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Chapter 33 
 

 

1. Since    , we find f is equal to 
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2. (a) The frequency of the radiation is 

 

f
c
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(b) The period of the radiation is 

 

T
f

 

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
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212 3 32
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3. (a) From Fig. 33-2 we find the smaller wavelength in question to be about 515 nm. 

 

(b) Similarly, the larger wavelength is approximately 610 nm. 

 

(c) From Fig. 33-2 the wavelength at which the eye is most sensitive is about 555 nm.  

 

(d) Using the result in (c), we have 

 
8

143.00 10 m/s
5.41 10 Hz

555 nm

c
f


   


. 

 

(e) The period is T = 1/f = (5.41  10
14

 Hz)
–1

 = 1.85  10
–15

 s. 

 

4. In air, light travels at roughly c = 3.0  10
8
 m/s. Therefore, for t = 1.0 ns, we have a 

distance of 

d ct    ( . .30 10 0 308 9m/ s) (1.0 10 s) m.  

 

5. THINK The frequency of oscillation of the current in the LC circuit of the generator is 

f LC1 2/  , where C is the capacitance and L is the inductance. This frequency is the 

same as the frequency of an electromagnetic wave. 

 

EXPRESS If f is the frequency and  is the wavelength of an electromagnetic wave, then 

f = c. Thus, 
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

2 LC
c .  

 

ANALYZE The solution for L is 

 

L
Cc

 
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2
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4
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This is exceedingly small. 

 

LEARN The frequency is 
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9
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c
f
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
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The EM wave is in the visible spectrum. 

 

6. The emitted wavelength is 

 

    8 6 122 2 2.998 10 m/s 0.253 10 H 25.0 10 F 4.74 m.
c

c LC
f
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7. The intensity is the average of the Poynting vector: 

 

I S
cBm  

 


 




avg

2
m / s T

H / m
W / m

2

0

8 4
2

6
2

6

2

30 10 10 10

2 126 10
12 10



. .

.
. .

c hc h
c h

 

 

8. The intensity of the signal at Proxima Centauri is 

 

I
P

r
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9. If P is the power and t is the time interval of one pulse, then the energy in a pulse is 

 

E P t      100 10 10 10 10 1012 9 5W s J.c hc h. .  

 

10. (a)  Setting v = c in the wave relation kv =  = 2f, we find f = 1.91  10
8 

Hz. 

 

(b) Erms = Em/ 2  = Bm/c 2  = 18.2 V/m. 

 

(c) I = (Erms)
2
/co = 0.878 W/m

2
. 
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11. (a) The amplitude of the magnetic field is 
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(b) Since the -waveE oscillates in the z direction and travels in the x direction, we have Bx 

= Bz = 0. So, the oscillation of the magnetic field is parallel to the y axis. 

 

(c) The direction (+x) of the electromagnetic wave propagation is determined by E B . If 

the electric field points in +z, then the magnetic field must point in the –y direction. 

 

With SI units understood, we may write 

 

 

 

15

15

8

9 15

2.0cos 10 /
cos 10

3.0 10

6.7 10 cos 10

y m

t x cx
B B t

c

x
t

c






     
     

  

  
    

  

 

 

12. (a) The amplitude of the magnetic field in the wave is 

 

B
E
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(b) The intensity is the average of the Poynting vector: 
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13. (a) We use I = 2

mE /20c to calculate Em: 

 

E Im c     

 
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(b) The magnetic field amplitude is therefore 
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
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14. From the equation immediately preceding Eq. 33-12, we see that the maximum value 

of B/t is Bm . We can relate Bm to the intensity:  

 

02
m

m

c IE
B

c c


  , 

 

and relate the intensity to the power P (and distance r) using Eq. 33-27.   Finally, we 

relate to wavelength using  = kc = 2c/.  Putting all this together, we obtain 
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15. (a) The average rate of energy flow per unit area, or intensity, is related to the electric 

field amplitude Em by I E cm 2

02/  , so 
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(b) The amplitude of the magnetic field is given by 
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(c) At a distance r from the transmitter, the intensity is 2/ 2 ,I P r   where P is the power 

of the transmitter over the hemisphere having a surface area 22 r . Thus 

 

   
2
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16. (a) The power received is 
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(b) The power of the source would be 
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17. (a) The magnetic field amplitude of the wave is 
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(b) The intensity is 
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(c) The power of the source is 

 

   
22 3 2

avg4 4 10m 5.3 10 W/m 6.7 W.P r I        

 

18. Equation 33-27 suggests that the slope in an intensity versus inverse-square-distance 

graph (I plotted versus r 
2 

) is P/4.  We estimate the slope to be about 20 (in SI units), 

which means the power is P = 4(30)  2.5 ×10
2
 W. 

 

19. THINK The plasma completely reflects all the energy incident on it, so the radiation 

pressure is given by pr = 2I/c, where I is the intensity.  

 

EXPRESS The intensity is I = P/A, where P is the power and A is the area intercepted by 

the radiation.  

 

ANALYZE Thus, the radiation pressure is 
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LEARN In the case of total absorption, the radiation pressure would be / ,rp I c  a 

factor of 2 smaller than the case of total reflection.  

 

20. (a) The radiation pressure produces a force equal to 
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(b) The gravitational pull of the Sun on the Earth is 
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which is much greater than Fr. 

 

21. Since the surface is perfectly absorbing, the radiation pressure is given by pr = I/c, 

where I is the intensity. Since the bulb radiates uniformly in all directions, the intensity a 

distance r from it is given by I = P/4r
2
, where P is the power of the bulb. Thus 
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r c
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22. The radiation pressure is 

 

p
I

c
r  


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8

8W / m
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.
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23. (a) The upward force supplied by radiation pressure in this case (Eq. 33-32) must be 

equal to the magnitude of the pull of gravity (mg).  For a sphere, the “projected” area 

(which is a factor in Eq. 33-32) is that of a circle A = r
2
 (not the entire surface area of 

the sphere) and the volume (needed because the mass is given by the density multiplied 

by the volume: m = V) is 34 /3V r .  Finally, the intensity is related to the power P of 

the light source and another area factor 4R
2
, given by Eq. 33-27.  In this way, with 

4 31.9 10 kg/m ,   equating the forces leads to 
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(b) Any chance disturbance could move the sphere from being directly above the source, 

and then the two force vectors would no longer be along the same axis. 

 

24. We require Fgrav = Fr or 

G
mM

d

IA

c

s
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2

2
 ,  

and solve for the area A: 
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25. THINK In this problem we relate radiation pressure to energy density in the incident 

beam. 
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EXPRESS Let f be the fraction of the incident beam intensity that is reflected. The 

fraction absorbed is 1 – f. The reflected portion exerts a radiation pressure of 

 

02
r

f I
p

c
  

and the absorbed portion exerts a radiation pressure of 

 

p
f I

c
a 

( )
,

1 0  

 

where I0 is the incident intensity. The factor 2 enters the first expression because the 

momentum of the reflected portion is reversed. The total radiation pressure is the sum of 

the two contributions: 

0 0 0
total

2 (1 ) (1 )
.r a

f I f I f I
p p p

c c

  
     

 

ANALYZE To relate the intensity and energy density, we consider a tube with length   

and cross-sectional area A, lying with its axis along the propagation direction of an 

electromagnetic wave. The electromagnetic energy inside is U uA ,  where u is the 

energy density. All this energy passes through the end in time t c  / ,  so the intensity is 

 

.
U uA c

I uc
At A

    

 

Thus u = I/c. The intensity and energy density are positive, regardless of the propagation 

direction. For the partially reflected and partially absorbed wave, the intensity just outside 

the surface is  

I = I0 + f I0 = (1 + f )I0, 

 

where the first term is associated with the incident beam and the second is associated with 

the reflected beam. Consequently, the energy density is 

 

u
I

c

f I

c
 

( )
,

1 0  

the same as radiation pressure. 

 

LEARN In the case of total reflection, f = 1, and total 02 / .rp p I c   On the other hand, 

the energy density is 0/ 2 / ,u I c I c  which is the same as total.p  Similarly, for total 

absorption, f = 0, total 0 / ,ap p I c  and since 0 ,I I  we have 0/ / ,u I c I c   which 

again is the same as total.p   

 

26. The mass of the cylinder is ( / 4) ,m D H    where D is the diameter of the cylinder. 

Since it is in equilibrium 
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We solve for H: 
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27. THINK Electromagnetic waves travel at speed of light, and carry both linear 

momentum and energy. 

 

EXPRESS The speed of the electromagnetic wave is c f  ,  where  is the wavelength 

and f is the frequency of the wave. The angular frequency is 2 ,f    and the angular 

wave number is 2 /k   . The magnetic field amplitude is related to the electric field 

amplitude by / .m mB E c  The intensity of the wave is given by Eq. 33-26: 

 

 2 2

rms

0 0

1 1

2
mI E E
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ANALYZE (a) With  = 3.0 m, the frequency of the wave is 
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(b) From the value of f obtained in (a), we find the angular frequency to be 

 

     2 2 6 3 108  f Hz) rad / s..  

 

(c) The corresponding angular wave number is 
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(d) With Em = 300 V/m, the magnetic field amplitude is 
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(e) Since 

E  is in the positive y direction, 


B  must be in the positive z direction so that 

their cross product 
 
E B  points in the positive x direction (the direction of propagation). 

 

(f) The intensity of the wave is 

 
2 2

2 2 2
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(g) Since the sheet is perfectly absorbing, the rate per unit area with which momentum is 

delivered to it is I/c, so 
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(h) The radiation pressure is 

 

p
dp dt

A
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LEARN The energy density is given by 
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which is the same as the radiation pressure pr. 

 

28. (a) Assuming complete absorption, the radiation pressure is 

 

p
I

c
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(b) We compare values by setting up a ratio: 

 

p
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29. THINK The laser beam carries both energy and momentum. The total momentum of 

the spaceship and light is conserved. 

 

EXPRESS If the beam carries energy U away from the spaceship, then it also carries 

momentum p = U/c away. By momentum conservation, this is the magnitude of the 

momentum acquired by the spaceship. If P is the power of the laser, then the energy 

carried away in time t is U = Pt.  
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ANALYZE We note that there are 86400 seconds in a day. Thus, p = Pt/c and, if m is 

mass of the spaceship, its speed is 

 

v
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LEARN As expected, the speed of the spaceship is proportional to the power of the laser 

beam. 

 

30. (a) We note that the cross-section area of the beam is d 
2
/4, where d is the diameter 

of the spot (d = 2.00). The beam intensity is 
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(b) The radiation pressure is 
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(c) In computing the corresponding force, we can use the power and intensity to eliminate 

the area (mentioned in part (a)). We obtain 
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(d) The acceleration of the sphere is 
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31. We shall assume that the Sun is far enough from the particle to act as an isotropic 

point source of light.  

 

(a) The forces that act on the dust particle are the radially outward radiation force rF  and 

the radially inward (toward the Sun) gravitational force gF .  Using Eqs. 33-32 and 33-27, 

the radiation force can be written as 
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22

2 24 4

S S
r

P P RIA R
F

c r c r c




   , 

 

where R is the radius of the particle, and 2A R  is the cross-sectional area. On the other 

hand, the gravitational force on the particle is given by Newton’s law of gravitation (Eq. 

13-1): 

 
3 3

2 2 2

(4 / 3) 4

3

S S S
g

GM m GM R GM R
F

r r r

   
   , 

 

where 3(4 /3)m R   is the mass of the particle. When the two forces balance, the 

particle travels in a straight path. The condition that r gF F  implies 

 
2 3

2 2

4

4 3

S SP R GM R

r c r

 
 , 

which can be solved to give 

 
26

8 3 3 11 3 2 30

7

3 3(3.9 10 W)

16 16 (3 10 m/s)(3.5 10 kg/m )(6.67 10  m /kg s )(1.99 10 kg)

1.7 10  m .

S

S

P
R

c GM   




 

    

 

 

(b) Since gF  varies with 3R  and rF  varies with 2 ,R  if the radius R is larger, then g rF F , 

and the path will be curved toward the Sun (like path 3).  

 

32. After passing through the first polarizer the initial intensity I0 reduces by a factor of 

1/2. After passing through the second one it is further reduced by a factor of cos
2
 ( – 

1 – 2) = cos
2
 (1 + 2). Finally, after passing through the third one it is again reduced by 

a factor of cos
2
 ( – 2 – 3) = cos

2
 (2 + 3). Therefore, 

 

2 2 2 2

1 2 2 3

0

4

1 1
cos ( )cos ( ) cos (50 50 )cos (50 50 )

2 2

4.5 10 .

fI

I
   



       

 

 

 

Thus, 0.045% of the light’s initial intensity is transmitted. 

 

33. THINK Unpolarized light becomes polarized when it is sent through a polarizing 

sheet. In this problem, three polarizing sheets are involved, we work through the system 

sheet by sheet, applying either the one-half rule or the cosine-squared rule. 

 

EXPRESS Let I0 be the intensity of the unpolarized light that is incident on the first 

polarizing sheet. The transmitted intensity is, by one-half rule, I I1
1
2 0 ,  and the direction 

of polarization of the transmitted light is 1 = 40° counterclockwise from the y axis in the 
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diagram. For the second sheet (and the third one as well), we apply the cosine-squared 

rule: 

 2

2 1 2cosI I   

 

where 
2   is the angle between the direction of polarization that is incident on that sheet 

and the polarizing direction of the sheet. 

 

ANALYZE The polarizing direction of the second sheet is 2 = 20° clockwise from the y 

axis, so 
2  40° + 20° = 60°. The transmitted intensity is 

 

I I I2 1 060
1

2
60  cos cos2 2 ,  

 

and the direction of polarization of the transmitted light is 20° clockwise from the y axis. 

The polarizing direction of the third sheet is 3 = 40° counterclockwise from the y axis. 

Consequently, the angle between the direction of polarization of the light incident on that 

sheet and the polarizing direction of the sheet is 20° + 40° = 60°. The transmitted 

intensity is 

2 4 2

3 2 0 0

1
cos 60 cos 60 3.1 10 .

2
I I I I       

 

Thus, 3.1% of the light’s initial intensity is transmitted. 

 

LEARN When two polarizing sheets are crossed ( 90   ), no light passes through and 

the transmitted intensity is zero. 

 

34. In this case, we replace I0 cos
2
 70° by 1

2 0I  as the intensity of the light after passing 

through the first polarizer. Therefore, 

 

I If      
1

2
90 70

1

2
43 20 190

2 2cos ( ) ( )(cos ) .W / m W / m2 2  

 

35. The angle between the direction of polarization of the light incident on the first 

polarizing sheet and the polarizing direction of that sheet is 1 = 70°. If I0 is the intensity 

of the incident light, then the intensity of the light transmitted through the first sheet is 

 

I I1 0

2

1

243 70 503  cos ( )cos . . W / m W / m2 2  

 

The direction of polarization of the transmitted light makes an angle of 70° with the 

vertical and an angle of 2 = 20° with the horizontal. 2 is the angle it makes with the 

polarizing direction of the second polarizing sheet. Consequently, the transmitted 

intensity is 

I I2 1

2

2

2503 20 4 4  cos ( . )cos . . W / m W / m2 2  
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36. (a) The fraction of light that is transmitted by the glasses is 

 

I

I

E

E

E

E E

E

E E

f f v

v h

v

v v0

2

0

2

2

2 2

2

2 22 3
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


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( . )
. . 

 

(b) Since now the horizontal component of 

E  will pass through the glasses, 

 

I

I

E

E E

E

E E

f h

v h

v

v v0

2

2 2

2

2 2

2 3

2 3
084







( . )

( . )
. .  

 

37. THINK A polarizing sheet can change the direction of polarization of the incident 

beam since it allows only the component that is parallel to its polarization direction to 

pass.  

 

EXPRESS The 90° rotation of the polarization direction cannot be done with a single 

sheet. If a sheet is placed with its polarizing direction at an angle of 90° to the direction 

of polarization of the incident radiation, no radiation is transmitted. 

 

ANALYZE (a) The 90° rotation of the polarization direction can be done with two sheets. 

We place the first sheet with its polarizing direction at some angle , between 0 and 90°, 

to the direction of polarization of the incident radiation. Place the second sheet with its 

polarizing direction at 90° to the polarization direction of the incident radiation. The 

transmitted radiation is then polarized at 90° to the incident polarization direction. The 

intensity is  
2 2 2 2

0 0cos cos (90 ) cos sinI I I      , 

 

where 0I  is the incident radiation. If  is not 0 or 90°, the transmitted intensity is not zero. 

 

(b) Consider n sheets, with the polarizing direction of the first sheet making an angle of  

= 90°/n relative to the direction of polarization of the incident radiation. The polarizing 

direction of each successive sheet is rotated 90°/n in the same sense from the polarizing 

direction of the previous sheet. The transmitted radiation is polarized, with its direction of 

polarization making an angle of 90° with the direction of polarization of the incident 

radiation. The intensity is  
2

0 cos (90 / )nI I n  . 

 

We want the smallest integer value of n for which this is greater than 0.60I0. We start 

with n = 2 and calculate 2cos (90 / )n n . If the result is greater than 0.60, we have obtained 

the solution. If it is less, increase n by 1 and try again. We repeat this process, increasing 

n by 1 each time, until we have a value for which 2cos (90 / )n n  is greater than 0.60. The 

first one will be n = 5. 

 

LEARN The intensities associated with n = 1 to 5 are: 
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2

1 0
4

2 0 0 0
6

3 0 0
8

4 0 0
10

5 0 0

cos (90 ) 0

cos (45 ) / 4 0.25

cos (30 ) 0.422

cos (22.5 ) 0.531

cos (18 ) 0.605

n

n

n

n

n

I I

I I I I

I I I

I I I

I I I











  

   

  

  

  

 

 

38. We note the points at which the curve is zero (2 = 0 and 90) in Fig. 33-43.  We 

infer that sheet 2 is perpendicular to one of the other sheets at 2 = 0, and that it is 

perpendicular to the other of the other sheets when 2 = 90.  Without loss of generality, 

we choose 1 = 0, 3 = 90.   Now, when 2 = 30, it will be  = 30 relative to sheet 1 

and  = 60 relative to sheet 3.  Therefore, 

 

 2 21
cos ( )cos ( ) 9.4%

2

f

i

I

I
     . 

 

39. (a) Since the incident light is unpolarized, half the intensity is transmitted and half is 

absorbed. Thus the transmitted intensity is I = 5.0 mW/m
2
. The intensity and the electric 

field amplitude are related by I E cm 2

02/ , so  

 

E cIm     



2 2 4

19

0

3 ( )

.

  H / m)(3.00 10 m / s)(5.0 10 W / m

V / m.

8 2

 

 

(b) The radiation pressure is pr = Ia/c, where Ia is the absorbed intensity. Thus 

 

pr 



 


50 10

300 10
17 10

3

8

11.

.
.

W / m

m / s
Pa.

2

 

 

40. We note the points at which the curve is zero (2 = 60 and 140) in Fig. 33-44.  We 

infer that sheet 2 is perpendicular to one of the other sheets at 2 = 60, and that it is 

perpendicular to the other of the other sheets when 2 = 140.  Without loss of generality, 

we choose 1 = 150, 3 = 50.   Now, when 2 = 90, it will be | | = 60 relative to 

sheet 1 and | | = 40 relative to sheet 3.  Therefore, 

 

2 21
cos ( )cos ( ) 7.3%

2

f

i

I

I
     . 

 

41. As the polarized beam of intensity I0 passes the first polarizer, its intensity is reduced 

to 2

0 cos .I   After passing through the second polarizer, which makes a 90 angle with 

the first filter, the intensity is  
2 2

0 0( cos )sin /10I I I    
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which implies sin
2
  cos

2
  = 1/10, or sin cos = sin2 /2 =1/ 10 . This leads to  = 70° 

or 20°. 

 

42. We examine the point where the graph reaches zero:  2 = 160º.  Since the polarizers 

must be “crossed” for the intensity to vanish, then 1 = 160º – 90º  = 70º.  Now we 

consider the case  2 = 90º (which is hard to judge from the graph).  Since 1 is still equal 

to 70º, then the angle between the polarizers is now   =20º.  Accounting for the 

“automatic” reduction (by a factor of one-half) whenever unpolarized light passes 

through any polarizing sheet, then our result is  

 
1

2
 cos

2
() = 0.442  44%. 

 

43. Let I0 be the intensity of the incident beam and f be the fraction that is polarized. Thus, 

the intensity of the polarized portion is f I0. After transmission, this portion contributes 

f I0 cos
2
  to the intensity of the transmitted beam. Here  is the angle between the 

direction of polarization of the radiation and the polarizing direction of the filter. The 

intensity of the unpolarized portion of the incident beam is (1– f )I0 and after transmission, 

this portion contributes (1 – f )I0/2 to the transmitted intensity. Consequently, the 

transmitted intensity is 

2

0 0

1
cos (1 ) .

2
I f I f I    

 

As the filter is rotated, cos
2
  varies from a minimum of 0 to a maximum of 1, so the 

transmitted intensity varies from a minimum of 

 

I f Imin ( ) 
1

2
1 0  

to a maximum of 

max 0 0 0

1 1
(1 ) (1 ) .

2 2
I f I f I f I      

 

The ratio of Imax to Imin is 

I

I

f

f

max

min

.




1

1
 

 

Setting the ratio equal to 5.0 and solving for f, we get f = 0.67. 

 

44. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

 2 2

0 2 2

1
cos cos (90 )

2
I I    . 
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Using trig identities, we rewrite this as 2

2

0

1
sin (2 )

8

I

I
 . 

 

(a) Therefore we find 2 = 
1

2
 sin

–1
 0.40 = 19.6.   

 

(b) Since the first expression we wrote is symmetric under the exchange 2  90 – 2, 

we see that the angle's complement, 70.4, is also a solution. 

 

45. Note that the normal to the refracting surface is vertical in the diagram. The angle of 

refraction is 2 = 90° and the angle of incidence is given by tan 1 = L/D, where D is the 

height of the tank and L is its width. Thus 

 

1 1

1

1.10 m
tan tan 52.31 .

0.850 m

L

D
     
     

   
 

 

The law of refraction yields 

 

n n1 2
2

1

100
90

52 31
126 





F
HG

I
KJ 

sin

sin
( . )

sin

sin .
. ,




 

 

where the index of refraction of air was taken to be unity. 

 

46. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-47(b) 

would consist of a “y = x” line at 45º in the plot. Instead, the curve for material 1 falls 

under such a “y = x” line, which tells us that all refraction angles are less than incident 

ones.  With 2 < 1 Snell’s law implies n2 > n1 . 

 

(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 

of water (n1). 

 

(c) It’s easiest to examine the topmost point of each curve.  With 2 = 90º and 1 = ½(90º), 

and with n2 = 1.33 (Table 33-1), we find  n1 = 1.9 from Snell’s law. 

 

(d) Similarly, with 2 = 90º and 1 = ¾(90º), we obtain  n1 = 1.4. 

 

47. The law of refraction states 

 

n n1 2sin sin1 2  .  

 

We take medium 1 to be the vacuum, with n1 = 1 and 1 = 32.0°. Medium 2 is the glass, 

with 2 = 21.0°. We solve for n2: 
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n n2 1
1

2

100
32 0

210
148 





F
HG

I
KJ 

sin

sin
( . )

sin .

sin .
. .




 

 

48. (a) For the angles of incidence and refraction to be equal, the graph in Fig. 33-48(b) 

would consist of a “y = x” line at 45º in the plot.  Instead, the curve for material 1 falls 

under such a “y = x” line, which tells us that all refraction angles are less than incident 

ones.  With 2 < 1 Snell’s law implies n2 > n1 . 

 

(b) Using the same argument as in (a), the value of n2 for material 2 is also greater than that 

of water (n1). 

 

(c) It’s easiest to examine the right end-point of each curve. With 1 = 90º and 2 = 

¾(90º), and with n1 = 1.33 (Table 33-1) we find, from Snell’s law, n2 = 1.4 for material 1. 

 

(d) Similarly, with 1 = 90º and 2 = ½(90º), we obtain  n2 = 1.9. 

 

49. The angle of incidence for the light ray on mirror B is 90° – . So the outgoing ray r' 

makes an angle 90° – (90° – ) =  with the vertical direction, and is antiparallel to the 

incoming one. The angle between i and r' is therefore 180°. 

 

50. (a) From  n1sin1 = n2sin2  and  n2sin2 = n3sin3, we find n1sin1 = n3sin3. This has 

a simple implication: that 1 =3 when n1 = n3. Since we are given 1 = 40º in Fig. 33-

50(a), then we look for a point in Fig. 33-50(b) where 3 = 40º.  This seems to occur at n3 

=  1.6, so we infer that n1 = 1.6. 

 

(b) Our first step in our solution to part (a) shows that information concerning n2 

disappears (cancels) in the manipulation.  Thus, we cannot tell; we need more 

information. 

 

(c) From 1.6sin70 = 2.4sin3 we obtain 3 = 39. 

 

51. (a) Approximating n = 1 for air, we have 

 

1 1 5 5sin (1)sin 56.9n        

 

and with the more accurate value for nair in Table 33-1, we obtain 56.8°. 

 

(b) Equation 33-44 leads to 

 

n n n n1 1 2 2 3 3 4 4sin sin sin sin       

so that 

1 1
4 1

4

sin sin 35.3 .
n

n
   

   
 
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52. (a) A simple implication of Snell’s law is that 2 = 1 when n1 = n2.  Since the angle of 

incidence is shown in Fig. 33-52(a) to be 30º, we look for a point in Fig. 33-52(b) where 

2 = 30º.  This seems to occur when n2 = 1.7.  By inference, then, n1 = 1.7. 

 

(b) From 1.7sin(60º) = 2.4sin(2) we get 2 = 38.  

 

53. THINK The angle with which the light beam emerges from the triangular prism 

depends on the index of refraction of the prism.  

 

EXPRESS Consider diagram (a) shown next. The incident angle is  and the angle of 

refraction is 2. Since 
2 90     and 2 180 ,     we have 

 

 2

1
90 90 180 .

2 2


         

 

 
(a) 

 
(b) 

 

ANALYZE Next, examine diagram (b) and consider the triangle formed by the two 

normals and the ray in the interior. One can show that  is given by 

 22( )    . 

 

Upon substituting /2 for 2, we obtain 2( / 2)     which yields ( ) / 2.     

Thus, using the law of refraction, we find the index of refraction of the prism to be 

 
1
2

1
2 2

sin ( )sin
.

sin sin
n

 

 


   

 

LEARN The angle  is called the deviation angle. Physically, it represents the total angle 

through which the beam has turned while passing through the prism. This angle is 

minimum when the beam passes through the prism “symmetrically,” as it does in this 

case. Knowing the value of  and  allows us to determine the value of n for the prism 

material.    

 

54. (a) Snell’s law gives   nair sin(50º) = n2b sin 2b and nair sin(50º) = n2r sin 2r where we 

use subscripts b and r for the blue and red light rays.  Using the common approximation 

for air’s index (nair = 1.0) we find the two angles of refraction to be 30.176 and 30.507.  

Therefore,  = 0.33. 
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(b) Both of the refracted rays emerge from the other side with the same angle (50) with 

which they were incident on the first side (generally speaking, light comes into a block at 

the same angle that it emerges with from the opposite parallel side).  There is thus no 

difference (the difference is 0) and thus there is no dispersion in this case. 

 

55. THINK Light is refracted at the air–water interface. To calculate the length of the 

shadow of the pole, we first calculate the angle of refraction using the Snell’s law.  

 

EXPRESS Consider a ray that grazes the top of the pole, as shown in the diagram below. 

  

 
 

Here 1 = 90° –  = 90° –55° = 35°, 1 050 . m,  and 2 150 . m.  The length of the 

shadow is d = x + L.  

 

ANALYZE The distance x is given by 

  

x   1 1 050 035tan ( . . m) tan35 m.  

 

According to the law of refraction, n2 sin 2 = n1 sin 1. We take n1 = 1 and n2 = 1.33 

(from Table 33-1). Then, 




2

1 1

2

1 350

133
2555

F
HG
I
KJ 

F
HG

I
KJ   sin

sin
sin

sin .

.
. .

n
 

L is given by 

L   2 2 150 072tan ( . . m) tan25.55 m.  

 

Thus, the length of the shadow is d = 0.35 m + 0.72 m = 1.07 m. 

 

LEARN If the pole were empty with no water, then 1 2   and the length of the shadow 

would be 

1 1 2 1 1 2 1tan tan ( ) tand         

 

by simple geometric consideration. 
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56. (a) We use subscripts b and r for the blue and red light rays.  Snell’s law gives  

 

2b = sin
1







1

1.343
 sin(70)  = 44.403 

2r = sin
1







1

1.331
 sin(70)  = 44.911 

 

for the refraction angles at the first surface (where the normal axis is vertical).  These rays 

strike the second surface (where A is) at complementary angles to those just calculated 

(since the normal axis is horizontal for the second surface).  Taking this into 

consideration, we again use Snell’s law to calculate the second refractions (with which 

the light re-enters the air):  

 

3b = sin
1

[1.343sin(90 2b)] = 73.636 

3r = sin
1

[1.331sin(90 2r)] = 70.497 

 

which differ by 3.1 (thus giving a rainbow of angular width 3.1). 

 

(b) Both of the refracted rays emerge from the bottom side with the same angle (70) with 

which they were incident on the topside (the occurrence of an intermediate reflection 

[from side 2] does not alter this overall fact: light comes into the block at the same angle 

that it emerges with from the opposite parallel side).  There is thus no difference (the 

difference is 0) and thus there is no rainbow in this case. 

 

57. Reference to Fig. 33-24 may help in the visualization of why there appears to be a 

“circle of light” (consider revolving that picture about a vertical axis). The depth and the 

radius of that circle (which is from point a to point f in that figure) is related to the 

tangent of the angle of incidence. Thus, the diameter D of the circle in question is 
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F
HG
I
KJ

L
NM

O
QP 

 2 2
1

2 80 0
1

133
1821 1tan tan sin . tan sin

.
 cm cm.b g  

 

58. The critical angle is  c
n


F
HG
I
KJ 

F
HG
I
KJ   sin sin

.
.1 11 1

18
34  

 

59. THINK Total internal reflection happens when the angle of incidence exceeds a 

critical angle such that Snell’s law gives 2sin 1  .  

 

EXPRESS When light reaches the interfaces between two materials with indices of 

refraction n1 and n2, if n1 > n2, and the incident angle exceeds a critical value given by 

 

 1 2

1

sinc

n

n
   

  
 

, 
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then total internal reflection will occur.  

 

In our case, the incident light ray is perpendicular to the face ab. Thus, no refraction 

occurs at the surface ab, so the angle of incidence at surface ac is   = 90° – , as shown 

in the figure below.  

 
 

ANALYZE (a) For total internal reflection at the second surface, ng sin (90° – ) must be 

greater than na. Here ng is the index of refraction for the glass and na is the index of 

refraction for air. Since sin (90° – ) = cos , we want the largest value of  for which ng 

cos   na. Recall that cos  decreases as  increases from zero. When  has the largest 

value for which total internal reflection occurs, then ng cos  = na, or 

 

 
F
HG
I
KJ 

F
HG
I
KJ   cos cos

.
. .1 1 1

152
48 9

n

n

a

g

 

 

The index of refraction for air is taken to be unity. 

 

(b) We now replace the air with water. If nw = 1.33 is the index of refraction for water, 

then the largest value of  for which total internal reflection occurs is 

 

 
F
HG
I
KJ 

F
HG
I
KJ   cos cos

.

.
. .1 1 133

152
29 0

n

n

w

g

 

 

LEARN Total internal reflection cannot occur if the incident light is in the medium with 

lower index of refraction. With 1

2 1sin ( / ),c n n   we see that the larger the ratio 2 1/ ,n n  

the larger the value of c.  

 

60. (a) The condition (in Eq. 33-44) required in the critical angle calculation is 3 = 90°. 

Thus (with 2 = c, which we don’t compute here), 

 

n n n1 1 2 2 3 3sin sin sin     

 

leads to 1 =  = sin
–1

 n3/n1 = 54.3°. 

 

(b) Yes. Reducing  leads to a reduction of 2 so that it becomes less than the critical 

angle; therefore, there will be some transmission of light into material 3. 
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(c) We note that the complement of the angle of refraction (in material 2) is the critical 

angle. Thus, 

n n n
n

n
n nc1 2 2

3

2

2

2

2

3

21sin = cos  
F
HG
I
KJ    

leading to  = 51.1°. 

 

(d) No. Reducing  leads to an increase of the angle with which the light strikes the 

interface between materials 2 and 3, so it becomes greater than the critical angle. 

Therefore, there will be no transmission of light into material 3. 

 

61. (a) We note that the complement of the angle of refraction (in material 2) is the 

critical angle.  Thus, 

 

2

2 23
1 2 2 2 3

2

sin cos 1c

n
n n n n n

n
 

 
     

 
 

 

leading to  = 26.8. 

 

(b) Increasing  leads to a decrease of the angle with which the light strikes the interface 

between materials 2 and 3, so it becomes greater than the critical angle; therefore, there 

will be some transmission of light into material 3. 

 

62. (a) Reference to Fig. 33-24 may help in the visualization of why there appears to be a 

“circle of light” (consider revolving that picture about a vertical axis). The depth and the 

radius of that circle (which is from point a to point f in that figure) is related to the 

tangent of the angle of incidence. The diameter of the circle in question is given by d = 

2h tan c. For water n = 1.33, so Eq. 33-47 gives sin c = 1/1.33, or c = 48.75°. Thus, 

 

2 tan 2(2.00 m)(tan 48.75 ) 4.56 m.cd h      

 

(b) The diameter d of the circle will increase if the fish descends (increasing h). 

 

63. (a) A ray diagram is shown below.  
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Let 1 be the angle of incidence and 2 be the angle of refraction at the first surface. Let 

3 be the angle of incidence at the second surface. The angle of refraction there is 4 = 

90°. The law of refraction, applied to the second surface, yields n sin 3 = sin 4 = 1. As 

shown in the diagram, the normals to the surfaces at P and Q are perpendicular to each 

other. The interior angles of the triangle formed by the ray and the two normals must sum 

to 180°, so 3 = 90° – 2 and  

 

sin sin cos sin .   3 2 2

2

290 1    b g  

 

According to the law of refraction, applied at Q, n 1 12

2 sin .  The law of refraction, 

applied to point P, yields sin 1 = n sin 2, so sin 2 = (sin 1)/n and 

 

n
n

1 1
2

1

2
 

sin
.


 

 

Squaring both sides and solving for n, we get 

 

n  1 2

1sin .  

 

(b) The greatest possible value of sin
2
 1 is 1, so the greatest possible value of n is 

nmax . . 2 141  

 

(c) For a given value of n, if the angle of incidence at the first surface is greater than 1, 

the angle of refraction there is greater than 2 and the angle of incidence at the second 

face is less than 3 (= 90° – 2). That is, it is less than the critical angle for total internal 

reflection, so light leaves the second surface and emerges into the air. 

 

(d) If the angle of incidence at the first surface is less than 1, the angle of refraction there 

is less than 2 and the angle of incidence at the second surface is greater than 3. This is 

greater than the critical angle for total internal reflection, so all the light is reflected at Q. 

 

64. (a) We refer to the entry point for the original incident ray as point A (which we take 

to be on the left side of the prism, as in Fig. 33-53), the prism vertex as point B, and the 

point where the interior ray strikes the right surface of the prism as point C. The angle 

between line AB and the interior ray is  (the complement of the angle of refraction at the 

first surface), and the angle between the line BC and the interior ray is  (the complement 

of its angle of incidence when it strikes the second surface). When the incident ray is at 

the minimum angle for which light is able to exit the prism, the light exits along the 

second face. That is, the angle of refraction at the second face is 90°, and the angle of 

incidence there for the interior ray is the critical angle for total internal reflection. Let 1 

be the angle of incidence for the original incident ray and 2 be the angle of refraction at 

the first face, and let 3 be the angle of incidence at the second face. The law of refraction, 

applied to point C, yields n sin 3 = 1, so  
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sin 3 = 1/n = 1/1.60 = 0.625   3 = 38.68°. 

 

The interior angles of the triangle ABC must sum to 180°, so  +  = 120°. Now,  = 

90° – 3 = 51.32°, so  = 120° – 51.32° = 69.68°. Thus, 2 = 90° –  = 21.32°. The law of 

refraction, applied to point A, yields  

 

sin 1 = n sin 2 = 1.60 sin 21.32° = 0.5817. 

 

Thus 1 = 35.6°. 

 

(b) We apply the law of refraction to point C. Since the angle of refraction there is the 

same as the angle of incidence at A, n sin 3 = sin 1. Now,  +  = 120°,  = 90° – 3, 

and  = 90° – 2, as before. This means 2 + 3 = 60°. Thus, the law of refraction leads to 

 

 1 2 1 2 2sin sin 60 sin sin60 cos cos60 sinn n n            

 

where the trigonometric identity  

 

sin(A – B) = sin A cos B – cos A sin B 

 

is used. Next, we apply the law of refraction to point A: 

 

 1 2 2 1sin sin sin 1/ sinn n       

 

which yields  cos sin / sin .  2

2

2

2 2

11 1 1    nc h  Thus, 

 

sin sin / sin cos sin  1

2 2

1 160 1 1 60    n nb g  

or 

1 60 601

2 2

1    cos sin sin sin .b g  n  

 

Squaring both sides and solving for sin 1, we obtain 

 

sin
sin

cos sin

. sin

cos sin
.1 2 2 2 2

60

1 60 60

160 60

1 60 60
080



   




   


n

b g b g
 

 

and 1 = 53.1°. 

 

65. When examining Fig. 33-61, it is important to note that the angle (measured from the 

central axis) for the light ray in air, , is not the angle for the ray in the glass core, which 

we denote '. The law of refraction leads to 
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1

1
sin sin

n
    

 

assuming air 1.n  The angle of incidence for the light ray striking the coating is the 

complement of ', which we denote as 'comp, and recall that 

 

sin cos sin .       comp 1 2  

 

In the critical case, 'comp must equal c specified by Eq. 33-47. Therefore, 

 

n

n n

2

1

2

1

2

1 1
1

      
F
HG

I
KJsin sin sin  comp  

 

which leads to the result:  sin .  n n1

2

2

2  With n1 = 1.58 and n2 = 1.53, we obtain 

 

    sin . . . .1 2 2158 153 232c h  

 

66. (a) We note that the upper-right corner is at an angle (measured from the point where 

the light enters, and measured relative to a normal axis established at that point the 

normal at that point would be horizontal in Fig. 33-62) is at tan
1

(2/3) = 33.7º.  The angle 

of refraction is given by 

nair sin 40º = 1.56 sin 2 

 

which yields 2 = 24.33º if we use the common approximation nair = 1.0, and yields 2 = 

24.34º if we use the more accurate value for nair found in Table 33-1. The value is less 

than 33.7º, which means that the light goes to side 3. 

 

(b) The ray strikes a point on side 3, which is 0.643 cm below that upper-right corner, and 

then (using the fact that the angle is symmetrical upon reflection) strikes the top surface 

(side 2) at a point 1.42 cm to the left of that corner.  Since 1.42 cm is certainly less than 3 

cm we have a self-consistency check to the effect that the ray does indeed strike side 2 as 

its second reflection (if we had gotten 3.42 cm instead of 1.42 cm, then the situation 

would be quite different). 

 

(c) The normal axes for sides 1 and 3 are both horizontal, so the angle of incidence (in the 

plastic) at side 3 is the same as the angle of refraction was at side 1.  Thus,  

 

1.56 sin 24.3º = nair sin air         air = 40 . 

 

(d) It strikes the top surface (side 2) at an angle (measured from the normal axis there, 

which in this case would be a vertical axis) of  90º   2 = 66º, which is much greater than 
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the critical angle for total internal reflection (sin
1

(nair /1.56 ) = 39.9º).  Therefore, no 

refraction occurs when the light strikes side 2. 

 

(e) In this case, we have  

nair sin 70º = 1.56 sin 2 

 

which yields 2 = 37.04º if we use the common approximation nair = 1.0, and yields 2 = 

37.05º if we use the more accurate value for nair found in Table 33-1.  This is greater than 

the 33.7º mentioned above (regarding the upper-right corner), so the ray strikes side 2 

instead of side 3. 

 

(f) After bouncing from side 2 (at a point fairly close to that corner) it goes to side 3. 

 

(g) When it bounced from side 2, its angle of incidence (because the normal axis for side 

2 is orthogonal to that for side 1) is 90º   2 = 53º, which is much greater than the critical 

angle for total internal reflection (which, again, is sin
1

(nair /1.56 ) = 39.9º).  Therefore, no 

refraction occurs when the light strikes side 2.  

 

(h) For the same reasons implicit in the calculation of part (c), the refracted ray emerges 

from side 3 with the same angle (70) that it entered side 1. We see that the occurrence of 

an intermediate reflection (from side 2) does not alter this overall fact: light comes into 

the block at the same angle that it emerges with from the opposite parallel side. 

 

67. (a) In the notation of this problem, Eq. 33-47 becomes 

 

 c

n

n
 sin 1 3

2

 

 

which yields n3 =  1.39 for c =  = 60°. 

 

(b) Applying Eq. 33-44 to the interface between material 1 and material 2, we have 

 

n n2 130sin sin   

 

which yields  = 28.1°. 

 

(c) Decreasing  will increase  and thus cause the ray to strike the interface (between 

materials 2 and 3) at an angle larger than c. Therefore, no transmission of light into 

material 3 can occur. 

 

68. (a) We use Eq. 33-49:  B wn    tan tan1 1 133 531( . ) . .  

 

(b) Yes, since nw depends on the wavelength of the light. 
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69. THINK A reflected wave will be fully polarized if it strikes the boundary at the 

Brewster angle. 

 

EXPRESS The angle of incidence for which reflected light is fully polarized is given by 

Eq. 33-48: 

1 2

1

tanB

n

n
   

  
 

 

 

where n1 is the index of refraction for the medium of incidence and n2 is the index of 

refraction for the second medium. The angle B is called the Brewster angle. 

 

ANALYZE With  n1 = 1.33 and n2 = 1.53, we obtain  

 
1 1

2 1tan ( / ) tan (1.53/1.33) 49.0 .B n n       

 

LEARN In general, reflected light is partially polarized, having components both parallel 

and perpendicular to the plane of incidence. However, it can be completely polarized 

when incident at the Brewster angle.    

 

70. Since the layers are parallel, the angle of refraction regarding the first surface is the 

same as the angle of incidence regarding the second surface (as is suggested by the 

notation in Fig. 33-64). We recall that as part of the derivation of Eq. 33-49 (Brewster’s 

angle), the refracted angle is the complement of the incident angle: 

 

  2 1 190  ( ) .c  

 

We apply Eq. 33-49 to both refractions, setting up a product: 

 

3 32
B1 2 B 2 3 1 2

1 2 1

(tan ) (tan )      (tan )(tan ).
n nn

n n n
    

   
     

   
 

 

Now, since 2 is the complement of 1 we have 

 

tan tan( )
tan

. 


2 1

1

1
 c  

 

Therefore, the product of tangents cancel and we obtain n3/n1 = 1. Consequently, the third 

medium is air: n3 = 1.0. 

 

71. THINK All electromagnetic waves, including visible light, travel at the same speed c 

in vacuum. 

 

EXPRESS The time for light to travel a distance d in free space is t = d/c, where c is the 

speed of light (3.00  10
8
 m/s). 
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ANALYZE (a) We take d to be 150 km = 150  10
3
 m. Then, 

 

t
d

c
 




  150 10

300 10
500 10

3

8

4m

m / s
s.

.
.  

 

(b) At full moon, the Moon and Sun are on opposite sides of Earth, so the distance 

traveled by the light is  

 

d = (1.5  10
8
 km) + 2 (3.8  10

5
 km) = 1.51  10

8
 km = 1.51  10

11
 m. 

 

The time taken by light to travel this distance is 

 
11

8

1.51 10 m
500 s 8.4 min.

3.00 10 m/s

d
t

c


   


 

 

(c) We take d to be 2(1.3  10
9
 km) = 2.6  10

12
 m. Then, 

 

t
d

c
 




  

2 6 10
8 7 10 2 4

12
3.

. .
m

3.00 10 m / s
s  h.

8
 

 

(d) We take d to be 6500 ly and the speed of light to be 1.00 ly/y. Then, 

 

t
d

c
  

6500
6500

 ly

1.00 ly / y
 y.  

 

The explosion took place in the year 1054 – 6500 = –5446 or 5446 B.C. 

 

LEARN Since the speed c is constant, the travel time is proportional to the distance. The 

radio signals at 150 km away reach you almost instantly.   

 

72. (a) The expression Ey = Em sin(kx – t) fits the requirement “at point P … [it] is 

decreasing with time” if we imagine P is just to the right (x > 0) of the coordinate origin 

(but at a value of x less than /2k = /4 which is where there would be a maximum, at t = 

0).  It is important to bear in mind, in this description, that the wave is moving to the right.   

Specifically, 1(1/ )sin (1/ 4)Px k   so that Ey = (1/4) Em   at t = 0, there.  Also, Ey = 0 

with our choice of expression for Ey .  Therefore, part (a) is answered simply by solving 

for xP. Since k = 2f/c we find  

 1 1
sin 30.1 nm

2 4
P

c
x

f

  
  

 
. 

 

(b) If we proceed to the right on the x axis (still studying this “snapshot” of the wave at t 

= 0) we find another point where Ey = 0 at a distance of one-half wavelength from the 
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previous point where Ey = 0.  Thus (since = c/f ) the next point is at x = 
1

2
  = 

1

2
 c/f and is 

consequently a distance  c/2f   xP  = 345 nm to the right of P. 

 

73. THINK The electric and magnetic components of the electromagnetic waves are 

always in phase, perpendicular to each other, and perpendicular to the direction of 

propagation of the wave.  

 

EXPRESS The electric and magnetic fields can be written as sinusoidal functions of 

position and time as: 

 sin( ), sin( )m mE E kx t B B kx t      

 

where Em and Bm are the amplitudes of the fields, and  and k, are the angular frequency 

and angular wave number of the wave, respectively. The two amplitudes are related by 

Eq. 33-4: / ,m mE B c  where c is the speed of the wave. 

 

ANALYZE (a) From kc =  where k = 1.00  10
6
 m

–1
, we obtain  = 3.00  10

14
 rad/s. 

The magnetic field amplitude is, from Eq. 33-5,  

 

Bm = Em/c = (5.00 V/m)/c = 1.67  10
–8

 T. 

 

From the argument of the sinusoidal fucntion for E, we see that the direction of 

propagation is in the –z direction. Since 

E Ey ,j  and that 


B  is perpendicular to E  and 

,E B , we conclude that the only non-zero component of 

B  is Bx, so that we have  

 
8 6 14(1.67 10  T)sin[(1.00 10 / m) (3.00 10 / s) ].xB z t      

 

(b) The wavelength is  = 2/k = 6.28  10
–6

 m. 

 

(c) The period is T = 2/ = 2.09  10
–14

 s. 

 

(d) The intensity is 

I
c


F
HG

I
KJ 

1 5 00

2
0 0332

0

2



.
. .

V m
W m2  

 

(e) As noted in part (a), the only nonzero component of 

B  is Bx. The magnetic field 

oscillates along the x axis. 

 

(f) The wavelength found in part (b) places this in the infrared portion of the spectrum. 

 

LEARN Electromagnetic wave is a transverse wave. Knowing the functional form of the 

electric field allows us to determine the corresponding magnetic field, and vice versa.   
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74. (a) Let r be the radius and  be the density of the particle. Since its volume is (4/3)r
3
, 

its mass is m = (4/3)r
3
. Let R be the distance from the Sun to the particle and let M be 

the mass of the Sun. Then, the gravitational force of attraction of the Sun on the particle 

has magnitude 

F
GMm

R

GM r

R
g  

2

3

2

4

3

 
.  

 

If P is the power output of the Sun, then at the position of the particle, the radiation 

intensity is I = P/4R
2
, and since the particle is perfectly absorbing, the radiation pressure 

on it is 

p
I

c

P

R c
r  

4 2
.  

 

All of the radiation that passes through a circle of radius r and area A r  2 ,  

perpendicular to the direction of propagation, is absorbed by the particle, so the force of 

the radiation on the particle has magnitude 

 
2 2

2 2
.

4 4
r r

Pr Pr
F p A

R c R c




    

 

The force is radially outward from the Sun. Notice that both the force of gravity and the 

force of the radiation are inversely proportional to R
2
. If one of these forces is larger than 

the other at some distance from the Sun, then that force is larger at all distances. The two 

forces depend on the particle radius r differently: Fg is proportional to r
3
 and Fr is 

proportional to r
2
. We expect a small radius particle to be blown away by the radiation 

pressure and a large radius particle with the same density to be pulled inward toward the 

Sun. The critical value for the radius is the value for which the two forces are equal. 

Equating the expressions for Fg and Fr, we solve for r: 

 

r
P

GM c


3

16 
.  

 

(b) According to Appendix C, M = 1.99  10
30

 kg and P = 3.90  10
26

 W. Thus, 

 

r 


    

  

3 390 10

16 199 10 300 10

58 10

26

30 8

7

( .

/ )( . )( .

.

W)

N m kg kg)(1.0 10 kg / m m / s)

m.

2 2 3 3 
 

 

75. THINK Total internal reflection happens when the angle of incidence exceeds a 

critical angle such that Snell’s law gives 2sin 1  .  
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EXPRESS When light reaches the interfaces between two materials with indices of 

refraction n1 and n2, if n1 > n2, and the incident angle exceeds a critical value given by 

 

 1 2

1

sinc

n

n
   

  
 

, 

then total internal reflection will occur.  

 

Referring to Fig. 33-65, let 1 = 45° be the angle of incidence at the first surface and 2 

be the angle of refraction there. Let 3 be the angle of incidence at the second surface. 

The condition for total internal reflection at the second surface is  

 

n sin 3  1. 

 

We want to find the smallest value of the index of refraction n for which this inequality 

holds. The law of refraction, applied to the first surface, yields  

 

n sin 2 = sin 1. 

 

Consideration of the triangle formed by the surface of the slab and the ray in the slab tells 

us that 3 = 90° – 2. Thus, the condition for total internal reflection becomes  

 

1  n sin(90° – 2) = n cos 2. 

 

Squaring this equation and using sin
2
 2 + cos

2
 2 = 1, we obtain 1  n

2
 (1 – sin

2
 2). 

Substituting sin 2 = (1/n) sin 1 now leads to 

 

1 12
2

1

2

2 2

1 
F
HG

I
KJ  n

n
n

sin
sin .


  

 

The smallest value of n for which this equation is true is given by 1 = n
2
 – sin

2
 1. We 

solve for n: 

n      1 1 45 1222

1

2sin sin . .  

 

LEARN With n = 1.22, we have 1

2 sin [(1/1.22)sin 45 ] 35 ,      which gives 3 = 

90° – 35° = 55° as the angle of incidence at the second surface. We can readily verify that 

n sin 3 = (1.22) sin55° = 1, meeting the threshold condition for total internal reflection.  

 

76. Since some of the angles in Fig. 33-66 are measured from vertical axes and some are 

measured from horizontal axes, we must be very careful in taking differences.  For 

instance, the angle difference between the first polarizer struck by the light and the 

second is 110º (or 70º depending on how we measure it; it does not matter in the final 

result whether we put 1 = 70º or put 1 = 110º).  Similarly, the angle difference 

between the second and the third is 2 = 40º, and between the third and the fourth is 3 
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= 40º, also.  Accounting for the “automatic” reduction (by a factor of one-half) whenever 

unpolarized light passes through any polarizing sheet, then our result is the incident 

intensity multiplied by 

 2 2 2

1 2 3

1
cos ( )cos ( )cos ( )

2
     . 

 

Thus, the light that emerges from the system has intensity equal to 0.50 W/m
2
. 

 

77. (a) The first contribution to the overall deviation is at the first refraction: 

  1  i r . The next contribution to the overall deviation is the reflection. Noting that 

the angle between the ray right before reflection and the axis normal to the back surface 

of the sphere is equal to r, and recalling the law of reflection, we conclude that the angle 

by which the ray turns (comparing the direction of propagation before and after the 

reflection) is  2 180 2  r .  The final contribution is the refraction suffered by the ray 

upon leaving the sphere:   3  i r  again. Therefore, 

 

dev 1 2 3 180 2 4 .i r             

 

(b) We substitute  r n i sin ( sin )1 1  into the expression derived in part (a), using the two 

given values for n. The higher curve is for the blue light. 

 

 
 

(c) We can expand the graph and try to estimate the minimum, or search for it with a 

more sophisticated numerical procedure. We find that the dev minimum for red light is 

137.63°137.6°, and this occurs at i = 59.52°. 

 

(d) For blue light, we find that the dev minimum is 139.35°139.4°, and this occurs at i 

= 59.52°. 

 

(e) The difference in dev in the previous two parts is 1.72°. 

 

78. (a) The first contribution to the overall deviation is at the first refraction: 

  1  i r . The next contribution(s) to the overall deviation is (are) the reflection(s). 
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Noting that the angle between the ray right before reflection and the axis normal to the 

back surface of the sphere is equal to r, and recalling the law of reflection, we conclude 

that the angle by which the ray turns (comparing the direction of propagation before and 

after [each] reflection) is 180 2 .r r     Thus, for k reflections, we have  2  k r  to 

account for these contributions. The final contribution is the refraction suffered by the ray 

upon leaving the sphere:   3  i r  again. Therefore, 

 

dev 1 2 3 2( ) (180 2 ) (180 ) 2 2( 1) .i r r i rk k k                      

 

(b) For k = 2 and n = 1.331 (given in Problem 33-77), we search for the second-order 

rainbow angle numerically. We find that the dev minimum for red light is 230.37° 

230.4  , and this occurs at i = 71.90°. 

 

(c) Similarly, we find that the second-order dev minimum for blue light (for which n = 

1.343) is 233.48° 233.5  , and this occurs at i = 71.52°. 

 

(d) The difference in dev in the previous two parts is approximately 3.1°. 

 

(e) Setting k = 3, we search for the third-order rainbow angle numerically. We find that 

the dev minimum for red light is 317.5°, and this occurs at i = 76.88°. 

 

(f) Similarly, we find that the third-order dev minimum for blue light is 321.9°, and this 

occurs at i = 76.62°. 

 

(g) The difference in dev in the previous two parts is 4.4°. 

 

79. THINK We apply law of refraction to both interfaces to calculate the sideway 

displacement. 

 

EXPRESS Let  be the angle of incidence and 2 be the angle of refraction at the left 

face of the plate. Let n be the index of refraction of the glass. Then, the law of refraction 

yields  

 

sin   = n sin 2. 

 

The angle of incidence at the right face is also 2. If 3 is the angle of emergence there, 

then  

n sin 2 = sin 3. 
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ANALYZE (a) Combining the two expressions gives sin 3 = sin , which implies that 3 

= . Thus, the emerging ray is parallel to the incident ray. 

 

(b) We wish to derive an expression for x in terms of . If D is the length of the ray in the 

glass, then D cos 2 = t and D = t/cos 2. The angle  in the diagram equals  – 2 and 

  

x = D sin  = D sin ( – 2). 

Thus, 

x
t


sin( )

cos
.

 


2

2

 

 

If all the angles , 2, 3, and  – 2 are small and measured in radians, then sin   , sin 

2  2, sin( – 2)   – 2, and cos 2  1. Thus x  t( – 2). The law of refraction 

applied to the point of incidence at the left face of the plate is now   n2, so 2  /n 

and 

x t
n

n t

n
 
F
HG
I
KJ 




 1b g
.  

 

LEARN The thicker the glass, the greater the displacement x. Note in the limit n = 1 (no 

glass), 0x  , as expected.  

 

80. (a) The magnitude of the magnetic field is 

 

B
E

c
 


  100

3 0 10
3 3 10

8

7V m

m s
T.

.
.  

 

(b) With
  
E B S  0 ,  where ˆ ˆk and ( j)E E S S   , one can verify easily that since 

ˆ ˆ ˆk ( i) j, B     has to be in the x direction.  

 

81. (a) The polarization direction is defined by the electric field (which is perpendicular 

to the magnetic field in the wave, and also perpendicular to the direction of wave travel).  

The given function indicates the magnetic field is along the x axis (by the subscript on B) 
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and the wave motion is along –y axis (see the argument of the sine function).  Thus, the 

electric field direction must be parallel to the  z axis. 

 

(b) Since k is given as 1.57  10
7
/m, then  = 2/k = 4.0  10

7 
m, which means f = c/ = 

7.5  10
14 

Hz. 

 

(c) The magnetic field amplitude is given as Bm = 4.0  10
6 

T.  The electric field 

amplitude Em is equal to Bm divided by the speed of light c.  The rms value of the electric 

field is then Em divided by 2 .  Equation 33-26 then gives I = 1.9 kW/m
2
. 

 

82. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

 2 2

0 1 2

1
cos cos

2
I I     

 

where 1 190 60       and 2 290 60      . This yields I/I0 = 0.031. 

 

83. THINK The index of refraction encountered by light generally depends on the 

wavelength of the light. 

 

EXPRESS The critical angle for total internal reflection is given by sin c = 1/n. With an 

index of refraction n = 1.456 at the red end, the critical angle is c = 43.38° for red. 

Similarly, with n = 1.470 at the blue end, the critical angle is c = 42.86° for blue. 

 

ANALYZE (a) An angle of incidence of  = 42.00° is less than the critical angles for 

both red and blue light, so the refracted light is white.  

 

(b) An angle of incidence of  = 43.10° is slightly less than the critical angle for red light 

but greater than the critical angle for blue light, so the refracted light is dominated by red 

end.  

 

(c) An angle of incidence of  = 44.00° is greater than the critical angles for both red and 

blue light, so there is no refracted light.  

 

LEARN The dependence of the index of refraction of fused quartz on wavelength is 

shown in Fig. 33-18. From the figure, we see that the index of refraction is greater for a 

shorter wavelength. Such dependence results in the spreading of light as it enters or 

leaves quartz, a phenomenon called “chromatic dispersion.”  

 

84. Using Eqs. 33-40 and 33-42, we obtain 

 

    2 2

0final

0 0

/ 2 cos 45 cos 45 1
0.125.

8

II

I I

 
    
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85. We write m    where   4 33R  is the volume. Plugging this into F = ma and 

then into Eq. 33-32 (with A = R
2
, assuming the light is in the form of plane waves), we 

find 


4

3

3 2 R
a

I R

c
 . 

This simplifies to 

a
I

cR


3

4
 

 

which yields a = 1.5  10
–9

 m/s
2
. 

 

86. Accounting for the “automatic” reduction (by a factor of one-half) whenever 

unpolarized light passes through any polarizing sheet, then our result is  

 
1

2
 (cos

2
(30º))

3
 = 0.21. 

 

87. THINK Since the radar beam is emitted uniformly over a hemisphere, the source 

power is also the same everywhere within the hemisphere. 

 

EXPRESS The intensity of the beam is given by  

 

22

P P
I

A r
   

 

where A = 2r
2
 is the area of a hemisphere. The power of the aircraft’s reflection is equal 

to the product of the intensity at the aircraft’s location and its cross-sectional area: 

.r rP IA  The intensity is related to the amplitude of the electric field by Eq. 33-26: 
2 2

rms 0 0/ / 2 .mI E c E c    

 

ANALYZE (a) Substituting the values given we get  

 
3

6 2

2 3 2

180 10 W
3.5 10  W/m

2 2 (90 10  m)

P
I

r 


   


. 

 

(b) The power of the aircraft’s reflection is 

 
6 2 2 7(3.5 10  W/m )(0.22 m ) 7.8 10  Wr rP IA       . 

 

(c) Back at the radar site, the intensity is 

 
7

17 2

2 3 2

7.8 10  W
1.5 10  W/m

2 2 (90 10  m)

r
r

P
I

r 




   


. 
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(d) From 2

0/ 2 ,r mI E c  we find the amplitude of the electric field to be 

 

 
8 17 2

0

7

2 2(3.0 10 m/s)(4 T m A)(1.5 10  W/m )

1.1 10  V/m.

m rE c I  



     

 

 

 

(e) The rms value of the magnetic field is  

 

 
7

16rms
rms 8

1.1 10  V/m
2.5 10 T.

2 2(3.0 10 m/s)

mE E
B

c c




    


 

 

LEARN The intensity due to a power source decreases with the square of the distance. 

Also, as emphasized in Sample Problem — “Light wave: rms values of the electric and 

magnetic fields,” one cannot compare the values of the two fields because they are 

measured in different units. Both components are on the same basis from the perspective 

of wave propagation, and they have the same average energy.  

 

88. The amplitude of the magnetic field in the wave is 

 

B
E

c
m

m 



 


320 10

2 998 10
107 10

4

8

12.

.
.

V / m

m / s
T. 

 

89. From Fig. 33-19 we find nmax = 1.470 for  = 400 nm and nmin = 1.456 for  = 700 nm.  

(a) The corresponding Brewster’s angles are  



B,max = tan
–1

 nmax = tan
–1

 (1.470) = 55.8°, 

 

(b) and B,min = tan
–1

 (1.456) = 55.5°. 

 

90. (a) Suppose there are a total of N transparent layers (N = 5 in our case). We label 

these layers from left to right with indices 1, 2, …, N. Let the index of refraction of the air 

be n0. We denote the initial angle of incidence of the light ray upon the air-layer boundary 

as i and the angle of the emerging light ray as f. We note that, since all the boundaries 

are parallel to each other, the angle of incidence j at the boundary between the j-th and 

the (j + 1)-th layers is the same as the angle between the transmitted light ray and the 

normal in the j-th layer. Thus, for the first boundary (the one between the air and the first 

layer) 
n

n

i1

0 1


sin

sin
,




 

 

for the second boundary 
n

n

2

1

1

2


sin

sin
,




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and so on. Finally, for the last boundary 

 
n

nN

N

f

0 
sin

sin
,




 

 

Multiplying these equations, we obtain 

 

n

n

n

n

n

n

n

nN

i N

f

1

0

2

1

3

2

0

1

1

2

2

3

F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ 
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ 

sin

sin

sin

sin

sin

sin

sin

sin
.
















 

 

We see that the L.H.S. of the equation above can be reduced to n0/n0 while the R.H.S. is 

equal to sini/sinf. Equating these two expressions, we find 

 

sin sin sin ,  f i i

n

n

F
HG
I
KJ 0

0

 

 

which gives i = f. So for the two light rays in the problem statement, the angle of the 

emerging light rays are both the same as their respective incident angles. Thus, f = 0 for 

ray a, 

 

(b) and f = 20° for ray b. 

 

(c) In this case, all we need to do is to change the value of n0 from 1.0 (for air) to 1.5 (for 

glass). This does not change the result above. That is, we still have f = 0 for ray a, 

 

(d) and f = 20° for ray b. 

 

Note that the result of this problem is fairly general. It is independent of the number of 

layers and the thickness and index of refraction of each layer. 

 

91. (a) At r = 40 m, the intensity is 

 

  

3
2

22 2

4(3.0 10 W)
83W m .

4 ) 4 rad 40m

P P
I

d r   






   

  
 

 

 

(b)     P r I4 4 17 102 2 6 m) W m W.2(83 ) .  

 

92. The law of refraction requires that  

 

sin 1/sin 2 = nwater = const. 

 



 

  

1447 

We can check that this is indeed valid for any given pair of 1 and 2. For example, sin 

10° / sin 8° = 1.3, and sin 20° / sin 15°30' = 1.3, etc. Therefore, the index of refraction of 

water is nwater = 1.3. 

 

93. We remind ourselves that when the unpolarized light passes through the first sheet, its 

intensity is reduced by a factor of 2.  Thus, to end up with an overall reduction of one-

third, the second sheet must cause a further decrease by a factor of two-thirds (since 

(1/2)(2/3) = 1/3).  Thus, cos
2 = 2/3        = 35.  

 

94. (a) The magnitude of the electric field at point P is  

 

 
1.00

(25.0 A) 0.0833 V/m.
300 m

V iR
E

l l

 
    

 
 

 

The direction of E  at point P is in the +x direction, same as the current. 

 

(b) We use Ampere’s law: 
 
B ds i z 0 , where the integral is around a closed loop and i 

is the net current through the loop. The magnitude of the magnetic field is 

 

  

 

7

30

3

4 10 T m/A 25.0A
4.00 10 T.

2 2 1.25 10 m

i
B

r



 







 
   


 

 

The direction of B  at point P is in the +z direction (out of the page). 

 

(c) From 0/S E B   , we find the magnitude of the Poynting vector to be 

 

 

3
2

7
0

(0.0833V/m)(4.0 10 T)
265W/m .

2 4 10 T m/A

EB
S








  

 
 

 

(d) Since S  points in the direction of ,E B  using the right-hand-rule, the direction of S  

at point P is in the y direction. 

 

95. (a) For the cylindrical resistor shown in Figure 33-74, the magnetic field is in the ̂ , 

or clockwise direction. On the other hand, the electric field is in the same direction as the 

current, ˆ.z  Since 0/S E B   , S  is in the direction of ˆ ˆˆ( ) ( ) ,z r      or radially 

inward.  

 

(b) The magnitudes of the electric and magnetic fields are / /E V l iR l   and 

0 / 2 ,B i a   respectively. Thus,  
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2

0

0 0

1
.

2 2

iEB iR i R
S

l a al



   

  
    

  
 

 

Noting that the magnitude of the Poynting vector S is constant, we have 

 

  
2

22 .
2

i R
S dA SA al i R

al




 
    

 
  

 

96. The average rate of energy flow per unit area, or intensity, is related to the electric 

field amplitude Em by I E cm 2

02/  , implying that the rate of energy absorbed is 
2

abs 0/ 2mP IA E A c  . If all the energy is used to heat up the sheet (converting to its 

internal energy), then 

int
abs s

dE dT
P mc

dt dt
  , 

 

where cs is the specific heat of the material. Solving for dT/dt, we find  

 
2 2

0 0

.
2 2

m m
s

s

E A E AdT dT
mc

dt c dt mc c 
    

 

97. Let I0 be the intensity of the unpolarized light that is incident on the first polarizing 

sheet. The transmitted intensity is, by one-half rule, 1
1 02

.I I  For the second sheet, we 

apply the cosine-squared rule: 

 2 2

2 1 0

1
cos cos

2
I I I    

 

where   is the angle between the direction of polarization of the two sheets. With 

2 0/ /100,I I p  we solve for  and obtain 

2 12

0

1
cos cos

100 2 50

I p p

I
  

 
      

 
. 

 

98. The cross-sectional area of the beam on the surface is cos .A   In a time interval t, 

the volume of the beam that’s been reflected is ( cos ) ,V A c t    and the momentum 

carried by this volume is 2( / )( cos ) .p I c A c t   Upon being reflected, the change in 

momentum is 

 22 cos 2 cos /p p IA t c      

 

Thus, the radiation pressure is 

 

2 22
cos cosr

r r

F p I
p p

A A t c
 


   


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where 2 /rp I c   is the radiation pressure when 0.   

 

99. Consider the figure shown to the right. The y-

component of the force cancels out, and we’re left 

with the x-component: 

 

 2 cos 2( )cosx rdF dF p dA   . 

 

Using the result from Problem 98: 
2(2 / )cosrp I c  , and dA RLd , where L is the 

length of the cylinder, we obtain 

 

 

 
/ 2

3

0

4 8
2(2 cos / )cos cos

3

xF IR IR
I c Rd d

L c c



        . 

 

100. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

2 2

0 1 2

1
cos cos

2
I I     

 

where 1 1 2(90 ) 110         is the relative angle between the first and the second 

polarizing sheets, and 2 290 50       is the relative angle between the second and the 

third polarizing sheets. Thus, we have I/I0 = 0.024. 

 

101. We apply Eq. 33-40 (once) and Eq. 33-42 (twice) to obtain 

 

2 2

0

1
cos cos .

2
I I     

 

With 2 1      = 60° – 20° = 40° and 3 2( / 2 )        = 40° + 30° = 70°, we get 

I/I0 = 0.034. 

 

102. We use Eq. 33-33 for the force, where A is the area of the reflecting surface (4.0 m
2
).  

The intensity is gotten from Eq. 33-27 where P = PS  is in Appendix C (see also Sample 

Problem 33-2) and r = 3.0  10
11 

m (given in the problem statement).  Our result for the 

force is 9.2 N. 

 

103. Eq. 33-5 gives B = E/c, which relates the field values at any instant — and so relates 

rms values to rms values, and amplitude values to amplitude values, as the case may be. 

Thus, the rms value of the magnetic field is  

 

rmsB  (0.200 V/m)/(3  10
8
 m/s) = 6.67  10

–10
 T, 
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which (upon multiplication by 2 ) yields an amplitude value of magnetic field equal to 

9.43  10
–10

 T. 

 

104. (a) The Sun is far enough away that we approximate its rays as “parallel” in this 

Figure. That is, if the sunray makes angle  from horizontal when the bird is in one 

position, then it makes the same angle  when the bird is any other position. Therefore, 

its shadow on the ground moves as the bird moves: at 15 m/s. 

 

(b) If the bird is in a position, a distance x > 0 from the wall, such that its shadow is on 

the wall at a distance 0  y  h from the top of the wall, then it is clear from the Figure 

that tan = y/x. Thus, 

 

dy

dt

dx

dt
    tan ( . 15 8 7m / s) tan30 m / s,  

 

which means that the distance y (which was measured as a positive number downward 

from the top of the wall) is shrinking at the rate of 8.7 m/s. 

 

(c) Since tan grows as 0   < 90° increases, then a larger value of |dy/dt| implies a 

larger value of . The Sun is higher in the sky when the hawk glides by. 

 

(d) With |dy/dt| = 45 m/s, we find 

hawk

/

tan

dy dtdx
v

dt 
   

 

so that we obtain  = 72° if we assume vhawk = 15 m/s. 

 

105. (a) The wave is traveling in the –y direction (see §16-5 for the significance of the 

relative sign between the spatial and temporal arguments of the wave function). 

 

(b) Figure 33-5 may help in visualizing this. The direction of propagation (along the y 

axis) is perpendicular to 

B  (presumably along the x axis, since the problem gives Bx and 

no other component) and both are perpendicular to 

E  (which determines the axis of 

polarization). Thus, the wave is z-polarized. 

 

(c) Since the magnetic field amplitude is Bm = 4.00 T, then (by Eq. 33-5) Em = 1199 

V/m 31.20 10  V/m  . Dividing by 2  yields Erms = 848 V/m. Then, Eq. 33-26 gives 

 

I
I

c
E  

0

3191 10rms

2 2W / m. .  

 

(d) Since kc =  (equivalent to c = f ), we have 
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k
c




  2 00 10
6 67 10

15
6.

. .m 1  

 

Summarizing the information gathered so far, we have (with SI units understood) 

 
3 6 15(1.2 10 V/m) sin[(6.67 10 / m) (2.00 10 / s) ].zE y t      

 

(e)  = 2/k = 942 nm. 

 

(f) This is an infrared light. 

 

106. (a) The angle of incidence B,1 at B is the complement of the critical angle at A; its 

sine is 
2

3
,1

2

sin cos 1B c

n

n
 

 
   

 
 

 

so that the angle of refraction B,2 at B becomes 

 

22

1 132 2
,2

3 2 3

sin 1 sin 1 35.1B

nn n

n n n
  

 
          

    
 

. 

 

(b) From n1 sin  = n2 sin c = n2(n3/n2), we find 

 

 1 3

1

sin 49.9
n

n
   
   

 
. 

 

(c) The angle of incidence A,1 at A is the complement of the critical angle at B; its sine is 

 
2

3
,1

2

sin cos 1A c

n

n
 

 
   

 
. 

 

so that the angle of refraction A,2 at A becomes 

 

22

1 132 2
,2

3 2 3

sin 1 sin 1 35.1A

nn n

n n n
  

 
          

    
 

. 

(d)  From 
2

2 23
1 2 ,1 2 2 3

2

sin sin 1A

n
n n n n n

n
 

 
     

 
, 
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we find 

2 2

2 31

1

sin 26.1
n n

n
 

 
   
 
 

 

 

(e) The angle of incidence B,1 at B is the complement of the Brewster angle at A; its sine 

is 

 2
,1

2 2

2 3

sin B

n

n n
 


 

 

so that the angle of refraction B,2 at B becomes 

 

2
1 2

,2
2 2

3 2 3

sin 60.7B

n

n n n
 

 
   
  

. 

(f) From 

3
1 2 Brewster 2

2 2

2 3

sin sin
n

n n n
n n

  


 , 

we find 

1 2 3

2 2

1 2 3

sin 35.3
n n

n n n
 

 
   
  

 . 

 

107. (a) and (b) At the Brewster angle, incident + refracted = B + 32.0° = 90.0°, so B = 

58.0° and  

nglass = tan B = tan 58.0° = 1.60. 

 

108. We take the derivative with respect to x of both sides of Eq. 33-11: 

 
2 2

2
.

E E B B

x x x x t x t

        
       

         
 

 

Now we differentiate both sides of Eq. 33-18 with respect to t: 

 









F
HG
I
KJ  



 









F
HG

I
KJ 



t

B

x

B

x t t

E

t

E

t

2

0 0 0 0

2

2
    .  

 

Substituting 2 2 2E x B x t       from the first equation above into the second one, we 

get 
2 2 2 2 2

2

0 0 2 2 2 2 2

0 0

1
         .

E E E E E
c

t x t x x
 

 

    
   

    
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Similarly, we differentiate both sides of Eq. 33-11 with respect to t 

 
2 2

2
,

E B

x t t

 
 

  
 

 

and differentiate both sides of Eq. 33-18 with respect to x 

 





 



 

2

2 0 0

2B

x

E

x t
  . 

 

Combining these two equations, we get 

 















2

2

0 0

2

2

2
2

2

1B

t

B

x
c

B

x 
. 

109. (a) From Eq. 33-1, 

 








   

2

2

2

2

2E

t t
E kx t E kx tm msin( ) sin( ),    

and 

 

c
E

x
c

x
E kx t k c kx t E kx tm m

2
2

2

2
2

2

2 2 2







      sin( ) sin( ) sin( ).     

 

Consequently, 










2

2

2
2

2

E

t
c

E

x
 

 

is satisfied. Analogously, one can show that Eq. 33-2 satisfies 

 
2 2

2

2 2
.

B B
c

t x

 


 
 

 

(b) From E E f kx tm ( ),  

 






 




 

2

2

2

2

2
2

2

E

t
E

f kx t

t
E

d f

du
m m

u kx t

( )




 

 

and 

c
E

x
c E

f kx t

t
c E k

d f

du
m m

u kx t

2
2

2

2
2

2

2 2
2

2






 




 

( )



 

 

Since  = ck the right-hand sides of these two equations are equal. Therefore, 
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2 2

2

2 2
.

E E
c

t x

 


 
 

 

Changing E to B and repeating the derivation above shows that B B f kx tm ( )  

satisfies  
2 2

2

2 2
.

B B
c

t x

 


 
 

 

110. Since intensity is power divided by area (and the area is spherical in the isotropic 

case), then the intensity at a distance of r = 20 m from the source is 

 

I
P

r
 

4
0 040

2
. .W m2  

 

as illustrated in Sample Problem 33-2. Now, in Eq. 33-32 for a totally absorbing area A, 

we note that the exposed area of the small sphere is that on a flat circle A = (0.020 m)
2
 = 

0.0013 m
2
. Therefore,  

 

F
IA

c
 


  ( . )( . )

.
0 040 0 0013

3 10
17 10

8
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