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Chapter 28 
 

 

1. THINK The magnetic force on a charged parti014cle is given by ,BF qv B   where 

v  is the velocity of the charged particle and B  is the magnetic field. 

 

EXPRESS The magnitude of the magnetic force on the proton (of charge +e) is 

sin ,BF evB   where  is the angle between v  and .B  

 

ANALYZE (a) The speed of the proton is 

 

v
F

eB

B 


  
 



 sin

.

. . sin .
. .


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4 00 10
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19 3

5N
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m sc hc h  

 

(b) The kinetic energy of the proton is 

 

  
2

2 27 5 161 1
1.67 10 kg 4.00 10 m s 1.34 10 J

2 2
K mv        , 

 

which is equivalent to  

 

K = (1.34  10
– 16

 J) / (1.60  10
– 19

 J/eV) = 835 eV. 

 

LEARN from the definition of B  given by the expression ,BF qv B   we see that the 

magnetic force BF  is always perpendicular to v  and .B  

 

2. The force associated with the magnetic field must point in the j  direction in order to 

cancel the force of gravity in the j  direction. By the right-hand rule, 

B  points in the 

 k  direction (since   i k j  e j ). Note that the charge is positive; also note that we need 

to assume By = 0. The magnitude |Bz| is given by Eq. 28-3 (with  = 90°). Therefore, with 
21.0 10 kgm   , 42.0 10 m/s,v    and 58.0 10 Cq   , we find 

 

ˆ ˆ ˆk k ( 0.061 T)kz

mg
B B

qv

 
     

 
. 

 

3. (a) The force on the electron is 
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     

       

 

19 6 6

14

ˆ ˆ ˆ ˆi j i k

= 1.6 10 C 2.0 10 m s 0.15 T 3.0 10 m s 0.030 T

ˆ6.2 10 N k.

B x y x y x y y xF qv B q v v B B j q v B v B





       

      
 

 

 

 

Thus, the magnitude of 

FB  is 6.2  10

14
 N, and 


FB  points in the positive z direction. 

 

(b) This amounts to repeating the above computation with a change in the sign in the 

charge. Thus,

FB  has the same magnitude but points in the negative z direction, namely,  

 14 ˆ6.2 10 N k.BF     

 

4. (a) We use Eq. 28-3:  

 

FB = |q| vB sin  = (+ 3.2  10
–19

 C) (550 m/s) (0.045 T) (sin 52°) = 6.2  10
–18

 N. 

 

(b) The acceleration is  

 

a = FB/m = (6.2  10
– 18

 N) / (6.6  10
– 27

 kg) = 9.5  10
8
 m/s

2
. 

 

(c) Since it is perpendicular to 
 
v FB,  does not do any work on the particle. Thus from the 

work-energy theorem both the kinetic energy and the speed of the particle remain 

unchanged. 

 

5. Using Eq. 28-2 and Eq. 3-30, we obtain 

 

F q v B v B q v B v Bx y y x x x y x   d i b gd i k k3  

 

where we use the fact that By = 3Bx. Since the force (at the instant considered) is Fz
k  

where Fz = 6.4  10
–19

 N, then we are led to the condition 

 

 
 

3 .
3

z
x y x z x

x y

F
q v v B F B

q v v
   


 

 

Substituting vx = 2.0 m/s, vy = 4.0 m/s, and q = –1.6  10
–19

 C, we obtain  

 
19

19

6.4 10 N
2.0 T.

(3 ) ( 1.6 10 C)[3(2.0 m/s) 4.0 m]

z
x

x y

F
B

q v v






   

   
 

 

6. The magnetic force on the proton is given by ,F qv B   where  q = +e . Using Eq. 3-

30 this becomes 
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(4  10
17 

)i
^
  + (2  10

17
)j
^
  = e[(0.03vy + 40)i

^
  + (20 – 0.03vx)j

^
  – (0.02vx + 0.01vy)k

^
]   

 

with SI units understood.  Equating corresponding components, we find  

 

(a) vx = 3.50
3
 m/s, and 

 

(b) vy = 7.00
3
 m/s. 

 

7. We apply 
    
F q E v B m ae   d i  to solve for 


E : 

 
   
E

m a

q
B ve  


 

 
  

   





911 10 2 00 10

160 10
400 12 0 150

114 6 00 4 80

31 12 2

19

. . 

.
 .  . 

.  .  .  .

kg m s i

C
T i km s j km s k

i j k V m

c hd i b g b g b g
e j

  

 

8. Letting 
   
F q E v B   d i 0 , we get sinvB E  . We note that (for given values of 

the fields) this gives a minimum value for speed whenever the sin  factor is at its 

maximum value (which is 1, corresponding to  = 90°). So 

  

 
3

3

min

1.50 10 V/m
3.75 10 m/s

0.400 T

E
v

B


    . 

 

9. Straight-line motion will result from zero net force acting on the system; we ignore 

gravity. Thus, 
   
F q E v B   d i 0 . Note that 

 
v B  so 

 
v B vB  . Thus, obtaining the 

speed from the formula for kinetic energy, we obtain  

 

     

3
4

3 19 31

100 V /(20 10 m)
2.67 10 T.

2 / 2 1.0 10 V 1.60 10 C / 9.11 10 kge

E E
B

v K m




 


    

  
 

 

In unit-vector notation, 4 ˆ(2.67 10  T)kB   . 

 

10. (a) The net force on the proton is given by 

 

       

 

19 3

18

ˆ ˆ ˆ1.60 10 C 4.00V m k+ 2000m s j 2.50 10 T i

ˆ1.44 10 N k.

E BF F F qE qv B  



          
 

 

 

(b) In this case, we have 
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       

 

19

19

ˆ ˆ ˆ1.60 10 C 4.00V m k 2000m s j 2.50 mT i

ˆ1.60 10 N k.

E BF F F qE qv B





    

      
 

 

 

 

(c) In the final case, we have 

 

       

   

19

19 19

ˆ ˆ ˆ1.60 10 C 4.00V m i+ 2000m s j 2.50 mT i

ˆ ˆ6.41 10 N i+ 8.01 10 N k.

E BF F F qE qv B



 

    

    
 

  

 

 

11. Since the total force given by 
   
F e E v B  d i  vanishes, the electric field 


E  must be 

perpendicular to both the particle velocity 

v  and the magnetic field 


B . The magnetic 

field is perpendicular to the velocity, so 
 
v B  has magnitude vB and the magnitude of 

the electric field is given by E = vB. Since the particle has charge e and is accelerated 

through a potential difference V, 2 / 2mv eV  and 2 .v eV m  Thus, 

 

 
  

 

19 3

5

27

2 1.60 10 C 10 10 V2
1.2 T 6.8 10 V m.

9.99 10 kg

eV
E B

m





 
   


 

 

12. (a) The force due to the electric field  ( F qE )  is distinguished from that associated 

with the magnetic field ( F qv B  )  in that the latter vanishes when the speed is zero 

and the former is independent of speed. The graph shows that the force (y-component) is 

negative at v = 0 (specifically, its value is –2.0  10
–19 

N there), which (because q = –e) 

implies that the electric field points in the +y direction.  Its magnitude is   

 

 
19

net,

19

2.0 10 N
1.25 N/C 1.25 V/m

| | 1.6 10 C

yF
E

q






   


. 

 

(b) We are told that the x and z components of the force remain zero throughout the 

motion, implying that the electron continues to move along the x axis, even though 

magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11).  The 

exception to this is discussed in Section 28-3, where the forces due to the electric and 

magnetic fields cancel.  This implies (Eq. 28-7) B = E/v = 2.50  10
2 

T.  

 

For F qv B  to be in the opposite direction of F qE  we must have v B  in the 

opposite direction from ,E  which points in the +y direction, as discussed in part (a).   

Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that 
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the magnetic field must point in the +z direction ( i
^
  k

^
  = j

^
 ). In unit-vector notation, we 

have 2 ˆ(2.50 10  T)kB   . 

 

13. We use Eq. 28-12 to solve for V: 

 

  

   
6

28 3 19

23A 0.65 T
7.4 10 V.

8.47 10 m 150 m 1.6 10 C

iB
V

nle 




   

 
 

 

14. For a free charge q inside the metal strip with velocity 

v  we have 

   
F q E v B  d i . 

We set this force equal to zero and use the relation between (uniform) electric field and 

potential difference. Thus, 

 

v
E

B

V V d

B

x y xy
 






 




 

390 10

120 10 0850 10
0 382

9

3 2

.

. .
. .

V

T m
m s

c h
c hc h  

 

15. (a) We seek the electrostatic field established by the separation of charges (brought on 

by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as 

 

  | | | | 20.0 m/s 0.030 T 0.600 V/mE v B   . 

 

Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by 
 
v B . In summary,  

ˆ(0.600V m)kE   

 

which insures that 
   
F q E v B  d i  vanishes. 

 

(b) Equation 28-9 yields (0.600 V/m)(2.00 m) 1.20 VV Ed   . 

 

16. We note that B 


 must be along the x axis because when the velocity is along that axis 

there is no induced voltage.  Combining Eq. 28-7 and Eq. 28-9 leads to  

 

V V
d

E vB
   

 

where one must interpret the symbols carefully to ensure that , ,d v  and B  are mutually 

perpendicular.  Thus, when the velocity if parallel to the y axis the absolute value of the 

voltage (which is considered in the same “direction” as d ) is 0.012 V, and  

 

0.012 V
0.20 m

(3.0 m/s)(0.020 T)
zd d   . 
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On the other hand, when the velocity is parallel to the z axis the absolute value of the 

appropriate voltage is 0.018 V, and  

 

0.018 V
0.30 m

(3.0 m/s)(0.020 T)
yd d   . 

Thus, our answers are 

 

(a) dx = 25 cm (which we arrive at “by elimination,” since we already have figured out dy 

and dz ), 

 

(b) dy = 30 cm, and 

 

(c) dz  = 20 cm. 

 

17. (a) Using Eq. 28-16, we obtain 

 

v
rqB

m

eB
  

 


 

 




2

4 00

2 4 50 10 160 10 120

4 00 166 10
2 60 10

2 19

27

6

.

. . .

. .
. .

u

m C T

u kg u
m s

c hc hb g
b gc h  

 

(b) T = 2r/v = 2(4.50  10
–2

 m)/(2.60  10
6
 m/s) = 1.09  10

–7
 s. 

 

(c) The kinetic energy of the alpha particle is 

 

K m v 
 


 





1

2

4 00 166 10 2 60 10

2 160 10
140 102

27 6
2

19

5



. . .

.
. .

u kg u m s

J eV
eV

b gc hc h
c h  

 

(d) V = K/q = 1.40  10
5
 eV/2e = 7.00  10

4
 V. 

 

18. With the 

B  pointing “out of the page,” we evaluate the force (using the right-hand 

rule) at, say, the dot shown on the left edge of the particle’s path, where its velocity is 

down. If the particle were positively charged, then the force at the dot would be toward 

the left, which is at odds with the figure (showing it being bent toward the right). 

Therefore, the particle is negatively charged; it is an electron. 

 

(a) Using Eq. 28-3 (with angle  equal to 90°), we obtain 

 

6| |
4.99 10 m s.

| |

F
v

e B
    

 

(b) Using either Eq. 28-14 or Eq. 28-16, we find r = 0.00710 m. 

 

(c) Using Eq. 28-17 (in either its first or last form) readily yields T = 8.93  10
–9

 s. 
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19. Let  stand for the ratio ( / | |m q ) we wish to solve for. Then Eq. 28-17 can be written 

as T = 2/B.   Noting that the horizontal axis of the graph (Fig. 28-37) is inverse-field 

(1/B) then we conclude (from our previous expression) that the slope of the line in the 

graph must be equal to 2.  We estimate that slope is 7.5  10
9 

T
.
s, which implies   

 

 9/ | | 1.2 10  kg/Cm q    

 

20. Combining Eq. 28-16 with energy conservation (eV = 
1

2
 mev

2
 in this particular 

application) leads to the expression 

2e

e

m eV
r

eB m
  

 

which suggests that the slope of the r versus V  graph should be 22 /em eB . From Fig. 

28-38, we estimate the slope to be 5  10
5 

in SI units. Setting this equal to 22 /em eB  

and solving, we find B = 6.7  10
2 

T. 

 

21. THINK The electron is in circular motion because the magnetic force acting on it 

points toward the center of the circle.  

 

EXPRESS The kinetic energy of the electron is given by 21
,

2
eK m v  where me is the 

mass of electron and v is its speed. The magnitude of the magnetic force on the electron is 

BF evB  which is equal to the centripetal force: 

 

 
2

.em v
evB

r
  

ANALYZE (a) From K m ve
1

2

2  we get 

 

v
K

me

 
 


 





2 2 120 10 160 10

911 10
2 05 10

3 19

31

7
. .

.
. .

eV eV J

kg
m s

c hc h
 

 

(b) Since 2 / ,eevB m v r  we find the magnitude of the magnetic field to be 

 

  
  

31 7

4

19 2

9.11 10 kg 2.05 10 m s
4.67 10 T.

1.60 10 C 25.0 10 m

em v
B

er





 

 
   

 
 

 

(c) The “orbital” frequency is 
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 

7
7

2

2.07 10 m s
1.31 10 Hz.

2 2 25.0 10 m

v
f

r  


   


 

 

(d) The period is simply equal to the reciprocal of frequency: 

 

T = 1/f = (1.31  10
7
 Hz)

–1
 = 7.63  10

–8
 s. 

 

LEARN The period of the electron’s circular motion can be written as 

 

2 2 2
.

| | | |

r mv m
T

v v e B e B

  
    

 

The period is inversely proportional to B. 

 

22. Using Eq. 28-16, the radius of the circular path is 

 

2mv mK
r

qB qB
   

 

where 2 / 2K mv  is the kinetic energy of the particle. Thus, we see that K = (rqB)
2
/2m 

 q
2
m

–1
.  

 

(a)        
2 2

2 1 4 1.0MeV;p p p p pK q q m m K K K       

 

(b)        
2 2

1 1 2 1.0 MeV 2 0.50MeV.d d p p d p pK q q m m K K     

 

23. From Eq. 28-16, we find 

 

  
  

31 6

5

19

9.11 10 kg 1.30 10 m s
2.11 10 T.

1.60 10 C 0.350 m

em v
B

er







 
   


 

 

24. (a) The accelerating process may be seen as a conversion of potential energy eV into 

kinetic energy. Since it starts from rest, 
1

2

2m v eVe   and 

 

  19

7

31

2 1.60 10 C 350 V2
1.11 10 m s.

9.11 10 kge

eV
v

m






   


 

 

(b) Equation 28-16 gives 
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  
  

31 7

4

19 3

9.11 10 kg 1.11 10 m s
3.16 10 m.

1.60 10 C 200 10 T

em v
r

eB





 

 
   

 
 

 

25. (a) The frequency of revolution is 

 

f
Bq

me

 
 


 

 

2

350 10 160 10

2 911 10
9 78 10

6 19

31

5

 

. .

.
.

T C

kg
Hz.

c hc h
c h  

 

(b) Using Eq. 28-16, we obtain 

 

r
m v

qB

m K

qB

e e
  

 

 


 

 

2 2 911 10 100 160 10

160 10 350 10
0 964

31 19

19 6

. .

. .
. .

kg eV J eV

C T
m

c hb gc h
c hc h  

 

26. We consider the point at which it enters the field-filled region, velocity vector 

pointing downward. The field points out of the page so that 
 
v B  points leftward, which 

indeed seems to be the direction it is “pushed’’; therefore, q > 0 (it is a proton). 

 

(a) Equation 28-17 becomes p2 / | |T m e B , or  

 

 
 

 

27

9

19

2 1.67 10
2 130 10

1.60 10 | |B







 
 


 

which yields 

B  0 252. T . 

 

(b) Doubling the kinetic energy implies multiplying the speed by 2 . Since the period T 

does not depend on speed, then it remains the same (even though the radius increases by a 

factor of 2 ). Thus, t = T/2 = 130 ns. 

 

27. (a) We solve for B from m = B
2
qx

2
/8V (see Sample Problem 28.04 — “Uniform 

circular motion of a charged particle in a magnetic field”): 

 

B
Vm

qx


8
2

.  

 

We evaluate this expression using x = 2.00 m: 

 

B 
 








8 100 10 392 10

320 10 2 00
0 495

3 25

19 2

V kg

C m
T

c hc h
c hb g

.

. .
. .  
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(b) Let N be the number of ions that are separated by the machine per unit time. The 

current is i = qN and the mass that is separated per unit time is M = mN, where m is the 

mass of a single ion. M has the value 

 

M 


 


100 10

3600
2 78 10

6
8kg

s
kg s. .  

Since N = M/m we have 

 

i
qM

m
 

 


 

 




320 10 2 78 10

392 10
2 27 10

19 8

25

2
. .

.
. .

C kg s

kg
A

c hc h
 

 

(c) Each ion deposits energy qV in the cup, so the energy deposited in time t is given by 

 

E NqV t
iqV

q
t iV t     .  

For t = 1.0 h, 

E     2 27 10 100 10 3600 817 102 3 6. . .A V s Jc hc hb g  

 

To obtain the second expression, i/q is substituted for N. 

 

28. Using 2 /F mv r  (for the centripetal force) and 2 / 2K mv , we can easily derive 

the relation 

K = 
1

2
 Fr. 

 

With the values given in the problem, we thus obtain K = 2.09  10
22 

J. 

 

29. Reference to Fig. 28-11 is very useful for interpreting this problem. The distance 

traveled parallel to B 


 is  d|| =  v||T  = v||(2me /|q|B) using Eq. 28-17.  Thus, 

 

v|| = 
2 e

d eB

m
 = 50.3 km/s 

 

using the values given in this problem.  Also, since the magnetic force is |q|Bv, then we 

find v = 41.7 km/s.  The speed is therefore v = 2 2v v   = 65.3 km/s.  

 

30. Eq. 28-17 gives T = 2me /eB.  Thus, the total time is 

 







T 

 2 1
 + tgap + 







T 

 2 2
 = 
me 

e 





1

B1
 + 

1

B2
  +  tgap . 
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The time spent in the gap (which is where the electron is accelerating in accordance with 

Eq. 2-15) requires a few steps to figure out: letting t = tgap then we want to solve 

 

 2 20
0

21 1
0.25 m

2 2e e

K e V
d v t at t t

m m d

 
      

 
 

  

for t.  We find in this way that the time spent in the gap is t  6 ns. Thus, the total time is 

8.7 ns.   

 

31. Each of the two particles will move in the same circular path, initially going in the 

opposite direction. After traveling half of the circular path they will collide. Therefore, 

using Eq. 28-17, the time is given by  

 

 
 

 

31

9

3 19

9.11 10 kg
5.07 10 s.

2 (3.53 10 T) 1.60 10 C

T m
t

Bq






 


    

 
 

 

32. Let cosv v  . The electron will proceed with a uniform speed v||  in the direction of 

B  while undergoing uniform circular motion with frequency f in the direction 

perpendicular to B:  f = eB/2me. The distance d is then 

 

     

  

7 31

||

|| 19 3

2 1.5 10 m s 9.11 10 kg cos10cos 2
0.53m.

1.60 10 C 1.0 10 T

e
v v m

d v T
f eB




 

   
    

 
 

 

33. THINK The path of the positron is helical because its velocity v  has components 

parallel and perpendicular to the magnetic field .B  

 

EXPRESS If v is the speed of the positron then v sin  is the component of its velocity in 

the plane that is perpendicular to the magnetic field. Here  = 89° is the angle between 

the velocity and the field. Newton’s second law yields eBv sin  = me(v sin )
2
/r, where r 

is the radius of the orbit. Thus r = (mev/eB)sin . The period is given by 

 

22
.

sin

emr
T

v eB


   

 

The equation for r is substituted to obtain the second expression for T. For part (b), the 

pitch is the distance traveled along the line of the magnetic field in a time interval of one 

period. Thus p = vT cos . 

 

ANALYZE (a) Substituting the values given, we find the period to be 
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 
  

31

10

19

2 9.11 10 kg2
3.58 10 s.

1.60 10 C 0.100T

em
T

eB







 
   


 

 

(b) We use the kinetic energy, K m ve 1
2

2 , to find the speed:  

 

  3 19

7

31

2 2.00 10 eV 1.60 10 J eV2
2.65 10 m s .

9.11 10 kge

K
v

m





 
   


 

 

Thus, the pitch is   7 10 42.65 10 m s 3.58 10 s cos 89 1.66 10 m .p         

 

(c) The orbit radius is 

 

  
  

31 7

3

19

9.11 10 kg 2.65 10 m s sin89sin
1.51 10 m .

1.60 10 C 0.100 T

em v
R

eB








  
   


 

 

LEARN The parallel component of the velocity, cos ,v v   is what determines the 

pitch of the helix. On the other hand, the perpendicular component, sin ,v v    

determines the radius of the helix. 

 

34. (a)  Equation 3-20 gives = cos
1

(2/19) = 84. 

 

(b) No, the magnetic field can only change the direction of motion of a free 

(unconstrained) particle, not its speed or its kinetic energy. 

 

(c) No, as reference to Fig. 28-11 should make clear. 

 

(d) We find v = v sin  = 61.3 m/s, so r = mv /eB =  5.7 nm. 

 

35. (a)  By conservation of energy (using qV for the potential energy, which is converted 

into kinetic form) the kinetic energy gained in each pass is 200 eV. 

 

(b) Multiplying the part (a) result by n = 100 gives K = n(200 eV) = 20.0 keV. 

 

(c) Combining Eq. 28-16 with the kinetic energy relation (n(200 eV) = mpv
2
/2 in this 

particular application) leads to the expression 

 

r = 
mp

e B
 

2n(200 eV)

mp
  

 

which shows that r is proportional to n . Thus, the percent increase defined in the 

problem in going from n = 100 to n = 101 is 101/100  – 1  = 0.00499 or 0.499%.  
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36. (a) The magnitude of the field required to achieve resonance is 

 

 6 27

19

2  Hz) 1.67 10 kg2
0.787T.

1.60 10 C

pfm
B

q






 
  


 

 

(b) The kinetic energy is given by 

 

   
22 27 2 2 6 21

2

12 6

1 1
2 1.67 10 kg 4 (0.530 m) (12.0 10  Hz)

2 2

1.33 10 J 8.34 10 eV.

K mv m Rf 



     

   

 

 

(c) The required frequency is 

  

 

19

7

27

1.60 10 C 1.57T
2.39 10 Hz.

2 2 1.67 10 kgp

qB
f

m 






   


 

 

(d) The kinetic energy is given by 

 

   
22 27 2 2 7 21

2

12 7

1 1
2 1.67 10 kg 4 (0.530 m) (2.39 10  Hz)

2 2

5.3069 10 J 3.32 10 eV.

K mv m Rf 



     

   

 

 

37. We approximate the total distance by the number of revolutions times the 

circumference of the orbit corresponding to the average energy. This should be a good 

approximation since the deuteron receives the same energy each revolution and its period 

does not depend on its energy. The deuteron accelerates twice in each cycle, and each 

time it receives an energy of qV = 80  10
3
 eV. Since its final energy is 16.6 MeV, the 

number of revolutions it makes is 

n 





16 6 10

2 80 10
104

6

3

.
.

eV

eVc h  

 

Its average energy during the accelerating process is 8.3 MeV. The radius of the orbit is 

given by r = mv/qB, where v is the deuteron’s speed. Since this is given by v K m 2 , 

the radius is 

r
m

qB

K

m qB
Km 

2 1
2 .  

For the average energy 

 

r 
  




 



2 8 3 10 160 10 334 10

160 10 157
0 375

6 19 27

19

. . .

. .
.

eV J eV kg

C T
m .

c hc hc h
c hb g  
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The total distance traveled is about  

 

n2r = (104)(2)(0.375) = 2.4  10
2
 m. 

 

38. (a) Using Eq. 28-23 and Eq. 28-18, we find 

 

  

 

19

7

osc 27

1.60 10 C 1.20T
1.83 10 Hz.

2 2 1.67 10 kgp

qB
f

m 






   


 

 

(b) From r m v qB m k qBp P  2  we have  

 

     

  

2
192

7

27 19

0.500m 1.60 10 C 1.20T
1.72 10 eV.

2 2 1.67 10 kg 1.60 10 J eVp

rqB
K

m



 

 
    

 
 

 

39. THINK The magnetic force on a wire that carries a current i is given by ,BF iL B   

where L  is the length vector of the wire and B  is the magnetic field. 

 

EXPRESS The magnitude of the magnetic force on the wire is given by FB = iLB sin , 

where  is the angle between the current and the field.  

 

ANALYZE (a) With  = 70°, we have 

 

   65000A 100m 60.0 10 T sin 70 28.2 N.BF     

 

(b) We apply the right-hand rule to the vector product 
  
F iL BB    to show that the force 

is to the west. 

 

LEARN From the expression ,BF iL B   we see that the magnetic force acting on a 

current-carrying wire is a maximum when L  is perpendicular to B  ( 90  ), and is zero 

when L  is parallel to B  ( 0   ).  

 

40. The magnetic force on the (straight) wire is 

 

       sin 13.0A 1.50T 1.80m sin 35.0 20.1N.BF iBL      

 

41. (a) The magnetic force on the wire must be upward and have a magnitude equal to the 

gravitational force mg on the wire. Since the field and the current are perpendicular to 

each other the magnitude of the magnetic force is given by FB = iLB, where L is the 

length of the wire. Thus, 
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  
  

20.0130kg 9.8m s
0.467A.

0.620m 0.440T

mg
iLB mg i

LB
      

 

(b) Applying the right-hand rule reveals that the current must be from left to right. 

 

42. (a) From symmetry, we conclude that any x-component of force will vanish 

(evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in 

the k  direction produces on each part of the bent wire a y-component of force pointing in 

thej  direction; each of these components has magnitude 

 

| | | | sin30 (2.0 A)(2.0 m)(4.0 T)sin30 8N.yF i B      

 

Therefore, the force on the wire shown in the figure is ˆ( 16j) N . 

 

(b) The force exerted on the left half of the bent wire points in the  k  direction, by the 

right-hand rule, and the force exerted on the right half of the wire points in the  k  

direction. It is clear that the magnitude of each force is equal, so that the force (evaluated 

over the entirety of the bent wire as shown) must necessarily vanish. 

 

43. We establish coordinates such that the two sides of the right triangle meet at the 

origin, and the y  50  cm side runs along the +y axis, while the x 120  cm side runs 

along the +x axis. The angle made by the hypotenuse (of length 130 cm) is  

 

 = tan
–1

 (50/120) = 22.6°, 

 

relative to the 120 cm side. If one measures the angle counterclockwise from the +x 

direction, then the angle for the hypotenuse is 180° – 22.6° = +157°. Since we are only 

asked to find the magnitudes of the forces, we have the freedom to assume the current is 

flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the +z 

axis. We take 

B  to be in the same direction as that of the current flow in the hypotenuse. 

Then, with B B 


0 0750. T,  

cos 0.0692T , sin 0.0288T.x yB B B B        

 

(a) Equation 28-26 produces zero force when 
 
L B||  so there is no force exerted on the 

hypotenuse of length 130 cm.  

 

(b) On the 50 cm side, the Bx component produces a force i By x k,  and there is no 

contribution from the By component. Using SI units, the magnitude of the force on the  y  

side is therefore 

4 00 0500 0 0692 0138. . . .A m T N.b gb gb g   
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(c) On the 120 cm side, the By component produces a force i Bx y k,  and there is no 

contribution from the Bx component. The magnitude of the force on the  x  side is also  

 

4 00 120 0 0288 0138. . . .A m T N.b gb gb g   

 

(d) The net force is 

i B i By x x y   ,k k  0  

 

keeping in mind that Bx < 0 due to our initial assumptions. If we had instead assumed 

B  

went the opposite direction of the current flow in the hypotenuse, then Bx  0 , but By < 0 

and a zero net force would still be the result. 

 

44. Consider an infinitesimal segment of the loop, of length ds. The magnetic field is 

perpendicular to the segment, so the magnetic force on it has magnitude dF = iB ds. The 

horizontal component of the force has magnitude  

 

 ( cos )hdF iB ds  

 

and points inward toward the center of the loop. The vertical component has magnitude 

 

( sin )ydF iB ds  

 

and points upward. Now, we sum the forces on all the segments of the loop. The 

horizontal component of the total force vanishes, since each segment of wire can be 

paired with another, diametrically opposite, segment. The horizontal components of these 

forces are both toward the center of the loop and thus in opposite directions. The vertical 

component of the total force is 

 
3 3

7

sin 2 sin 2 (0.018 m)(4.6 10  A)(3.4 10  T)sin 20

6.0 10  N.

vF iB ds aiB    



     

 

 p
 

 

We note that i, B, and  have the same value for every segment and so can be factored 

from the integral. 

 

45. The magnetic force on the wire is 

 

   
       

 3 3

ˆ ˆ ˆ ˆ ˆi j k j k

ˆ ˆ0.500A 0.500m 0.0100T j 0.00300T k

ˆ ˆ2.50 10 j 0.750 10 k N.

B y z z yF iL B iL B B iL B B

 

       

   
 

    
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46. (a) The magnetic force on the wire is FB = idB, pointing to the left. Thus  

 

 

3 2 2

5

2

(9.13 10 A)(2.56 10 m)(5.63 10 T)(0.0611s)

2.41 10 kg

3.34 10 m/s.

BF t idBt
v at

m m

  





  
   



 

 

 

(b) The direction is to the left (away from the generator). 

 

47. (a) The magnetic force must push horizontally on the rod to overcome the force of 

friction, but it can be oriented so that it also pulls up on the rod and thereby reduces both 

the normal force and the force of friction. The forces acting on the rod are: 

F ,  the force 

of the magnetic field; mg, the magnitude of the (downward) force of gravity; 
NF , the 

normal force exerted by the stationary rails upward on the rod; and 

f ,  the (horizontal) 

force of friction. For definiteness, we assume the rod is on the verge of moving eastward, 

which means that 

f  points westward (and is equal to its maximum possible value sFN). 

Thus, 

F  has an eastward component Fx and an upward component Fy, which can be 

related to the components of the magnetic field once we assume a direction for the 

current in the rod. Thus, again for definiteness, we assume the current flows northward. 

Then, by the right-hand rule, a downward component (Bd) of 

B  will produce the 

eastward Fx, and a westward component (Bw) will produce the upward Fy. Specifically, 

 

, .x d y wF iLB F iLB   

 

Considering forces along a vertical axis, we find 

 

N y wF mg F mg iLB     

 

so that 

f f mg iLBs s w  , .max  b g  
 

It is on the verge of motion, so we set the horizontal acceleration to zero: 

 

 0 .x d s wF f iLB mg iLB      

 

The angle of the field components is adjustable, and we can minimize with respect to it. 

Defining the angle by Bw = B sin and Bd = B cos (which means  is being measured 

from a vertical axis) and writing the above expression in these terms, we obtain 

 

 
 

cos sin
cos sin

s
s

s

mg
iLB mg iLB B

iL


  

  
   


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which we differentiate (with respect to ) and set the result equal to zero. This provides a 

determination of the angle: 

 

     tan tan . .1 1 0 60 31sb g b g  

Consequently, 

  
   

2

min

0.60 1.0kg 9.8m s
0.10T.

50A 1.0m cos31 0.60sin31
B  

  
 

 

(b) As shown above, the angle is    1 1tan tan 0.60 31 .s       

 

48. We use dF idL BB

  
  , where dL dx


 i and


B B Bx y  i j . Thus,  

 

 

      
3.0

2

1.0

ˆ ˆ ˆ ˆi i j k

ˆ ˆ5.0A 8.0 m mT k ( 0.35N)k.

f f

i i

x x

B x y y
x x

F idL B idx B B i B dx

x dx

     

    

  


 

 

49. THINK Magnetic forces on the loop produce a torque that rotates it about the hinge 

line. Our applied field has two components: Bx  0  and Bz  0.  

 

EXPRESS Considering each straight segment of the rectangular coil, we note that Eq. 

28-26 produces a nonzero force only for the component of 

B  which is perpendicular to 

that segment; we also note that the equation is effectively multiplied by N = 20 due to the 

fact that this is a 20-turn coil. Since we wish to compute the torque about the hinge line, 

we can ignore the force acting on the straight segment of the coil that lies along the y axis 

(forces acting at the axis of rotation produce no torque about that axis). The top and 

bottom straight segments experience forces due to Eq. 28-26 (caused by the Bz 

component), but these forces are (by the right-hand rule) in the ±y directions and are thus 

unable to produce a torque about the y axis. Consequently, the torque derives completely 

from the force exerted on the straight segment located at x = 0.050 m, which has length L 

= 0.10 m and is shown in Fig. 28-45 carrying current in the –y direction.  

 

Now, the Bz component will produce a force on this straight segment which points in 

the –x direction (back toward the hinge) and thus will exert no torque about the hinge. 

However, the Bx component (which is equal to B cos where B = 0.50 T and  = 30°) 

produces a force equal to F = NiLBx which points (by the right-hand rule) in the +z 

direction.  

 

ANALYZE Since the action of the force F is perpendicular to the plane of the coil, and is 

located a distance x away from the hinge, then the torque has magnitude 

 

        cos 20 0.10 A 0.10 m 0.050 m 0.50 T cos30

0.0043 N m .
xNiLB x NiLxB    

 
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Since ,r F    the direction of the torque is –y. In unit-vector notation, the torque is 

3 ˆ( 4.3 10  N m)j      

 

LEARN An alternative way to do this problem is through the use of Eq. 28-37: 

.B    The magnetic moment vector is 

   2 2ˆ ˆ ˆ( ) k 20 0.10A 0.0050m k (0.01A m )k.NiA         

 

The torque on the loop is 

 

2

3

ˆ ˆ ˆ ˆ( k) ( cos i sin k) ( cos ) j

ˆ(0.01A m )(0.50 T)cos30 j

ˆ( 4.3 10  N m)j.

B B B B      



       

   

   

 

 

50. We use 2

max max| | ,B B i r B        and note that i = qf = qv/2r. So 

 

2 19 6 11 3

max

26

1 1
(1.60 10 C)(2.19 10 m/s)(5.29 10 m)(7.10 10 T)

2 2 2

6.58 10 N m.

qv
r B qvrB

r
   



 
       
 

  

p
p  

 

51. We use Eq. 28-37 where 

  is the magnetic dipole moment of the wire loop and 


B  is 

the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel 

to the incline the dipole moment is normal to the incline. The forces acting on the 

cylinder are the force of gravity mg, acting downward from the center of mass, the 

normal force of the incline FN, acting perpendicularly to the incline through the center of 

mass, and the force of friction f, acting up the incline at the point of contact. We take the 

x axis to be positive down the incline. Then the x component of Newton’s second law for 

the center of mass yields 

mg f masin .    

 

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of 

rotation. The magnetic field produces a torque with magnitude B sin, and the force of 

friction produces a torque with magnitude fr, where r is the radius of the cylinder. The 

first tends to produce an angular acceleration in the counterclockwise direction, and the 

second tends to produce an angular acceleration in the clockwise direction. Newton’s 

second law for rotation about the center of the cylinder,  = I, gives 

 

fr B I   sin .  

 

Since we want the current that holds the cylinder in place, we set a = 0 and  = 0, and use 

one equation to eliminate f from the other. The result is .mgr B  The loop is 
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rectangular with two sides of length L and two of length 2r, so its area is A = 2rL and the 

dipole moment is (2 ).NiA Ni rL    Thus, 2mgr NirLB  and 

 

i
mg

NLB
  

2

0 250 9 8

2 10 0 0100 0500
2 45

. .

. . .
.

kg m s

m T
A.

2b gc h
b gb gb g  

 

52. The insight central to this problem is that for a given length of wire (formed into a 

rectangle of various possible aspect ratios), the maximum possible area is enclosed when 

the ratio of height to width is 1 (that is, when it is a square). The maximum possible value 

for the width, the problem says, is x =  4 cm (this is when the height is very close to zero, 

so the total length of wire is effectively 8 cm).  Thus, when it takes the shape of a square 

the value of x must be ¼ of 8 cm; that is, x = 2 cm when it encloses maximum area 

(which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of A = (0.020 m)
2
 = 

0.00040 m
2
.  Since N = 1 and the torque in this case is given as 4.8  10

4 
N m , then the 

aforementioned equations lead immediately to i = 0.0030 A. 

 

53. We replace the current loop of arbitrary shape with an assembly of small adjacent 

rectangular loops filling the same area that was enclosed by the original loop (as nearly as 

possible). Each rectangular loop carries a current i flowing in the same sense as the 

original loop. As the sizes of these rectangles shrink to infinitesimally small values, the 

assembly gives a current distribution equivalent to that of the original loop. The 

magnitude of the torque

  exerted by 


B  on the nth rectangular loop of area An is given 

by   n nNiB A sin .  Thus, for the whole assembly 

 

sin .n n

n n

NiB A NiAB         

 

54. (a) The kinetic energy gained is due to the potential energy decrease as the dipole 

swings from a position specified by angle  to that of  being aligned (zero angle) with the 

field. Thus, 

K U U B Bi f        cos cos .0b g  

 

Therefore, using SI units, the angle is 

 




 
F
HG
I
KJ  

F
HG

I
KJ   cos cos

.

. .
.1 11 1

0 00080

0 020 0 052
77

K

B b gb g  

 

(b) Since we are making the assumption that no energy is dissipated in this process, then 

the dipole will continue its rotation (similar to a pendulum) until it reaches an angle  = 

77° on the other side of the alignment axis. 

 

55. THINK Our system consists of two concentric current-carrying loops. The net 

magnetic dipole moment is the vector sum of the individual contributions.  
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EXPRESS The magnitude of the magnetic dipole moment is given by NiA  , where N 

is the number of turns, i is the current in each turn, and A is the area of a loop. Each of the 

loops is a circle, so the area is 2 ,A r  where r is the radius of the loop. 

 

ANALYZE (a) Since the currents are in the same direction, the magnitude of the 

magnetic moment vector is 

 

     
2 22 2 2

1 1 2 2 7.00A 0.200m 0.300m 2.86A m .n n

n

i A r i r i        
   

 

 (b) Now, the two currents flow in the opposite directions, so the magnitude of the 

magnetic moment vector is 

  

     
2 22 2 2

2 2 1 1 7.00A 0.300m 0.200m 1.10A m .r i r i       
 

 

 

LEARN In both cases, the directions of the dipole moments are into the page. The 

direction of   is that of the normal vector n  to the plane of the coil, in accordance with 

the right-hand rule shown in Fig. 28-19(b). 

 

56. (a)     NAi r i  2 2
2 60 0184m A A m2b g b g. . . 

 

(b) The torque is 

 

  2sin 0.184 A m 12.0T sin 41.0 1.45N m.B B            

 

57. THINK Magnetic forces on a current-carrying loop produce a torque that tends to 

align the magnetic dipole moment with the magnetic field. 

 

EXPRESS The magnitude of the magnetic dipole moment is given by NiA  , where N 

is the number of turns, i is the current in each turn, and A is the area of a loop. In this case 

the loops are circular, so A = r
2
, where r is the radius of a turn.  

 

ANALYZE (a) Thus, the current is  

 

i
N r

 





 2 2

2 30

160 0 0190
12 7

.

.
.

A m

m
A .

2

b gb gb g  

 

(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or 

the plane of the loop is parallel to the field). It is given by 

 

  2 3 2

max 2.30 A m 35.0 10 T 8.05 10 N m.B           
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LEARN The torque on the coil can be written as ,B    with | | sin ,B      

where  is the angle between   and .B  Thus,  is a maximum when 90 ,    and zero 

when 0 .    

 

58. From  = NiA = ir
2
 we get 

 

i
r

 



 



   2

22

2

98 00 10
2 08 10

.
.

J T

m
A.

c h
 

 

59. (a) The area of the loop is A   1
2

230 40 60 10cm cm cm2b gb g . , so 

 

     iA 50 6 0 10 0 302. . . .A m A m2 2b gc h  

 

(b) The torque on the loop is 

 

        Bsin . sin .0 30 80 10 90 2 4 103 2A m T N m.2c hc h  

 

60. Let a = 30.0 cm, b = 20.0 cm, and c = 10.0 cm. From the given hint, we write 

 

            

 

1 2

2

ˆ ˆ ˆ ˆ ˆ ˆk j j k 5.00A 0.300m 0.100m j 0.200m k

ˆ ˆ0.150j 0.300k A m .

iab iac ia c b            
 

  
 

 

61. THINK Magnetic forces on a current-carrying coil produce a torque that tends to 

align the magnetic dipole moment with the field. The magnetic energy of the dipole 

depends on its orientation relative to the field. 

 

EXPRESS The magnetic potential energy of the dipole is given by ,U B    where   

is the magnetic dipole moment of the coil and B  is the magnetic field. The magnitude of 

  is ,NiA   where i is the current in the coil, N is the number of turns, A is the area of 

the coil. On the other hand, the torque on the coil is given by the vector product 

.B    

 

ANALYZE (a) By using the right-hand rule, we see that   is in the –y direction. Thus, 

we have 

 3 2 2ˆ ˆ ˆ( )( j) (3)(2.00 A)(4.00 10  m )j (0.0240 A m )jNiA         . 

 

The corresponding magnetic energy is  

 
2 3 5( 0.0240 A m )( 3.00 10  T) 7.20 10  Jy yU B B                 . 
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(b) Using the fact that ˆ ˆ ˆ ˆ ˆ ˆ ˆj i 0, j j 0, and j k i,       the torque on the coil is 

 

 2 3 2 3

5 5

ˆ ˆi k

ˆ ˆ( 0.0240 A m )( 4.00 10 T)i ( 0.0240 A m )(2.00 10 T)k

ˆ ˆ(9.60 10 N m)i (4.80 10 N m)k.

y z y xB B B   

 

 

   

        

     

 

 

LEARN The magnetic energy is highest when   is in the opposite direction of B , and 

lowest when   lines up with B . 

 

62. Looking at the point in the graph (Fig. 28-51(b)) corresponding to i2 = 0 (which 

means that coil 2 has no magnetic moment) we are led to conclude that the magnetic 

moment of coil 1 must be 5 2

1 2.0 10 A m .     Looking at the point where the line 

crosses the axis (at i2 = 5.0 mA) we conclude (since the magnetic moments cancel there) 

that the magnitude of coil 2’s moment must also be 5 2

2 2.0 10 A m     when 

2 0.0050 A,i   which means (Eq. 28-35)  

 
5 2

3 22
2 2

2

2.0 10 A m
4.0 10 m

0.0050 A
N A

i

 
 

    . 

 

Now the problem has us consider the direction of coil 2’s current changed so that the net 

moment is the sum of two (positive) contributions, from coil 1 and coil 2, specifically for 

the case that i2 = 0.007 A.  We find that total moment is  

 

  (2.0  10
5 

A·m
2
) + (N2A2 i2) = 4.8  10

5 
A·m

2
. 

 

63. The magnetic dipole moment is 

  0 60 080.  . i je j , where  

 

 = NiA = Nir
2
 = 1(0.20 A)(0.080 m)

2
 = 4.02  10

–4
 A·m

2
. 

 

Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r 

is its radius. 

 

(a) The torque is 

 
  
  





     

     

   

B 0 60 080 0 25 0 30

0 60 0 30 080 0 25 080 0 30

018 0 20 0 24

.  .  .  . 

. .   . .   . .  

.  .  .  .

i j i k

i k j i j k

j k i

e j e j
b gb ge j b gb ge j b gb ge j  
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Here      i k j, j i k,       and   j k i   are used. We also use  i i = 0 . Now, we 

substitute the value for  to obtain 

 

 4 4 4ˆ ˆ ˆ9.7 10 i 7.2 10 j 8.0 10 k N m.            

 

(b) The orientation energy of the dipole is given by 

 

       4ˆ ˆ ˆ ˆ0.60i 0.80j 0.25i+0.30k 0.60 0.25 0.15 6.0 10 J.U B                   

 

Here   ,   ,  i i i k j i = 0,    1 0  and  j k  0  are used. 

 

64. Eq. 28-39 gives U = B   = B cos, so at = 0 (corresponding to the lowest 

point on the graph in Fig. 28-52) the mechanical energy is  

 

K + U = Ko + (B) = 6.7  10
4 

J + (5  10
4 

J) = 1.7  10
4 

J. 

 

The turning point occurs where K = 0, which implies Uturn = 1.7  10
4 

J.  So the angle 

where this takes place is given by 

 
4

1 1.7 10  J
cos 110

B





  

    
 

 

 

where we have used the fact (see above) that  B = 5  10
4 

J. 

 

65. THINK The torque on a current-carrying coil is a maximum when its dipole moment 

is perpendicular to the magnetic field. 

 

EXPRESS The magnitude of the torque on the coil is given by | | sin ,B      where 

 is the angle between   and .B  The magnitude of   is ,NiA   where i is the current 

in the coil, N is the number of turns, A is the area of the coil. Thus, if N closed loops are 

formed from the wire of length L, the circumference of each loop is L/N, the radius of 

each loop is R = L/2N, and the area of each loop is  

 

A R L N L N     2 2 2 22 4b g . 

 

ANALYZE (a) For maximum torque, we orient the plane of the loops parallel to the 

magnetic field, so the dipole moment is perpendicular (i.e., at a 90 angle) to the field.  

 

(b) The magnitude of the torque is then 

 

  
F
HG
I
KJ NiAB Ni

L

N
B

iL B

N
b g

2

2

2

4 4 
.  
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To maximize the torque, we take the number of turns N to have the smallest possible 

value, 1. Then  = iL
2
B/4. 

 

(c) The magnitude of the maximum torque is 

 

 
2 3 2 3

7(4.51 10  A)(0.250 m) (5.71 10 T)
1.28 10  N m

4 4

iL B


 

 
 

     . 

 

LEARN The torque tends to align   with .B  The magnitude of the torque is a maximum 

when the angle between   and B  is 90 ,    and is zero when 0 .     

 

66. The equation of motion for the proton is 

 
  



F qv B q v v v B qB v v

m a m
dv

dt

dv

dt

dv

dt

x y z z y

p p
x y z

       

 
F
HG
I
KJ 
F
HG
I
KJ 
F
HG
I
KJ

L
NM

O
QP

     

   .

i j k i j k

i j k

e j e j
 

Thus, 

0,   ,   ,
yx z

z y

dvdv dv
v v

dt dt dt
     

 

where  = eB/m. The solution is vx = v0x, vy= v0y cos t, and vz = –v0y sin t. In summary, 

we have  

v t v v t v tx y yb g b g b g  0 0 0

 cos  sin i j k  . 

 

67. (a) We use 
  
   B,  where 


  points into the wall (since the current goes clockwise 

around the clock). Since 

B  points toward the one-hour (or “5-minute’’) mark, and (by 

the properties of vector cross products) 

  must be perpendicular to it, then (using the 

right-hand rule) we find 

  points at the 20-minute mark. So the time interval is 20 min. 

 

(b) The torque is given by 

 

    
22 3

2

| | sin90 6 2.0A 0.15m 70 10 T

5.9 10 N m.

B B NiAB Nir B     



      

  
 

 

68. The unit vector associated with the current element (of magnitude d ) is j . The 

(infinitesimal) force on this element is 

 

dF i d y y


   .  j i + 0.4 je j e j0 3  
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with SI units (and 3 significant figures) understood. Since   j i k    and  j j  0 , we 

obtain 

 4 2ˆ ˆ0.3 k 6.00 10 N m k.dF iy d y d    

 

We integrate the force element found above, using the symbol  to stand for the 

coefficient 6.00  10
–4

 N/m
2
, and obtain 

 
2

0.25
5

0

0.25ˆ ˆ ˆk k (1.88 10 N)k .
2

F dF ydy   
     

 
   

 

69. From m = B
2
qx

2
/8V we have m = (B

2
q/8V)(2xx). Here x Vm B q 8 2 , which we 

substitute into the expression for m to obtain 

 

  m
B q

V

mV

B q
x B

mq

V
x

F
HG
I
KJ 

2

28
2

8

2
.  

 

Thus, the distance between the spots made on the photographic plate is 

 

    
   

27 3

27 19

3

37 u 35u 1.66 10 kg u 2 7.3 10 V2

0.50T 36u 1.66 10 kg u 1.60 10 C

8.2 10 m.

m V
x

B mq



 



  
  

 

 

 

70. (a) Equating the magnitude of the electric force (Fe = eE) with that of the magnetic 

force (Eq. 28-3), we obtain B = E / v sin . The field is smallest when the sin  factor is at 

its largest value; that is, when  = 90°. Now, we use K mv
1

2

2  to find the speed: 

 

v
K

me

 
 


 





2 2 2 5 10 160 10

911 10
2 96 10

3 19

31

7
. .

.
. .

eV J eV

kg
m s

c hc h
 

Thus, 

B
E

v
 




  10 10

2 96 10
34 10

3

7

4V m

m s
T.

.
.  

 

The direction of the magnetic field must be perpendicular to both the electric field ( ĵ ) 

and the velocity of the electron ( î ). Since the electric force ( )eF e E  points in the ĵ  

direction, the magnetic force ( )BF e v B    points in the ĵ direction. Hence, the 

direction of the magnetic field is k̂ . In unit-vector notation, 4 ˆ( 3.4 10 T)k.B      
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71. The period of revolution for the iodine ion is  

 

T = 2r/v = 2m/Bq, 

 

which gives 

m
BqT

 
  




  

2

450 10 160 10 129 10

7 2 166 10
127

3 19 3

27 

. . .

.

T C s

kg u
u.

c hc hc h
b gb gc h  

 

72. (a) For the magnetic field to have an effect on the moving electrons, we need a non-

negligible component of 

B  to be perpendicular to 


v  (the electron velocity). It is most 

efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the 

page. The magnetic force on an electron has magnitude FB = evB, and the acceleration of 

the electron has magnitude a = v
2
/r. Newton’s second law yields evB = mev

2
/r, so the 

radius of the circle is given by r = mev/eB in agreement with Eq. 28-16. The kinetic 

energy of the electron is K m ve 1
2

2 , so v K me 2 . Thus, 

 

r
m

eB

K

m

m K

e B

e

e

e 
2 2

2 2
. 

 

This must be less than d, so 
2

2 2

m K

e B
de  , or B

m K

e d

e
2

2 2
.  

 

(b) If the electrons are to travel as shown in Fig. 28-53, the magnetic field must be out of 

the page. Then the magnetic force is toward the center of the circular path, as it must be 

(in order to make the circular motion possible). 

 

73. THINK The electron moving in the Earth’s magnetic field is being accelerated by the 

magnetic force acting on it. 

 

EXPRESS Since the electron is moving in a line that is parallel to the horizontal 

component of the Earth’s magnetic field, the magnetic force on the electron is due to the 

vertical component of the field only. The magnitude of the force acting on the electron is 

given by F = evB, where B represents the downward component of Earth’s field. With F 

= mea, the acceleration of the electron is a = evB/me.  

 

ANALYZE (a) The electron speed can be found from its kinetic energy 21
:

2
eK m v   

 

v
K

me

 
 


 





2 2 12 0 10 160 10

911 10
6 49 10

3 19

31

7
. .

.
. .

eV J eV

kg
m s

c hc h
 

Therefore,  
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     19 7 6

31

2 214 14

1.60 10 C 6.49 10 m s 55.0 10 T

9.11 10 kg

6.27 10 m s 6.3 10 m s .

e

evB
a

m

 



  
 



   

 

 

(b) We ignore any vertical deflection of the beam that might arise due to the horizontal 

component of Earth’s field. Then, the path of the electron is a circular arc. The radius of 

the path is given by 2 / ,a v R or 

 

 
2 7 2

14 2

(6.49 10 m/s)
6.72 m.

6.27 10 m/s

v
R

a


  


 

The dashed curve shown represents the path. Let 

the deflection be h after the electron has traveled a 

distance d along the x axis. With sind R  , we 

have 

 
 

 

2

2

(1 cos ) 1 1 sin

1 1 ( / ) .

h R R

R d R

     

  

 

 
Substituting R = 6.72 m and d = 0.20 m into the expression, we obtain h = 0.0030 m.  

 

LEARN The deflection is so small that many of the technicalities of circular geometry 

may be ignored, and a calculation along the lines of projectile motion analysis (see 

Chapter 4) provides an adequate approximation: 

 

9

7

0.200m
3.08 10 s

6.49 10 m s

d
d vt t

v

     


. 

 

Then, with our y axis oriented eastward, 

 

   
2

2 14 91 1
6.27 10 3.08 10 0.00298m 0.0030 m.

2 2
h at        

 

74. Letting Bx = By = B1 and Bz = B2 and using Eq. 28-2 ( F qv B  ) and Eq. 3-30, we 

obtain (with SI units understood) 

 

      2 1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ4i 20j 12k 2 4 6 i 6 2 j 2 4 k .B B B B B B         

 

Equating like components, we find B1 = –3 and B2 = –4. In summary, 

 

 ˆ ˆ ˆ3.0i 3.0j 4.0k T.B      
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75. Using Eq. 28-16, the radius of the circular path is 

 

2mv mK
r

qB qB
   

 

where 2 / 2K mv  is the kinetic energy of the particle. Thus, we see that r mK qB .  

 

(a) 
2.0u

2 1.4 ,
1.0u

pd d d

p p p d

qr m K e

r m K q e
    and  

 

(b) 
4.0u

1.0.
1.0u 2

p

p p p

qr m K e

r m K q e

  



    

 

76. Using Eq. 28-16, the charge-to-mass ratio is 
q v

m B r



. With the speed of the ion 

given by /v E B (using Eq. 28-7), the expression becomes 

 

/q E B E

m B r BB r
 

 
. 

 

77. THINK Since both electric and magnetic fields are present, the net force on the 

electron is the vector sum of the electric force and the magnetic force.  

 

EXPRESS The force on the electron is given by ( ),F e E v B     where E  is the 

electric field, B  is the magnetic field, and v  is the velocity of the electron. The fact that 

the fields are uniform with the feature that the charge moves in a straight line, implies 

that the speed is constant. Thus, the net force must vanish.  

 

ANALYZE The condition 0F  implies that 

 

500V m.E vB   

 

Its direction (so that 0F  ) is downward, or ĵ , in the “page” coordinates. In unit-vector 

notation, ˆ( 500 V/m)jE    

 

LEARN Electron moves in a straight line only when the condition E vB  is met. In 

many experiments, a velocity selector can be set up so that only electrons with a speed 

given by /v E B  can pass through. 

 



 

  

1247 

78. (a) In Chapter 27, the electric field (called EC in this problem) that “drives” the 

current through the resistive material is given by Eq. 27-11, which (in magnitude) reads 

EC = J. Combining this with Eq. 27-7, we obtain 

 

E nevC d  .  

 

Now, regarding the Hall effect, we use Eq. 28-10 to write E = vdB. Dividing one equation 

by the other, we get E/Ec = B/ne. 

 

(b) Using the value of copper’s resistivity given in Chapter 26, we obtain 

 

   
3

28 3 19 8

0.65 T
2.84 10 .

8.47 10 m 1.60 10 C 1.69 10 mc

E B

E ne



 
   

   
 

 

79. THINK We have charged particles that are accelerated through an electric potential 

difference, and then moved through a region of uniform magnetic field. Energy is 

conserved in the process.   

 

EXPRESS The kinetic energy of a particle is given by K = qV, where q is the particle’s 

charge and V is the potential difference. With 2 / 2,K mv  the speed of the particle is  

 

 
2 2

.
K qV

v
m m

   

 

In the region with uniform magnetic field, the magnetic force on a particle of charge q is 

qvB, which according to Newton’s second law, is equal to 2 / ,mv r  where r is the radius 

of the orbit. Thus, we have 

 
2 2

.
mv m K mK

r
qB qB m qB

    

 

ANALYZE (a) Since K = qV we have  1
2

as 2 ,p pK K q K   or / 0.50.pK K   

 

(b) Similarly, 2 ,  / 0.50.d dq K K K    

 

(c) Since r mK q , we have 

 

 

 

2.00 u
10 2 cm 14 cm.

1.00 u

p pd d
d p p

p p d p

q Km K
r r r

m K q K
     

 

(d) Similarly, for the alpha particle, we have 
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 

   

4.00u
10 2 cm 14 cm.

1.00u 2 2

p

p p

p p

q Km K e
r r r

m K q K e

 


 

     

 

LEARN The radius of the particle’s path, given by 2 / ,r mK qB  depends on its mass. 

kinetic energy, and charge, in addition to the field strength.  

 

80. (a) The largest value of force occurs if the velocity vector is perpendicular to the field. 

Using Eq. 28-3,  

 

FB,max = |q| vB sin (90°) = ev B = (1.60  10
– 19

 C) (7.20  10
6
 m/s) (83.0  10

– 3
 T) 

= 9.56  10
– 14

 N. 

 

(b) The smallest value occurs if they are parallel: FB,min = |q| vB sin (0) = 0. 

 

(c) By Newton’s second law, a = FB/me = |q| vB sin  /me, so the angle  between 

v  and  

B  is 

 

 
F
HG
I
KJ 

 

  

L
N
MM

O
Q
PP   



 
sin sin

. .

. . .
. .1 1

31 14 2

16 6 3

911 10 4 90 10

160 10 7 20 10 830 10
0 267

m a

q vB

e
kg m s

C m s T

c hd i
c hc hc h  

 

81. The contribution to the force by the magnetic field  ˆ ˆi ( 0.020 T)ixB B    is given 

by Eq. 28-2: 

 

      
 

ˆ ˆ ˆ ˆ ˆ ˆ17000i i 11000j i 7000k i

ˆ ˆ220k 140j

B x x xF qv B q B B B

q

        

  

 

 

in SI units. And the contribution to the force by the electric field  ˆ ˆj 300j V/myE E   is 

given by Eq. 23-1:

F qEE y j . Using q = 5.0  10

–6
 C, the net force on the particle is  

 
ˆ ˆ(0.00080j 0.0011k) N.F    

 

82. (a) We use Eq. 28-10: vd = E/B = (10  10
–6

V/1.0  10
–2

 m)/(1.5 T) = 6.7  10
–4

 m/s. 

 

(b) We rewrite Eq. 28-12 in terms of the electric field: 

 

n
Bi

V e

Bi

Ed e

Bi

EAe
  

 b g  
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where we use A d  . In this experiment, A = (0.010 m)(10  10
–6

 m) = 1.0  10
–7

 m
2
. By 

Eq. 28-10, vd equals the ratio of the fields (as noted in part (a)), so we are led to 

 

   
29 3

4 7 2 19

3.0A
2.8 10 m .

6.7 10 m s 1.0 10 m 1.6 10 Cd

Bi i
n

E Ae v Ae   
    

  
 

 

(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in 

terms of horizontal north, south, east, west and vertical up and down directions. We 

assume 

B  points up and the conductor’s width of 0.010 m is along an east-west line. We 

take the current going northward. The conduction electrons experience a westward 

magnetic force (by the right-hand rule), which results in the west side of the conductor 

being negative and the east side being positive (with reference to the Hall voltage that 

becomes established). 

 

83. THINK The force on the charged particle is given by ,F qv B   where q is the 

charge, B  is the magnetic field, and v  is the velocity of the electron. 

 

EXPRESS We write îB B  and take the velocity of the particle to be ˆ ˆi j .x yv v v  Thus,  

 
ˆ ˆ ˆ ˆ( i j ) ( i) k.x y yF qv B q v v B qv B        

 

For the force to point along k̂ , we must have q < 0.  

 

ANALYZE The charge of the particle is 

 

 2

3

0.48 N
4.0 10 C

(4.0 10 m/s)(sin37 )(0.0050 T)y

F
q

v B

      
 

. 

 

LEARN The component of the velocity, vx, being parallel to the magnetic field, does not 

contribute to the magnetic force ;F  only vy, the component of v  that is perpendicular to 

B , contributes to .F  

 

84. The current is in the i  direction. Thus, the i  component of 

B  has no effect, and 

(with x in meters) we evaluate 

 

     
3

1
2 2

0

1ˆ ˆ ˆ ˆ3.00A 0.600T m i j 1.80 A T m k ( 0.600N)k.
3

F x dx
 

         
 

  

 

85. (a) We use Eq. 28-2 and Eq. 3-30: 

 



CHAPTER 28 1250 

        

        
               

   

19

21 22

ˆ ˆ ˆi j k

ˆ1.60 10 4 0.008 6 0.004 i+

ˆ ˆ6 0.002 2 0.008 j 2 0.004 4 0.002 k

ˆ ˆ1.28 10 i 6.41 10 j

y z z y z x x z x y y xF qv B e v B v B v B v B v B v B



 

        

    

      

   

 

 

with SI units understood. 

 

(b) By definition of the cross product, 
 
v F . This is easily verified by taking the dot 

(scalar) product of 

v  with the result of part (a), yielding zero, provided care is taken not 

to introduce any round-off error.  

 

(c) There are several ways to proceed. It may be worthwhile to note, first, that if Bz were 

6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence, 

the angle  between 

B  and 


v  is presumably “close” to 180°. Here, we use Eq. 3-20: 

 

 1 1 68
θ cos cos 173

| || | 56 84

v B

v B

 
   

      
  

. 

 

86. (a) We are given 5ˆ ˆi (6 10 T)ixB B    , so that 
 
v B v By x   k  where vy = 410

4
 m/s. 

We note that the magnetic force on the electron is  e v By xb ge jk  and therefore points in 

the  k  direction, at the instant the electron enters the field-filled region. In these terms, 

Eq. 28-16 becomes 

r
m v

e B

e y

x

  0 0038. m.  

 

(b) One revolution takes T = 2r/vy = 0.60 s, and during that time the “drift” of the 

electron in the x direction (which is the pitch of the helix) is x = vxT = 0.019 m where vx 

= 32  10
3
 m/s. 

 

(c) Returning to our observation of force direction made in part (a), we consider how this 

is perceived by an observer at some point on the –x axis. As the electron moves away 

from him, he sees it enter the region with positive vy (which he might call “upward’’) but 

“pushed” in the +z direction (to his right). Hence, he describes the electron’s spiral as 

clockwise. 

 

87. (a) The magnetic force on the electrons is given by .F qv B   Since the field B  

points to the left, and an electron (with q e  ) is forced to rotate clockwise (out of the 

page at the top of the rotor), using the right-hand-rule, the direction of the magnetic force 

is up the figure. 
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(b) The magnitude of the magnetic force can be written as ,F evB e rB   where  is 

the angular velocity and r is the distance from the axis. Since ,F r  the force is greater 

near the rim.  

 

(c) The work per unit charge done by the force in moving the charge along the radial line 

from the center to the rim, or the voltage, is  

 

 

2 2 2

0

3 2

1 1 1
(2 )

2 2

(4000 /s)(60 10 T)(0.250 m) 47.1 V.

RW
V e Brdr BR f BR fBR

e e
   

 

    

  

  

 

(d) The emf of the device is simply equal to the voltage calculated in part (c): 47.1 V.   

 

(e) The power produced is 3(50.0 A)(47.1V) 2.36 10 W.P iV     

 

88. The magnetic force exerted on the U-shaped wire is given by .F iLB  Using the 

impulse-momentum theorem, we have 

 

 ,p m v Fdt iLBdt LB idt LBq          

 

where q is the charge in the pulse. Since the wire is initially at rest, the speed at which the 

wire jumps is / .v LBq m  On the other hand, energy conservation gives 21
2

.mv mgh  

Combining the above expressions leads to 
22 1

2 2

v LBq
h

g g m

 
   

 
 

Solving for q, we find 

 
2(0.0100 kg) 2(9.80 m/s )(3.00 m)2

3.83 C.
(0.200 m)(0.100 T)

m gh
q

LB
    

 

89. Just before striking the plate, the electric force on the electron is / ,EF eE eV d   in 

the upward direction. Since the kinetic energy of the electron is 21
2

,K mv eV   

2 / .v eV m  On the other hand, the magnetic force is  

 

2
B

eV
F evB eB

m
   

 

in the downward direction. To prevent the electron from striking the plate, we require 

,B EF F  or 
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2

2

2 2

eV eV V m mV
eB B

m d d eV ed
     

 

90. The average current in the loop is 
2 / 2

q q qv
i

T r v r 
    and its magnetic dipole 

moment is  

2 1
( ) .

2 2

qv
iA r qvr

r
 



 
   

 
 

 

With ,B   we find the maximum torque exerted on the loop by a uniform magnetic 

field to be 

max

1
.

2
B qvrB    

 

91. When the electric and magnetic forces are in balance, ,deE ev B  where vd is the drift 

speed of the electrons. In addition, since the current density is ,dJ nev  we solve for n 

and find  

.
( / )d

J J JB
n

ev e E B eE
    

 

92. With Fz = vz  = Bx = 0, Eq. 28-2 (and Eq. 3-30)  gives  

 

Fx i
^
  +  Fy j

^
  =  q ( vyBz i

^
  vxBz j

^
  + vxBy k

^
  ) 

 

where q = e for the electron. The last term immediately implies By = 0, and either of the 

other two terms (along with the values stated in the problem, bearing in mind that “fN” 

means femto-newtons or 10
15

 N) can be used to solve for Bz : 

 

 
15

19

4.2 10 N
0.75 T.

(1.6 10 C)(35,000 m/s)

x
z

y

F
B

ev





 
  
  

 

We therefore find that the magnetic field is given by ˆ(0.75 T)k.B   

 

 

 

 

 

 


