensity of the light observed in the interferometer depends on the 

phase difference between the two waves.  

 

EXPRESS Let the position of the mirror measured from the point at which d1 = d2 be x. 

We assume the beam-splitting mechanism is such that the two waves interfere 

constructively for x = 0 (with some beam-splitters, this would not be the case). We can 

adapt Eq. 35-23 to this situation by incorporating a factor of 2 (since the interferometer 

utilizes directly reflected light in contrast to the double-slit experiment) and eliminating 

the sin factor. Thus, the path difference is 2x, and the phase difference between the two 

light paths is  = 2(2x/) = 4x/.  

 

ANALYZE From Eq. 35-22, we see that the intensity is proportional to 2cos ( / 2).  

Thus, writing 4I0 as Im, we find 

 

I I I
x

m m
F
HG
I
KJ 

F
HG
I
KJcos cos .2 2

2

2 


 

 

LEARN The intensity / mI I  as a function of /x   is plotted below. 
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From the figure, we see that the intensity is at a maximum when  

 

, 0,1, 2,...
2

m
x m   

 

Similarly, the condition for minima is  

 

 
1

2 1 , 0,1, 2,...
4

x m m    

 

98. We note that ray 1 travels an extra distance 4L more than ray 2.  For constructive 

interference (which is obtained for = 620 nm) we require 

 

4L  = m where m = some positive integer. 

 

For destructive interference (which is obtained for = 4196 nm) we require 

 

4L  = 
k

2
  where k = some positive odd integer. 

 

Equating these two equations (since their left-hand sides are equal) and rearranging, we 

obtain 

k = 2 m 



  = 2 m 

620

496
  = 2.5 m . 

 

We note that this condition is satisfied for k = 5 and m = 2.  It is satisfied for some larger 

values, too, but recalling that we want the least possible value for L, we choose the 

solution set (k, m) = (5, 2).  Plugging back into either of the equations above, we obtain 

the distance L:  

4L  = 2            L = 


2
  = 310.0 nm . 

 

99. (a) Straightforward application of Eq. 35-3 /n c v and v = x/t yields the result: 

pistol 1 with a time equal to t = nx/c = 42.0  10
–12

 s = 42.0 ps. 
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(b) For pistol 2, the travel time is equal to 42.3  10
–12

 s. 

 

(c) For pistol 3, the travel time is equal to 43.2  10
–12

 s. 

 

(d) For pistol 4, the travel time is equal to 41.8  10
–12

 s.  

 

(e) We see that the blast from pistol 4 arrives first. 

 

100. We use Eq. 35-36 for constructive interference: 2n2L = (m + 1/2), or 

 

 








2

1 2

2 150 410

1 2

1230

1 2

2n L

m m m

.
,

b gb gnm  nm
 

 

where m = 0, 1, 2, …. The only value of m which, when substituted into the equation 

above, would yield a wavelength that falls within the visible light range is m = 1. 

Therefore, 

 



1230

1 1 2
492

nm
 nm .  

 

101. In the case of a distant screen the angle  is close to zero so sin   . Thus from Eq. 

35-14, 

sin ,
m

m
d d d

  
 

 
      

 
 

 

or d  / = 589  10
–9

 m/0.018 rad = 3.3  10
–5

 m = 33 m. 

 

102. We note that  = 60° = 


3
  rad.  The phasors rotate with constant angular velocity 

 

 15

16

/ 3 rad
4.19 10 rad/s

2.5 10 st

 





   
 

. 

 

Since we are working with light waves traveling in a medium (presumably air) where the 

wave speed is approximately c, then kc =  (where k = 2), which leads to 

 

= 
c




 = 450 nm. 

 

103. (a) Each wave is incident on a medium of higher index of refraction from a medium 

of lower index (air to oil, and oil to water), so both suffer phase changes of  rad on 

reflection. If L is the thickness of the oil, the wave reflected from the back surface travels 

a distance 2L farther than the wave reflected from the front. The phase difference is 

2L(2/o), where o is the wavelength in oil. If n is the index of refraction of the oil, o = 
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/n, where  is the wavelength in vacuum, and the phase difference is 2nL(2/). The 

conditions for constructive and destructive interferences are 

 

   1
2

2
constructive : 2 2 2 , 0,1,2,

2
destructive : 2 2 1 2 , 0,1,2,

nL m nL m m

nL m nL m m


 




 



 
    

 

 
      

 

 

 

Near the rim of the drop, / 4 ,L n  so only the condition for constructive interference 

with m = 0 can be met. So the outer (thinnest) region is bright.  

 

(b) The third band from the rim corresponds to 2 3 / 2.nL   Thus, the film thickness 

there is 

 
3 3(475 nm)

594 nm.
2 2(1.20)

L
n


    

 

(c) The primary reason why colors gradually fade and then disappear as the oil thickness 

increases is because the colored bands begin to overlap too much to be distinguished. 

Also, the two reflecting surfaces would be too separated for the light reflecting from them 

to be coherent.  

 

104. (a) The combination of the direct ray and the reflected ray from the mirror will 

produce an interference pattern on the screen, like the double-slit experiment. However, 

in this case, the reflected ray has a phase change of , causing the locations of the dark 

and bright fringes to be interchanged. Thus, a zero path difference would correspond to a 

dark fringe. 

 

(b) The condition for constructive interferences is 

 
1
2

2 sin ( ) , 0,1,2,h m m     

 

(c) Similarly, the condition for destructive interference is  

 

2 sin , 0,1,2,h m m    

 

105. The Hint essentially answers the question, but we put in some algebraic details and 

arrive at the familiar analytic-geometry expression for a hyperbola. The distance d/2 is 

denoted a and the constant value for the path length difference is denoted : 

 

r1 – r2 = 

 

 (a+x) ² + y² - (a-x)² + y²   =  

 

Rearranging and squaring, we have 
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                    ( )(a+x) ² + y² ² = ( )(a-x)² + y² +  ²   

 

                            a²  2ax + x² + y²  =  a²  2ax + x² + y² + ² + 2 (a-x)² + y²   

 

Many terms on both sides are identical and may be eliminated.  This leaves us with 

 

2 (a-x)² + y²   = ²  4ax 

 

at which point we square both sides again: 

 

4²a² 8²ax + 4²x² +4²y²  = 
4
8²ax +16a²x² 

 

We eliminate the 8²ax term from both sides and plug in a = 2d to get back to the 

original notation used in the problem statement: 

 

²d² + 4² x²  + 4² y²  =  
4
 + 4 d² x² 

 

Then a simple rearrangement puts it in the familiar analytic format for a hyperbola: 

 

                              ²d²  
4  

=  4(d² ²)x²  4² y² 

 

which can be further simplified by dividing through by ²d²  
4
: 

 

 2 2

2 2 2

4 4
1 x y

d 

   
    

   
. 

 

 

 

 

 

 

 

 


