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Chapter 31 
 

 

1. (a) All the energy in the circuit resides in the capacitor when it has its maximum 

charge. The current is then zero. If Q is the maximum charge on the capacitor, then the 

total energy is 
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(b) When the capacitor is fully discharged, the current is a maximum and all the energy 

resides in the inductor. If I is the maximum current, then U = LI
2
/2 leads to 
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2. (a) We recall the fact that the period is the reciprocal of the frequency. It is helpful to 

refer also to Fig. 31-1. The values of t when plate A will again have maximum positive 

charge are multiples of the period: 

 

t nT
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where n = 1, 2, 3, 4, . The earliest time is (n = 1) 5.00 s.At   

 

(b) We note that it takes t T 1
2

 for the charge on the other plate to reach its maximum 

positive value for the first time (compare steps a and e in Fig. 31-1). This is when plate A 

acquires its most negative charge. From that time onward, this situation will repeat once 

every period. Consequently, 
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where n = 1, 2, 3, 4, . The earliest time is (n = 1) 2.50 s.t   

 

(c) At t T 1
4

, the current and the magnetic field in the inductor reach maximum values 

for the first time (compare steps a and c in Fig. 31-1). Later this will repeat every half-

period (compare steps c and g in Fig. 31-1). Therefore, 
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where n = 1, 2, 3, 4, . The earliest time is (n = 1) 1.25 s.t   

 

3. (a) The period is T = 4(1.50 s) = 6.00 s. 

 

(b) The frequency is the reciprocal of the period: f
T
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(c) The magnetic energy does not depend on the direction of the current (since UB  i
2
), 

so this will occur after one-half of a period, or 3.00 s. 

 

4. We find the capacitance from U Q C 1
2

2 : 
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5. According to U LI Q C 1
2

2 1
2

2 ,  the current amplitude is 

 

I
Q

LC
 



 
 



 

300 10

4 00 10
4 52 10

6

3 6

2.

.
.

C

1.10 10 H F
A.

c hc h
 

 

6. (a) The angular frequency is 
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(b) The period is 1/f and f = /2. Therefore, T     2 2
7 0 10 2 

 rad s
s..  

(c) From  = (LC)
–1/2

, we obtain 
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7. THINK This problem explores the analogy between an oscillating LC system and an 

oscillating mass–spring system.  

 

EXPRESS Table 31-1 provides a comparison of energies in the two systems. From the 

table, we see the following correspondences: 
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ANALYZE (a) The mass m corresponds to the inductance, so m = 1.25 kg. 

 

(b) The spring constant k corresponds to the reciprocal of the capacitance, 1/C. Since the 

total energy is given by U = Q
2
/2C, where Q is the maximum charge on the capacitor and 

C is the capacitance, we have  
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(c) The maximum displacement corresponds to the maximum charge, so 
4

max 1.75 10  m.x    

 

(d) The maximum speed vmax corresponds to the maximum current. The maximum 

current is 
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Consequently, vmax = 3.02  10
–3

 m/s. 

 

LEARN The correspondences suggest that an oscillating LC system is mathematically 

equivalent to an oscillating mass–spring system. The electrical mechanical analogy can 

also be seen by comparing their angular frequencies of oscillation: 

 

 
1
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k
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8. We apply the loop rule to the entire circuit: 
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and we require total = 0. This is equivalent to the simple LRC circuit shown in Fig. 31-

27(b). 

 

9. The time required is t = T/4, where the period is given by 2 / 2 .T LC     

Consequently, 

  6

4
2 0.050H 4.0 10 F2

7.0 10 s.
4 4 4

T LC
t







      

 

10. We find the inductance from  
1

/ 2 2 .f LC  
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11. THINK The frequency of oscillation f in an LC circuit is related to the inductance L 

and capacitance C by 1/ 2 .f LC    

 

EXPRESS Since 1/ ,f C  the smaller value of C gives the larger value of f, while the 

larger value of C gives the smaller value of f.  Consequently, max min1/ 2 ,f LC   and 

min max1/ 2 .f LC    

 

ANALYZE (a) The ratio of the maximum frequency to the minimum frequency is 
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min min
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(b) An additional capacitance C is chosen so the desired ratio of the frequencies is 
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Since the additional capacitor is in parallel with the tuning capacitor, its capacitance adds 

to that of the tuning capacitor. If C is in picofarads (pF), then 

 

C
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The solution for C is 
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(c) We solve f LC1 2/   for L. For the minimum frequency, C = 365 pF + 36 pF = 

401 pF and f = 0.54 MHz. Thus, the inductance is 
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LEARN One could also use the maximum frequency condition to solve for the 

inductance of the coil in (d). The capacitance is C = 10 pF + 36 pF = 46 pF and f = 1.60 

MHz, so  
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12. (a) Since the percentage of energy stored in the electric field of the capacitor is  

(1 75.0%) 25.0%  , then 

U

U
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2
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/

/
.  
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(b) From 

U

U
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B  
2

2

2

2
750%,

/

/
.  

we find / 0.750 0.866.i I    

 

13. (a) The charge (as a function of time) is given by sinq Q t , where Q is the 

maximum charge on the capacitor and  is the angular frequency of oscillation. A sine 

function was chosen so that q = 0 at time t = 0. The current (as a function of time) is 

 

i
dq

dt
Q t  cos ,  

 

and at t = 0, it is I = Q. Since  1/ ,LC  

 

Q I LC       2 00 300 10 2 70 10 180 103 6 4. . . .A H F C.b g c hc h  

 

(b) The energy stored in the capacitor is given by 
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and its rate of change is 

dU
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Q t t

C

E 
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We use the trigonometric identity cos sin sin  t t t 1
2

2b g  to write this as 
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Q

C
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
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2

2
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The greatest rate of change occurs when sin(2t) = 1 or 2t = /2 rad. This means 
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(c) Substituting  = 2/T and sin(2t) = 1 into dUE/dt = (Q
2
/2C) sin(2t), we obtain  
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Now T LC       2 2 300 10 2 70 10 5655 103 6 4  . . .H F s,c hc h  so 
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We note that this is a positive result, indicating that the energy in the capacitor is indeed 

increasing at t = T/8. 

 

14. The capacitors C1 and C2 can be used in four different ways: (1) C1 only; (2) C2 only; 

(3) C1 and C2 in parallel; and (4) C1 and C2 in series.  

 

(a) The smallest oscillation frequency is 
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(b) The second smallest oscillation frequency is 
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(c) The second largest oscillation frequency is 
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(d) The largest oscillation frequency is 
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15. (a) The maximum charge is  

 

Q = CVmax = (1.0  10
–9

 F)(3.0 V) = 3.0  10
–9

 C. 

 

(b) From U LI Q C 1
2

2 1
2

2 /  we get 

 

I
Q

LC
 



 
 



 

30 10

30 10 10 10
17 10

9

3 9

3.

. .
.

C

H F
A.

c hc h
 

 

(c) When the current is at a maximum, the magnetic energy is at a maximum also: 

 

U LIB,max . . .       1

2

1

2
30 10 17 10 4 5 102 3 3

2
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16. The linear relationship between  (the knob angle in degrees) and frequency f is 

 

f f
f

f
 



F
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I
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F
HG
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1
180

180 1

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where f0 = 2  10
5
 Hz. Since f = /2 = 1/2 LC , we are able to solve for C in terms of 

: 

   
2 22 2 2

0

1 81

4 1 /180 400000 180
C

Lf   
 

  
 

 

with SI units understood. After multiplying by 10
12

 (to convert to picofarads), this is 

plotted next: 
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17. (a) After the switch is thrown to position b the circuit is an LC circuit. The angular 

frequency of oscillation is  1/ LC . Consequently, 

 

  3 6

1 1
275 Hz.

2 2 2 54.0 10 H 6.20 10 F
f

LC



    
   

 
 

 

(b) When the switch is thrown, the capacitor is charged to V = 34.0 V and the current is 

zero. Thus, the maximum charge on the capacitor is  

 

Q = VC = (34.0 V)(6.20  10
–6

 F) = 2.11  10
–4

 C. 

 

The current amplitude is 

 

  42 2 275 Hz 2.11 10 C 0.365A.I Q fQ         

 

18. (a)  From V = IXC we find = I/CV.  The period is then T = 2/ = 2CV/I = 46.1 s. 

 

(b) The maximum energy stored in the capacitor is  

 

 2 7 2 91 1
(2.20 10 F)(0.250 V) 6.88 10  J

2 2
EU CV       . 

 

(c) The maximum energy stored in the inductor is also 2 / 2BU LI 6.88 nJ . 

 

(d) We apply Eq. 30-35 as V = L(di/dt)max . We can substitute L = CV
2
/I

2
 (combining 

what we found in part (a) with Eq. 31-4) into Eq. 30-35 (as written above) and solve for 

(di/dt)max .  Our result is  

 

 
2 3 2

3

2 2 7

max

(7.50 10 A)
1.02 10 A/s

/ (2.20 10 F)(0.250 V)

di V V I

dt L CV I CV





 
      

 
. 
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(e) The derivative of UB = 
1

2
 Li

2
 leads to  

 

 2 21
sin cos sin 2

2

BdU
LI t t LI t

dt
      . 

 

Therefore, 2 3

max

1 1 1
(7.50 10 A)(0.250 V) 0.938 mW.

2 2 2

BdU
LI IV

dt
  

     
 

 

 

19. The loop rule, for just two devices in the loop, reduces to the statement that the 

magnitude of the voltage across one of them must equal the magnitude of the voltage 

across the other.  Consider that the capacitor has charge q and a voltage (which we’ll 

consider positive in this discussion) V = q/C.  Consider at this moment that the current in 

the inductor at this moment is directed in such a way that the capacitor charge is 

increasing (so i = +dq/dt). Equation 30-35 then produces a positive result equal to the V 

across the capacitor: V = L(di/dt), and we interpret the fact that di/dt > 0 in this 

discussion to mean that d(dq/dt)/dt = d
2
q/dt

2
 < 0 represents a “deceleration” of the 

charge-buildup process on the capacitor (since it is approaching its maximum value of 

charge).  In this way we can “check” the signs in Eq. 31-11 (which states q/C =  L 

d
2
q/dt

2
) to make sure we have implemented the loop rule correctly. 

 

20. (a) We use U LI Q C 1
2

2 1
2

2 /  to solve for L: 

 

 
22 22

6 3max max

3

1 1 1.50V
4.00 10 F 3.60 10 H.

50.0 10 A

CV VQ
L C

C I C I I

 



     
            

       
 

 

(b) Since f = /2, the frequency is 

 

  
3

3 6

1 1
1.33 10 Hz.

2 2 3.60 10 H 4.00 10 F
f

LC   
   

 
 

 

(c) Referring to Fig. 31-1, we see that the required time is one-fourth of a period (where 

the period is the reciprocal of the frequency). Consequently, 

 

t T
f

  


  1

4

1

4

1

4 133 10
188 10

3

4

.
.
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s.

e j
 

 

21. (a) We compare this expression for the current with i = I sin(t+0). Setting (t+) = 

2500t + 0.680 = /2, we obtain t = 3.56  10
–4

 s. 

 

(b) Since  = 2500 rad/s = (LC)
–1/2

, 
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L
C

 


 


1 1

2500 64 0 10
2 50 10

2 2 6

3

 rad / s F
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(c) The energy is 

U LI     1

2

1

2
2 50 10 160 320 102 3 2 3. . .H A J.c hb g  

 

22. For the first circuit  = (L1C1)
–1/2

, and for the second one  = (L2C2)
–1/2

. When the 

two circuits are connected in series, the new frequency is 

 

       

   

eq eq 1 2 1 2 1 2 1 1 2 2 2 1 1 2

1 1 1 2 1 2

1 1 1

/ /

1 1
,

/

L C L L C C C C L C C L C C C C

L C C C C C





  
   

 
 

 

 

where we use    1

1 1 2 2L C L C . 

 

23. (a) The total energy U is the sum of the energies in the inductor and capacitor: 

 

 
 

   
2 2

6 3 32 2
6

6

3.80 10 C 9.20 10 A 25.0 10 H
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2 2 22 7.80 10 F
E B

q i L
U U U

C

  





  
       


 

 

(b) We solve U = Q
2
/2C for the maximum charge: 

 

Q CU       2 2 7 80 10 198 10 556 106 6 6. . .F J C.c hc h  

 

(c) From U = I
2
L/2, we find the maximum current: 

 

I
U

L
 




 





2 2 198 10

250 10
126 10

6

3

2
.

.
.

J

H
A.

c h
 

 

(d) If q0 is the charge on the capacitor at time t = 0, then q0 = Q cos  and 

 

 
F
HG
I
KJ 





F
HG

I
KJ    




cos cos

.

.
. .1 1

6

6

380 10

556 10
46 9

q

Q

C

C
 

 

For  = +46.9° the charge on the capacitor is decreasing, for  = –46.9° it is increasing. 

To check this, we calculate the derivative of q with respect to time, evaluated for t = 0. 
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We obtain –Q sin , which we wish to be positive. Since sin(+46.9°) is positive and 

sin(–46.9°) is negative, the correct value for increasing charge is  = –46.9°. 

 

(e) Now we want the derivative to be negative and sin  to be positive. Thus, we take 

46.9 .     

 

24. The charge q after N cycles is obtained by substituting t = NT = 2N/' into Eq.  

31-25: 

 

   

 
 

/ 2 / 2

2 / / 2

/

cos cos 2 /

cos 2

cos .

Rt L RNT L

RN L C L

N R C L

q Qe t Qe N

Qe N

Qe





     

 



 





       

 



 

 

We note that the initial charge (setting N = 0 in the above expression) is q0 = Q cos , 

where q0 = 6.2 C is given (with 3 significant figures understood). Consequently, we 

write the above result as  0 exp /Nq q N R C L  . 

 

(a) For N = 5,     5 6.2 C exp 5 7.2 0.0000032F/12H 5.85 C.q        

 

(b) For N = 10,     10 6.2 C exp 10 7.2 0.0000032F/12H 5.52 C.q        

 

(c) For N = 100,     100 6.2 C exp 100 7.2 0.0000032F/12H 1.93 C.q        

 

25. Since   ', we may write T = 2/ as the period and  1/ LC  as the angular 

frequency. The time required for 50 cycles (with 3 significant figures understood) is 

 

     3 62
50 50 50 2 50 2 220 10 H 12.0 10 F

0.5104s.

t T LC


 


  
      

 



 

 

The maximum charge on the capacitor decays according to q Qe Rt L

max

/  2  (this is called 

the exponentially decaying amplitude in Section 31-5), where Q is the charge at time t = 0 

(if we take  = 0 in Eq. 31-25). Dividing by Q and taking the natural logarithm of both 

sides, we obtain 

ln maxq

Q

Rt

L

F
HG
I
KJ   2

 

which leads to 

 



CHAPTER 31 1344 

 
 

3

3max
2 220 10 H2

ln ln 0.99 8.66 10 .
0.5104s

qL
R

t Q




 

       
 

 

 

26. The assumption stated at the end of the problem is equivalent to setting  = 0 in Eq. 

31-25. Since the maximum energy in the capacitor (each cycle) is given by q Cmax /2 2 , 

where qmax is the maximum charge (during a given cycle), then we seek the time for 

which 
2 2

max
max

1
.

2 2 2 2

q Q Q
q

C C
    

 

Now qmax (referred to as the exponentially decaying amplitude in Section 31-5) is related 

to Q (and the other parameters of the circuit) by 

 

q Qe
q

Q

Rt

L

Rt L

max

/ maxln . 
F
HG
I
KJ  

 2

2
 

Setting q Qmax  / 2 , we solve for t: 

 

t
L

R

q

Q

L

R

L

R
 

F
HG
I
KJ  

F
HG
I
KJ 

2 2 1

2
2ln ln ln .max  

 

The identities ln( / ) ln ln1 2 2 21
2

     were used to obtain the final form of the 

result. 

 

27. THINK With the presence of a resistor in the RLC circuit, oscillation is damped, and 

the total electromagnetic energy of the system is no longer conserved, as some energy is 

transferred to thermal energy in the resistor. 

 

EXPRESS Let t be a time at which the capacitor is fully charged in some cycle and let 

qmax 1 be the charge on the capacitor then. The energy in the capacitor at that time is 

 

U t
q

C

Q

C
e Rt L( ) max /  1

2 2

2 2
 

 

where 

q Qe Rt L

max

/

1

2   

 

(see the discussion of the exponentially decaying amplitude in Section 31-5). One period 

later the charge on the fully charged capacitor is  

 
( )2/

max2

R t T Lq Qe   
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where 
2

,T






 and the energy is 

2 2
( ) /max 2( ) .

2 2

R t T Lq Q
U t T e

C C

     

 

ANALYZE The fractional loss in energy is 

 
/ ( ) /

/

/

| | ( ) ( )
1 .

( )

Rt L R t T L
RT L

Rt L

U U t U t T e e
e

U U t e

  




   
     

 

Assuming that RT/L is very small compared to 1 (which would be the case if the 

resistance is small), we expand the exponential (see Appendix E). The first few terms are: 

 

e
RT

L

R T

L

RT L    / .1
2

2 2

2
  

 

If we approximate   ', then we can write T as 2/. As a result, we obtain 

 

| | 2
1 1 .

U RT RT R

U L L L

  
      

 
 

 

LEARN The ratio | | /U U  can be rewritten as 

 

| | 2U

U Q


  

 

where /Q L R  (not to confuse Q with charge) is called the “quality factor” of the 

oscillating circuit. A high-Q circuit has low resistance and hence, low fractional energy 

loss. 

 

28. (a) We use I = /Xc = dC: 
 

62 2 Hz)(1.50 10 F)(30.0 V) 0.283 A .d m d mI C f C             

 

(b) I = 2(8.00  10
3
 Hz)(1.50  10

–6
 F)(30.0 V) = 2.26 A. 

 

29. (a) The current amplitude I is given by I = VL/XL, where XL = dL = 2fdL. Since the 

circuit contains only the inductor and a sinusoidal generator, VL = m. Therefore, 

 

3

30.0V
0.0955A 95.5 mA.

2 2 Hz)(50.0 10 H)

mL

L d

V
I

X f L



   
    

 
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(b) The frequency is now eight times larger than in part (a), so the inductive reactance XL 

is eight times larger and the current is one-eighth as much. The current is now  

 

I = (0.0955 A)/8 = 0.0119 A = 11.9 mA. 

 

30. (a) The current through the resistor is 

 

30.0V
0.600 A .

50.0

mI
R


  


 

 

(b) Regardless of the frequency of the generator, the current is the same, 0.600 A .I   

 

31. (a) The inductive reactance for angular frequency d is given by 
L dX L , and the 

capacitive reactance is given by XC = 1/dC. The two reactances are equal if dL = 1/dC, 

or 1/d LC  . The frequency is 

 

2

6

1 1
6.5 10  Hz.

2 2 2 H)(10 10 F)

d
df

LC



    
    

 
 

 

(b) The inductive reactance is  

 

XL = dL = 2fdL = 2(650 Hz)(6.0  10
–3

 H) = 24 . 

 

The capacitive reactance has the same value at this frequency. 

 

(c) The natural frequency for free LC oscillations is / 2f LC    , the same as 

we found in part (a). 

 

32. (a) The circuit consists of one generator across one inductor; therefore, m = VL. The 

current amplitude is  

 

325.0 V
5.22 10 A .

(377 rad/s)(12.7 H)

m m

L d

I
X L

 



      

 

(b) When the current is at a maximum, its derivative is zero. Thus, Eq. 30-35 gives L = 0 

at that instant. Stated another way, since (t) and i(t) have a 90° phase difference, then (t) 

must be zero when i(t) = I. The fact that  = 90° = /2 rad is used in part (c). 

 

(c) Consider Eq. 31-28 with / 2m   . In order to satisfy this equation, we require 

sin(dt) = –1/2. Now we note that the problem states that  is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 31-28 with respect to time (and demanding the result be negative) we 
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must also require cos(dt) < 0. These conditions imply that t must equal (2n – 5/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

i I n 
F
HG

I
KJ  

F
HG
I
KJ   sin ( . .2 522 10 4 51 103 3 








A)

3

2
A .  

 

33. THINK Our circuit consists of an ac generator that produces an alternating current, 

as well as a load that could be purely resistive, capacitive, or inductive. The nature of the 

load can be determined by the phase angle between the current and the emf.  

 

EXPRESS The generator emf and the current are given by 

 

 sin( / 4), ( ) sin( 3 / 4).m d di t I          

 

The expressions show that the emf is maximum when sin(dt – /4) = 1 or  

 

dt – /4 = (/2) ± 2n   [n = integer]. 

 

Similarly, the current is maximum when sin(dt – 3/4) = 1, or  

 

dt – 3/4 = (/2) ± 2n   [n = integer]. 

 

ANALYZE (a) The first time the emf reaches its maximum after t = 0 is when dt – /4 

= /2 (that is, n = 0). Therefore, 

 

t
d

    3 3
6 73 10 3





  rad / s)
s ..  

 

(b) The first time the current reaches its maximum after t = 0 is when dt – 3/4 = /2, as 

in part (a) with n = 0. Therefore, 

 

25 5
1.12 10 s.

 rad/s)d

t


 
   
 

 

 

(c) The current lags the emf by / 2  rad, so the circuit element must be an inductor. 

 

(d) The current amplitude I is related to the voltage amplitude VL by VL = IXL, where XL is 

the inductive reactance, given by XL = dL. Furthermore, since there is only one element 

in the circuit, the amplitude of the potential difference across the element must be the 

same as the amplitude of the generator emf: VL = m. Thus, m = IdL and 

 

3

30.0 V
0.138 H.

(620 10 A)(350 rad/s)

m

d

L
I



 
  


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LEARN The current in the circuit can be rewritten as 

 

3
( ) sin sin

4 4
d di t I I

 
  
   

       
   

 

 

where / 2.    In a purely inductive circuit, the current lags the voltage by 90 .  

 

34. (a) The circuit consists of one generator across one capacitor; therefore, m = VC. 

Consequently, the current amplitude is 

 

I
X

Cm

C

m      
  (377 rad / s)(4.15 10 F)(25.0 V) 3.91 10 A .6 2  

 

(b) When the current is at a maximum, the charge on the capacitor is changing at its 

largest rate. This happens not when it is fully charged (±qmax), but rather as it passes 

through the (momentary) states of being uncharged (q = 0). Since q = CV, then the 

voltage across the capacitor (and at the generator, by the loop rule) is zero when the 

current is at a maximum. Stated more precisely, the time-dependent emf (t) and current 

i(t) have a  = –90° phase relation, implying (t) = 0 when i(t) = I. The fact that  = –90° 

= –/2 rad is used in part (c). 

 

(c) Consider Eq. 32-28 with    1
2 m . In order to satisfy this equation, we require 

sin(dt) = –1/2. Now we note that the problem states that  is increasing in magnitude, 

which (since it is already negative) means that it is becoming more negative. Thus, 

differentiating Eq. 32-28 with respect to time (and demanding the result be negative) we 

must also require cos(dt) < 0. These conditions imply that t must equal (2n – 5/6) [n 

= integer]. Consequently, Eq. 31-29 yields (for all values of n) 

 

3 23
sin 2 (3.91 10 A) 3.38 10 A,

2
i I n

 
  

  
                

 

or 2| | 3.38 10 A.i    

 

35. The resistance of the coil is related to the reactances and the phase constant by Eq. 

31-65. Thus, 

X X

R

L C

R

L C d d





 


1/
tan ,  

which we solve for R: 

 

2

6

1 1 1 1
(2 Hz(8.8 10 H)

tan tan 75 (2 Hz)(0.94 10 F

89 .

d

d

R L
C


 





   
        

    

 
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36. (a) The circuit has a resistor and a capacitor (but no inductor).  Since the capacitive 

reactance decreases with frequency, then the asymptotic value of Z must be the resistance: 

R = 500 . 

 

(b) We describe three methods here (each using information from different points on the 

graph):   

 

method 1: At d = 50 rad/s, we have Z  700 , which gives C = (d Z
2
 - R

2
 )
1 

= 41 F. 

 

method 2: At d = 50 rad/s, we have XC   500 , which gives C = (d XC)
1 

= 40 F. 

 

method 3: At d = 250 rad/s, we have XC   100 , which gives C = (d XC)
1 

= 40 F. 

 

37. The rms current in the motor is  

 

   

rms rms
rms

2 2 2 2

420V
7.61A.

45.0 32.0L

I
Z R X

 
   

   

 

 

38. (a) The graph shows that the resonance angular frequency is 25000 rad/s, which 

means (using Eq. 31-4)  

 

C = (2
L)

1
 = [(25000)

2
 ×200 × 10

6]
1

 = 8.0 F. 

 

(b) The graph also shows that the current amplitude at resonance is 4.0 A, but at 

resonance the impedance Z becomes purely resistive (Z = R) so that we can divide the 

emf amplitude by the current amplitude at resonance to find R: 8.0/4.0 = 2.0 . 

 

39. (a) Now XL = 0, while R = 200  and XC = 1/2fdC = 177  Therefore, the 

impedance is  

 2 2 2 2(200 ) (177 ) 267 .CZ R X         

 

(b) The phase angle is 

 1 1 0 177
tan tan 41.5

200

L CX X

R
       
      

   
 

 

 (c) The current amplitude is  

36.0 V
0.135 A .

267

mI
Z


  


 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 



CHAPTER 31 1350 

(0.135A)(200 ) 27.0V

(0.135A)(177 ) 23.9V

R

C C

V IR

V IX

   

   
 

 

The circuit is capacitive, so I leads m . The phasor diagram is drawn to scale next. 

 

 
 

40. A phasor diagram very much like Fig. 31-14(d) leads to the condition: 

 

VL – VC = (6.00 V)sin(30º) = 3.00 V. 

 

With the magnitude of the capacitor voltage at 5.00 V, this gives a inductor voltage 

magnitude equal to 8.00 V. Since the capacitor and inductor voltage phasors are 180° out 

of phase, the potential difference across the inductor is 8.00 V . 

 

41. THINK We have a series RLC circuit. Since R, L, and C are in series, the same 

current is driven in all three of them.  

 

EXPRESS The capacitive and the inductive reactances can be written as 

 

1 1
, 2

2
C L d d

d d

X X L f L
C f C

 


   


. 

 

The impedance of the circuit is 2 2( ) ,L CZ R X X    and the current amplitude is given 

by / .mI Z  

 

ANALYZE (a) Substituting the values given, we find the capacitive reactance to be 

 

6

1 1
37.9 .

2 2 z)(70.0 10 F)
C

d

X
f C 

   
   

 

 

Similarly, the inductive reactance is 

 
32 2 z)(230 10 H) 86.7 .L dX f L         
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Thus, the impedance is 

 
2 2 2 2( ) (200 ) (37.9 86.7 ) 206 .L CZ R X X           

 

(b) The phase angle is 

1 1 86.7 37.9
tan tan 13.7 .

200

L CX X

R
       
     

   
 

 

(c) The current amplitude is 

36.0 V
0.175A.

206

mI
Z


  


 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.175 A)(200 ) 35.0 V

(0.175 A)(86.7 ) 15.2 V

(0.175 A)(37.9 ) 6.62V

R

L L

C C

V IR

V IX

V IX

   

   

   

 

 

Note that X XL C , so that m  leads I. The phasor diagram is drawn to scale below. 

 
 

LEARN The circuit in this problem is more inductive since .L CX X  The phase angle is 

positive, so the current lags behind the applied emf. 

 

42. (a) Since Z = R
2
 + XL

2
  and  XL = d L, then as d  0 we find Z  R = 40 . 

 

(b) L  =  XL /d  = slope = 60 mH. 

 

43. (a) Now XC = 0, while R = 200  and  

 

XL = L = 2fdL = 86.7  
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both remain unchanged. Therefore, the impedance is  

 
2 2 2 2(200 ) (86.7 ) 218 .LZ R X         

 

(b) The phase angle is, from Eq. 31-65, 

 

1 1 86.7 0
tan tan 23.4 .

200

L CX X

R
      
     

   
 

 

(c) The current amplitude is now found to be 
36.0 V

0.165 A .
218

mI
Z


  


 

 

(d) We first find the voltage amplitudes across the circuit elements: 

 

(0.165 A)(200 ) 33V

(0.165A)(86.7 ) 14.3V.

R

L L

V IR

V IX

   

   
 

 

This is an inductive circuit, so m leads I. The phasor diagram is drawn to scale next. 

 

 
44. (a) The capacitive reactance is 

 

6

1 1
16.6 .

2 2  Hz)(24.0 10 F)
CX

fC  
   

 
 

 

(b) The impedance is 

 

2 2 2 2

2 3 2

( ) (2 )

(220 ) [2 Hz)(150 10 H) 16.6 ] 422 .

L C CZ R X X R fL X

 

     

        
 

 

(c) The current amplitude is 

I
Z

m  
 220

0521
V

422
A .


.  
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(d) Now X CC 


eq

1 . Thus, XC increases as Ceq decreases. 

 

(e) Now Ceq = C/2, and the new impedance is 

 

2 3 2(220 ) [2 Hz)(150 10 H) 2(16.6 )] 408 422 .Z            

 

Therefore, the impedance decreases. 

 

(f) Since I Z 1 , it increases. 

 

45. (a) Yes, the voltage amplitude across the inductor can be much larger than the 

amplitude of the generator emf. 

 

(b) The amplitude of the voltage across the inductor in an RLC series circuit is given by 

V IX I LL L d   . At resonance, the driving angular frequency equals the natural angular 

frequency:  d LC 1/ . For the given circuit 

 

6

1.0 H
1000 .

(1.0 H)(1.0 10 F)
L

L
X

LC 
   


 

 

At resonance the capacitive reactance has this same value, and the impedance reduces 

simply: Z = R. Consequently, 

 

resonance

10 V
1.0 A .

10

m mI
Z R

 
   


 

 

The voltage amplitude across the inductor is therefore 

 
3(1.0A)(1000 ) 1.0 10 VL LV IX      

 

which is much larger than the amplitude of the generator emf. 

 

46. (a) A sketch of the phasor diagram is shown to the right. 

 

(b) We have I R = I XC, or 

I R = I XC  →   R =  
1

d C
  

which yields  

5

1 1
159 Hz

2 2 2 (50.0 )(2.00 10 F)

df
RC



   
   

 
.  

 

(c)  = tan
1

(VC /VR) = – 45. 
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(d) d = 1/RC =1.00 10
3
 rad/s. 

 

(e) I = (12 V)/ R
2
 + XC

2
  =  6/(25 2) 170 mA. 

 

47. THINK In a driven RLC circuit, the current amplitude is maximum at resonance, 

where the driven angular frequency is equal to the natural angular frequency. 

 

EXPRESS For a given amplitude m of the generator emf, the current amplitude is given 

by 

2 2
.

( 1/ )

m m

d d

I
Z R L C

 

 
 

 
 

 

To explicitly show that I is maximum when 1/ ,d LC    we differentiate I with 

respect to d and set the derivative to zero: 

 

2 2 3/ 2

2

1 1
( ) [ ( 1/ ) ] .m d d d

d d d

dI
E R L C L L

d C C
  

  

   
       

  
 

 

The only factor that can equal zero is when  d dL C ( / )1 , or  d LC 1/ . 

 

ANALYZE (a) For this circuit, the driving angular frequency is 

 

 d
LC

 





1 1

100
224

( .  H)(20.0 10 F)
 rad / s .

6
 

 

(b) When ,d   the impedance is Z = R, and the current amplitude is 

 

30.0 V
6.00 A.

5.00

mI
R


  


 

 

(c) We want to find the (positive) values of  d  for which / 2 :mI R  

2 2
.

2( 1/ )

m m

d d
RR L C

 

 


 
 

 

This may be rearranged to give 




d

d

L
C

R
F
HG

I
KJ 

1
3

2

2 . 
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Taking the square root of both sides (acknowledging the two ± roots) and multiplying by 

 dC , we obtain 

 2( ) 3 1 0.d dLC CR     

 

Using the quadratic formula, we find the smallest positive solution 

 
2 2 6

2 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

219 rad/s.

CR C R LC

LC






 



     
 



   






 

 

(d) The largest positive solution 

 
2 2 6

1 6

6 2 2 6

6

3 3 4 3(20.0 10 F)(5.00 )

2 2(1.00 H)(20.0 10 F)

3(20.0 10 F) (5.00 ) 4(1.00 H)(20.0 10 F)

2(1.00 H)(20.0 10 F)

228 rad/s.

CR C R LC

LC






 



     
 



   






 

 

(e) The fractional width is 

 

1 2 228 rad/s 219 rad/s
0.040.

224 rad/s

 



 
   

 

LEARN The current amplitude as a function of d  is plotted below.  

  
 

We see that I is a maximum at 224 rad/s,d    and is at half maximum (3 A) at 219 

rad/s and 228 rad/s. 

 

48. (a) With both switches closed (which effectively removes the resistor from the 

circuit), the impedance is just equal to the (net) reactance and is equal to  
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Xnet = (12 V)/(0.447 A) = 26.85 . 

 

With switch 1 closed but switch 2 open, we have the same (net) reactance as just 

discussed, but now the resistor is part of the circuit; using Eq. 31-65 we find 

 

 net 26.85
100

tan tan15

X
R




   


. 

 

(b) For the first situation described in the problem (both switches open) we can reverse 

our reasoning of part (a) and find   

 

Xnet first = tanR = (100 ) tan(–30.9º) = –59.96 . 

 

We observe that the effect of switch 1 implies  

 

XC = Xnet – Xnet first = 26.85  – (–59.96 ) = 86.81 . 

 

Then Eq. 31-39 leads to C = 1/XC  = 30.6 F. 

 

(c) Since Xnet = XL  – XC , then we find L = XL/ = 301 mH . 

 

49. (a) Since Leq = L1 + L2 and Ceq = C1 + C2 + C3 for the circuit, the resonant frequency 

is 

       

  

  

eq eq 1 2 1 2 3

3 3 6 6 6

1 1

2 2

1

2 1.70 10 H 2.30 10 H 4.00 10 F 2.50 10 F 3.50 10 F

796Hz.

L C L L C C C


 

     

 
  


       



 

 

(b) The resonant frequency does not depend on R so it will not change as R increases. 

 

(c) Since   (L1 + L2)
–1/2

, it will decrease as L1 increases. 

 

(d) Since   Ceq

1/2  and Ceq decreases as C3 is removed,  will 

increase. 

 

50. (a) A sketch of the phasor diagram is shown to the right. 

 

(b) We have VR = VL, which implies 

 

I R = I XL   →   R  = d L 
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which yields  f = d/2 = R/2L = 318 Hz. 

 

(c)  = tan
1

(VL /VR) = +45. 

 

(d) d = R/L = 2.00×10
3 

rad/s. 

 

(e) I = (6 V)/ R
2
 + XL

2
  = 3/(40 2)  53.0 mA. 

 

51. THINK In a driven RLC circuit, the current amplitude is maximum at resonance, 

where the driven angular frequency is equal to the natural angular frequency. It then falls 

off rapidly away from resonance.  

 

EXPRESS We use the expressions found in Problem 31-47: 

 
2 2 2 2

1 2

3 3 4 3 3 4
,

2 2

CR C R LC CR C R LC

LC LC
 

     
   . 

 

The resonance angular frequency is 1/ .LC   

 

ANALYZE Thus, the fractional half width is  

 





 


d CR LC

LC
R

C

L



 1 2 2 3

2

3
.  

 

LEARN Note that the value of /d   increases linearly with R; that is, the larger the 

resistance, the broader the peak. As an example, the data of Problem 31-47 gives 

 

 
 6

2
3 20.0 10 F

5.00 3.87 10 .
1.00H

d








     

 

This is in agreement with the result of Problem 31-47. The method used there, however, 

gives only one significant figure since two numbers close in value are subtracted (1 – 

2). Here the subtraction is done algebraically, and three significant figures are obtained. 

 

52. Since the impedance of the voltmeter is large, it will not affect the impedance of the 

circuit when connected in parallel with the circuit. So the reading will be 100 V in all 

three cases. 

 

53. THINK Energy is supplied by the 120 V rms ac line to keep the air conditioner 

running. 

 

EXPRESS The impedance of the circuit is 
2 2( ) ,L CZ R X X    and the average rate of 

energy delivery is 
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2 2
2 rms rms

avg rms 2
.

R
P I R R

Z Z

  
   

 
 

 

ANALYZE (a) Substituting the values given, the impedance is 

 

   
2 2

12.0 1.30 0 12.1 .Z        

 

(b) The average rate at which energy has been supplied is 

 

   

 

22
3 3rms

avg 22

120V 12.0
1.186 10 W 1.19 10 W.

12.07

R
P

Z

 
     


 

 

LEARN In a steady-state operation, the total energy stored in the capacitor and the 

inductor stays constant. Thus, the net energy transfer is from the generator to the resistor, 

where electromagnetic energy is dissipated in the form of thermal energy. 

 

54. The amplitude (peak) value is 

 

V Vmax   2 2 100 141rms V V.b g  

 

55. The average power dissipated in resistance R when the current is alternating is given 

by P I Ravg rms

2 ,  where Irms is the root-mean-square current. Since I Irms  / 2 , where I is 

the current amplitude, this can be written Pavg = I
2
R/2. The power dissipated in the same 

resistor when the current id is direct is given by P i Rd 2 .  Setting the two powers equal to 

each other and solving, we obtain 

 

i
I

d   
2

2 60
184

.
.

A

2
A.  

 

56. (a) The power consumed by the light bulb is P = I
2
R/2. So we must let Pmax/Pmin = 

(I/Imin)
2
 = 5, or 

I

I

Z

Z

Z

Z

R L

R

m

mmin

min

max

max

min

max/

/
.

F
HG
I
KJ 
F
HG

I
KJ 
F
HG
I
KJ 

F
H
GG

I
K
JJ 

2 2 2 2 2
2

5




b g
 

 

We solve for Lmax: 

   L
R

max

/

.
.    2 2 120 1000

2 60 0
7 64 10

2

2



V W

Hz
H.

b g
b g

 

 

(b) Yes, one could use a variable resistor. 
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(c) Now we must let 

R R

R

max ,
F

HG
I
KJ bulb

bulb

2

5  

or 

R Rmax . .    5 1 5 1
120

1000
17 8

2

d i d i b g
bulb

V

W
  

 

(d) This is not done because the resistors would consume, rather than temporarily store, 

electromagnetic energy. 

 

57. We shall use 

 

2 2

avg 2 22
.

2 2 1/

m m

d d

R R
P

Z R L C

 

 
 

  
 

 

 

where Z R L Cd d  2 2
1 /b g  is the impedance.  

 

(a) Considered as a function of C, Pavg has its largest value when the factor 

 
22 1/d dR L C    has the smallest possible value. This occurs for 1/ ,d dL C  or 

 

C
Ld

 


 


1 1

2 60 0 60 0 10
117 10

2 2 2 3

4

 b g b g c h. .
.

Hz H
F.  

 

The circuit is then at resonance. 

 

(b) In this case, we want Z
2
 to be as large as possible. The impedance becomes large 

without bound as C becomes very small. Thus, the smallest average power occurs for C = 

0 (which is not very different from a simple open switch). 

 

(c) When dL = 1/dC, the expression for the average power becomes 

 
2

avg ,
2

mP
R


  

 

so the maximum average power is in the resonant case and is equal to 

 

 

 

2

avg

30.0V
90.0 W.

2 5.00
P  


 

 

(d) At maximum power, the reactances are equal: XL = XC. The phase angle  in this case 

may be found from 
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tan , 



X X

R

L C 0  

which implies  = 0 .  

 

(e) At maximum power, the power factor is cos  = cos 0° = 1.  

 

(f) The minimum average power is Pavg = 0 (as it would be for an open switch). 

 

(g) On the other hand, at minimum power XC  1/C is infinite, which leads us to set 

tan   . In this case, we conclude that  = –90°. 

 

(h) At minimum power, the power factor is cos  = cos(–90°) = 0. 

 

58. This circuit contains no reactances, so rms = IrmsRtotal. Using Eq. 31-71, we find the 

average dissipated power in resistor R is 

 

P I R
r R

RR
m 


F
HG
I
KJrms

2 
2

.  

 

In order to maximize PR we set the derivative equal to zero: 

 

   

 

 

 

22
2

4 3

2
0

m
mR

r R r R R r RdP
R r

dR r R r R

          
 

 

 

59. (a) The rms current is 

 

 

        

rms rms
rms

22

22

2 1/ 2

75.0V

15.0 2 550Hz 25.0mH 1/ 2 550Hz 4.70 F

2.59A.

I
Z R fL fC

 

 

  

 
 



     



 

 

(b) The rms voltage across R is   rms 2.59A 15.0 38.8VabV I R    . 

 

(c) The rms voltage across C is  

 

 
  

rms
rms

2.59A
159V

2 2 550Hz 4.70 F
bc C

I
V I X

fC  
    . 

 

(d) The rms voltage across L is  
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    rms rms2 2 2.59A 550 Hz 25.0mH 224 Vcd LV I X I fL      . 

 

(e) The rms voltage across C and L together is  

 

 159.5V 223.7V 64.2 Vbd bc cdV V V     . 

 

(f) The rms voltage across R, C, and L together is 

 

   
2 22 2 38.8V 64.2V 75.0Vad ab bdV V V     . 

 

(g) For the resistor R, the power dissipated is 
 

22 38.8V
100 W.

15.0

ab
R

V
P

R
  


 

(h) No energy dissipation in C. 

 

(i) No energy dissipation in L. 

 

60. The current in the circuit satisfies i(t) = I sin(dt – ), where 

 

 

        

22

22

1/

45.0 V

16.0 3000rad/s 9.20mH 1/ 3000rad/s 31.2 F

1.93A

m m

d d

I
Z R L C

 

 



 
 



     



 

and 

  

   

1 1

1

1/
tan tan

3000rad/s 9.20mH 1
tan

16.0 3000rad/s 16.0 31.2 F

46.5 .

L C d dX X L C

R R

 




 



    
    

   

 
  

  

 

 

 

(a) The power supplied by the generator is 

 

 

        

( ) ( ) sin sin

1.93A 45.0V sin 3000rad/s 0.442 ms sin 3000rad/s 0.442 ms 46.5

41.4 W.

g d m dP i t t I t t      

        



 

 

(b) With  
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( ) sin( / 2) cos( )c c d c dv t V t V t           

 

where / ,c dV I C the rate at which the energy in the capacitor changes is 

 

     

 

  
    

2

2

2

6

2

sin cos sin 2
2

1.93A
sin 2 3000rad/s 0.442ms 2 46.5

2 3000rad/s 31.2 10 F

17.0 W.

c c

d d d

d d

d q q
P i iv

dt C C

I I
I t t t

C C
     

 



 
   

 

 
         

 

     


 

 

 

(c) The rate at which the energy in the inductor changes is 

 

     

         

2 2

2

1 1
sin sin sin 2

2 2

1
3000rad/s 1.93A 9.20mH sin 2 3000rad/s 0.442ms 2 46.5

2

44.1 W.

L d d d d

d di d
P Li Li LI t I t LI t

dt dt dt
      

 
              

 

    



 

 

(d) The rate at which energy is being dissipated by the resistor is 

 

        
22 2 2 2sin 1.93A 16.0 sin 3000rad/s 0.442ms 46.5

14.4 W.

R dP i R I R t         


 

 

(e) Equal. 44.1W 17.0 W 14.4W 41.5 W .L R c gP P P P         

 

61. THINK We have an ac generator connected to a “black box,” whose load is of the 

form of an RLC circuit. Given the functional forms of the emf and the current in the 

circuit, we can deduce the nature of the load. 

 

EXPRESS In general, the driving emf and the current can be written as 

 

 ( ) sin , ( ) sin( ).m d dt t i t I t        

 

Thus, we have 75 V,m   I = 1.20 A, and 42     for this circuit. The power factor of 

the circuit is simply given by cos. 

 

ANALYZE (a) With  = – 42.0°, we obtain cos  = cos(– 42.0°) = 0.743. 
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(b) Since the phase constant is negative,  < 0, t –  > t. The current leads the emf. 

 

(c) The phase constant is related to the reactance difference by tan  = (XL – XC)/R. We 

have  

tan  = tan(– 42.0°) = –0.900, 

 

a negative number. Therefore, XL – XC is negative, which implies that XC > XL. The 

circuit in the box is predominantly capacitive. 

 

(d) If the circuit were in resonance, XL would be the same as XC, then tan  would be zero, 

and  would be zero as well. Since  is not zero, we conclude the circuit is not in 

resonance. 

 

(e) Since tan  is negative and finite, neither the capacitive reactance nor the resistance is 

zero. This means the box must contain a capacitor and a resistor.  

 

(f) The inductive reactance may be zero, so there need not be an inductor. 

 

(g) Yes, there is a resistor. 

 

(h) The average power is 

 

P Imavg V A W.  
1

2

1

2
750 120 0 743 334 cos . . . .b gb gb g  

 

(i) The answers above depend on the frequency only through the phase constant , which 

is given. If values were given for R, L, and C, then the value of the frequency would also 

be needed to compute the power factor. 

 

LEARN The phase constant  allows us to calculate the power factor and deduce the 

nature of the load in the circuit. In (f) we stated that the inductance may be set to zero. If 

there is an inductor, then its reactance must be smaller than the capacitive reactance, XL < 

XC.  

 

62. We use Eq. 31-79 to find 

 

V V
N

N
s p

s

p


F
HG
I
KJ 

F
HG
I
KJ  100

500

50
100 103V V.b g .  

 

63. THINK The transformer in this problem is a step-down transformer. 

 

EXPRESS If Np is the number of primary turns, and Ns is the number of secondary turns, 

then the step-down voltage in the secondary circuit is 
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.s
s p

p

N
V V

N

 
   

 

 

 

By Ohm’s law, the current in the secondary circuit is given by / .s s sI V R  

   

ANALYZE (a) The step-down voltage is 

 

V V
N

N
s p

s

p


F
HG
I
KJ 

F
HG
I
KJ 120

10

500
2 4V V.b g .  

 

(b) The current in the secondary is I
V

R
s

s

s

  
2 4

15
016

.
.

V
A.


 

 

We find the primary current from Eq. 31-80: 

 

I I
N

N
p s

s

p


F
HG
I
KJ 

F
HG
I
KJ   016

10

500
32 10 3. .A A.b g  

 

(c) As shown above, the current in the secondary is 0.16A.sI   

 

LEARN In a transformer, the voltages and currents in the secondary circuit are related to 

that in the primary circuit by 

, .
ps

s p s p

p s

NN
V V I I

N N

   
     

  

 

 

64. For step-up transformer: 

 

(a) The smallest value of the ratio /s pV V is achieved by using T2T3 as primary and T1T3 as 

secondary coil: V13/V23 = (800 + 200)/800 = 1.25. 

 

(b) The second smallest value of the ratio /s pV V is achieved by using T1T2 as primary and 

T2T3 as secondary coil: V23/V13 = 800/200 = 4.00. 

 

(c) The largest value of the ratio /s pV V is achieved by using T1T2 as primary and T1T3 as 

secondary coil: V13/V12 = (800 + 200)/200 = 5.00. 

 

For the step-down transformer, we simply exchange the primary and secondary coils in 

each of the three cases above.   

 

(d) The smallest value of the ratio /s pV V is 1/5.00 = 0.200. 
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(e) The second smallest value of the ratio /s pV V is 1/4.00 = 0.250. 

 

(f) The largest value of the ratio /s pV V is 1/1.25 = 0.800. 

 

65. (a) The rms current in the cable is I P Vtrms

3W / 80 10 V A.    / .250 10 31253 c h  

Therefore, the rms voltage drop is  V I R  rms A V3125 2 0 30 19. . .b gb gb g . 

 

(b) The rate of energy dissipation is P I Rd   rms

2 A W.3125 2 0 60 59. . .b gb gb g  

 

(c) Now Irms

3W / 8.0 10 V A   250 10 31253 c h . , so   31.25A 0.60 19V.V      

 

(d) Pd   3125 0 60 59 10
2 2. . .A W.b g b g  

 

(e)  3 3

rms 250 10 W/ 0.80 10 V 312.5 AI     , so   312.5A 0.60V    21.9 10 V .  

 

(f)    
2 4312.5A 0.60 5.9 10 W.dP       

 

66. (a) The amplifier is connected across the primary windings of a transformer and the 

resistor R is connected across the secondary windings.  

 

(b) If Is is the rms current in the secondary coil then the average power delivered to R is 

P I Rsavg 
2 . Using sI    /p s pN N I , we obtain 

 

P
I N

N
R

p p

s

avg 
F
HG
I
KJ

2

.  

 

Next, we find the current in the primary circuit. This is effectively a circuit consisting of 

a generator and two resistors in series. One resistance is that of the amplifier (r), and the 

other is the equivalent resistance Req of the secondary circuit. Therefore, 

 

I
r R r N N R

p

p s







 rms

eq

rms

/d i2
 

 

where Eq. 31-82 is used for Req. Consequently, 

 
2 2

avg 2
2

( / )
.

( / )

p s

p s

N N R
P

r N N R



  
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Now, we wish to find the value of Np/Ns such that Pavg is a maximum. For brevity, let x = 

(Np/Ns)
2
. Then 

P
Rx

r xR
avg 



 2

2b g ,  

and the derivative with respect to x is 

 

dP

dx

R r xR

r xR

avg






 2

3

b g
b g .  

This is zero for  

   / 1000 / 10 100.x r R      

 

We note that for small x, Pavg increases linearly with x, and for large x it decreases in 

proportion to 1/x. Thus x = r/R is indeed a maximum, not a minimum. Recalling x = 

(Np/Ns)
2
, we conclude that the maximum power is achieved for 

  

/ 10p sN N x  . 

 

The diagram that follows is a schematic of a transformer with a ten to one turns ratio. An 

actual transformer would have many more turns in both the primary and secondary coils. 

 

 
 

67. (a) Let  t   / /4 2  to obtain   33 / 4 3 / 4 350rad/s 6.73 10 s.t           

 

(b) Let / 4 / 2t     to obtain   3/ 4 / 4 350rad/s 2.24 10 s.t           

 

(c) Since i leads  in phase by /2, the element must be a capacitor. 

 

(d) We solve C from X C IC m 


 b g 1
/ : 

  

  

3
56.20 10 A

5.90 10 F.
30.0 V 350rad/sm

I
C

 




     
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68. (a) We observe that d = 12566 rad/s. Consequently, XL = 754  and XC = 199 . 

Hence, Eq. 31-65 gives 

 
F

HG
I
KJ 

tan .1 122
X X

R

L C  rad .  

 

(b) We find the current amplitude from Eq. 31-60:  

 

I
R X X

m

L C


 




2 2
0 288

( )
. A .  

 

69. (a) Using  = 2f , XL = L, XC = 1/C and tan() = (XL XC)/R, we find  

 

= tan
1

[(16.022 – 33.157)/40.0] = –0.40473  –0.405 rad. 

 

(b) Equation 31-63 gives I = 120/ 40
2
 + (16-33)

2 
  = 2.7576  2.76 A. 

 

(c) XC  > XL     capacitive. 

 

70. (a) We find L from X L fLL   2 :  

 

 

3
3

3

1.30 10
4.60 10 Hz.

2 2 45.0 10 H

LX
f

L  

 
   


 

 

(b) The capacitance is found from XC = (C)
–1

 = (2fC)
–1

: 

 

  
8

3 3

1 1
2.66 10 F.

2 2 4.60 10 Hz 1.30 10C

C
fX 

   
  

 

 

(c) Noting that XL  f and XC  f 
–1

, we conclude that when f is doubled, XL doubles and 

XC reduces by half. Thus,  

 

XL = 2(1.30  10
3
  ) = 2.60  10

3
  . 

 

(d) XC = 1.30  10
3
 /2 = 6.50  10

2
 . 

 

71. (a) The impedance is  Z = (80.0 V)/(1.25 A) = 64.0 . 

 

(b) We can write cos  = R/Z. Therefore, 

 

R = (64.0 )cos(0.650 rad) = 50.9 . 

 

(c) Since the current leads the emf, the circuit is capacitive. 
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72. (a) From Eq. 31-65, we have 

 

 
F

HG
I
KJ 

F
HG

I
KJ

 tan tan
( / . )

( / . )

1 1 150

2 00

V V

V

V V

V

L C

R

L L

L

 

 

which becomes tan
–1

 (2/3 ) = 33.7° or 0.588 rad. 

 

(b) Since  > 0, it is inductive (XL > XC). 

 

(c) We have VR = IR = 9.98 V, so that VL = 2.00VR = 20.0 V and VC = VL/1.50 = 13.3 V. 

Therefore, from Eq. 31-60, we have 

 

2 2 2 2( ) (9.98 V) (20.0 V 13.3 V) 12.0 Vm R L CV V V        . 

 

73. (a) From Eq. 31-4, we have L = (2
C)

1
 = ((2f)

2
C)

1
 = 2.41 H. 

 

(b) The total energy is the maximum energy on either device (see Fig. 31-4).  Thus, we 

have Umax = 
1

2
 LI

2
 = 21.4 pJ. 

 

(c) Of several methods available to do this part, probably the one most “in the spirit” of 

this problem (considering the energy that was calculated in part (b)) is to appeal to Umax = 
1

2
 Q

2
/C (from Chapter 26) to find the maximum charge: Q = 2CUmax  = 82.2 nC. 

 

74. (a) Equation 31-4 directly gives 1/ LC   5.7710
3
 rad/s. 

 

(b) Equation 16-5 then yields T = 2/1.09 ms. 

 

(c) Although we do not show the graph here, we describe it:  it is a cosine curve with 

amplitude 200 C and period given in part (b). 

 

75. (a) The impedance is 
125V

39.1 .
3.20A

mZ
I


     

 

(b) From V IRR m   cos ,  we get 

 

R
I

m  
 cos V rad

A

125 0 982

320
217

b g b gcos .

.
. .  

 

(c) Since X XL C   sin sin . , 0 982 radb g  we conclude that XL < XC. The circuit is 

predominantly capacitive. 

 

76. (a) Equation 31-39 gives f = /2 = (2CXC)
1

 = 8.84 kHz. 
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(b) Because of its inverse relationship with frequency, the reactance will go down by a 

factor of 2 when f increases by a factor of 2.  The answer is XC = 6.00 . 

 

77. THINK The three-phase generator has three ac voltages that are 120° out of phase 

with each other. 

 

EXPRESS To calculate the potential difference between any two wires, we use the 

following trigonometric identity: 

 

   sin sin 2sin 2 cos 2               , 

 

where  and  are any two angles. 

 

ANALYZE (a) We consider the following combinations: V12 = V1 – V2, V13 = V1 – V3, 

and V23 = V2 – V3. For V12, 

 

V A t A t A
t

A td d
d

d12 120 2
120

2

2 120

2
3 60    

F
HG
I
KJ

 F
HG

I
KJ   sin( ) sin( ) sin cos cos 


b g 

 

where sin 60 3 2.   Similarly, 

 

 

13

2 240240
sin( ) sin ( 240 ) 2 sin cos

2 2

3 cos 120

d
d d

d

t
V A t A t A

A t


 



    
         

   

  



and 

 

23

2 360120
sin( 120 ) sin ( 240 ) 2 sin cos

2 2

3 cos 180 .

d
d d

d

t
V A t A t A

A t


 



    
           

   

  

 

 

All three expressions are sinusoidal functions of t with angular frequency d. 

 

(b) We note that each of the above expressions has an amplitude of 3 .A  

 

LEARN A three-phase generator provides a smoother flow of power than a single-phase 

generator.  

 

78. (a) The effective resistance Reff satisfies I R Prms

2

eff mechanical , or 

 

R
P

I
eff

mechanical

rms

2

hp W / hp

A
  

0100 746

0 650
177

2

.

.
.

b gb g
b g   
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(b) This is not the same as the resistance R of its coils, but just the effective resistance for 

power transfer from electrical to mechanical form. In fact I Rrms

2  would not give Pmechanical 

but rather the rate of energy loss due to thermal dissipation. 

 

79. THINK The total energy in the LC circuit is the sum of electrical energy stored in the 

capacitor, and the magnetic energy stored in the inductor. Energy is conserved.  

 

EXPRESS Let UE be the electrical energy in the capacitor and UB be the magnetic 

energy in the inductor. The total energy is U = UE + UB. When UE = 0.500UB (at time t), 

then UB = 2.00UE and U = UE + UB = 3.00UE. Now, UE is given by q C2 2/ , where q is 

the charge on the capacitor at time t. The total energy U is given by Q C2 2/ , where Q is 

the maximum charge on the capacitor.  

 

ANALYZE (a) Thus,  
2 23.00

0.577 .
2 2 3.00

Q q Q
q Q

C C
      

 

(b) If the capacitor is fully charged at time t = 0, then the time-dependent charge on the 

capacitor is given by q Q t cos . This implies that the condition q = 0.577Q is satisfied 

when cost = 0.557, or t = 0.955 rad. Since   2 / T  (where T is the period of 

oscillation), 0.955 / 2 ,t T T   or t / T = 0.152. 

 

LEARN The fraction of total energy that is of electrical nature at a given time t is given 

by 

 
2 2

2 2

2

( / 2 )cos 2
cos cos

/ 2

EU Q C t t
t

U Q C T

 


 
    

 
. 

 

A plot of /EU U as a function of /t T is given below. 

 

 
 

From the plot, we see that / 1/ 3EU U   at t / T = 0.152. 

 

80. (a) The reactances are as follows: 

 



 

  

1371 

 1 5 1

2 2 2 2

2 2 (400 Hz)(0.0242 H) 60.82

(2 ) [2 (400 Hz)(1.21 10 F)] 32.88

( ) (20.0 ) (60.82 32.88 ) 34.36 .

L d

C d

L C

X f L

X f C

Z R X X

 

   

   

    

         

 

 

With 90.0 V,   we have 

 
rms

90.0 V 2.62 A
2.62 A 1.85 A

34.36 2 2

I
I I

Z


      


. 

 

Therefore, the rms potential difference across the resistor is VR rms = Irms R = 37.0 V. 

 

(b) Across the capacitor, the rms potential difference is VC rms = Irms XC = 60.9 V. 

 

(c) Similarly, across the inductor, the rms potential difference is VL rms = Irms XL = 113 V. 

 

(d) The average rate of energy dissipation is Pavg = (Irms)
2
R = 68.6 W. 

 

81. THINK Since the current lags the generator emf, the phase angle is positive and the 

circuit is more inductive than capacitive. 

 

EXPRESS Let VL be the maximum potential difference across the inductor, VC be the 

maximum potential difference across the capacitor, and VR be the maximum potential 

difference across the resistor. The phase constant is given by 

 

1tan .L C

R

V V

V
   
  

 
 

 

The maximum emf is related to the current amplitude by ,m IZ   where Z is the 

impedance.  

 

ANALYZE (a) With / 2.00C LV V  and / 2.00,R LV V  we find the phase constant to be 

 

 1 1/ 2.00
tan tan 1.00 45.0 .

/ 2.00

L L

L

V V

V
   
    

 
 

 

(b) The resistance is related to the impedance by cos .R Z   Thus,   

 

  
3

30.0V cos 45cos
70.7 .

300 10 A

mR
I

 



   


 

 

LEARN With R and I known, the inductive and capacitive reactances are, respectively, 

2.00 141 ,LX R    and 70.7CX R   . Similarly, the impedance of the circuit is 
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3(30.0 V) /(300 10 A) 100mZ
I

      . 

 

82. From Umax = 
1

2
 LI

2
 we get I = 0.115 A. 

 

83. From Eq. 31-4 we get   f = 1/2 LC  = 1.84 kHz. 

 

84. (a) With a phase constant of 45º the (net) reactance must equal the resistance in the 

circuit, which means the circuit impedance becomes  

 

Z = R 2    R = Z/ 2  = 707 . 

 

(b) Since f = 8000 Hz, then d  = 2(8000) rad/s.  The net reactance (which, as observed, 

must equal the resistance) is therefore  

 

XL – XC  = dL – (dC)
1

 = 707 . 

 

We are also told that the resonance frequency is 6000 Hz, which (by Eq. 31-4) means  

 

 
2 2 2 2 2 2

1 1 1 1

(2 ) 4 4 (6000 Hz)
C

L f L f L L   
    . 

 

Substituting this for C in our previous expression (for the net reactance) we obtain an 

equation that can be solved for the self-inductance.  Our result is L = 32.2 mH. 

 

(c) C = ((2(6000))
2
L)

1 
 = 21.9 nF. 

 

85. THINK The current and the charge undergo sinusoidal oscillations in the LC circuit. 

Energy is conserved.  

 

EXPRESS The angular frequency oscillation is related to the capacitance C and 

inductance L by 1/ .LC   The electrical energy and magnetic energy in the circuit as 

a function of time are given by 

 

 

2 2
2

2
2 2 2 2 2

cos ( )
2 2

1 1
sin ( ) sin ( ).

2 2 2

E

B

q Q
U t

C C

Q
U Li L Q t t

C

 

    

  

    

 

 

The maximum value of UE is 2 / 2 ,Q C  which is the total energy in the circuit, U. 

Similarly, the maximum value of UB is also 2 / 2 ,Q C  which can also be written as 2 / 2LI  

using .I Q   
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ANALYZE (a) Using the fact that  = 2f, the inductance is  

 

   
7

22 2 2
2 3 6

1 1 1
6.89 10 H.

4 4 10.4 10 Hz 340 10 F
L

C f C  




    

 
 

 

(b) The total energy may be calculated from the inductor (when the current is at 

maximum): 

U LI       1

2

1

2
689 10 7 20 10 179 102 7 3

2
11. . .H A J.c hc h  

 

(c) We solve for Q from U Q C 1
2

2 / :  

 

Q CU       2 2 340 10 179 10 110 106 11 7F J C.c hc h. .  

 

LEARN Figure 31-4 of the textbook illustrates the oscillations of electrical and magnetic 

energies. The total energy 2 / 2E BU U U Q C    remains constant. When UE is 

maximum, UB is zero, and vice versa.   

 

86. From Eq. 31-60, we have 2 2 2(220 V /3.00 A) 69.3 .L LR X X      

 

87. When the switch is open, we have a series LRC circuit involving just the one 

capacitor near the upper right corner. Equation 31-65 leads to 

 

o

1

tan tan( 20 ) tan 20 .

d

d

L
C

R








       

 

Now, when the switch is in position 1, the equivalent capacitance in the circuit is 2C. In 

this case, we have 

1

1

2
tan tan10.0 .

d

d

L
C

R








    

 

Finally, with the switch in position 2, the circuit is simply an LC circuit with current 

amplitude 

2
2 1

1

m m m

LC d
dd

d

I
Z L

CL
C

  






  
 

 
 
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where we use the fact that 1( )d dC L    in simplifying the square root (this fact is 

evident from the description of the first situation, when the switch was open). We solve 

for L, R and C from the three equations above, and the results are as follows: 

 

(a) 
2 o

120V
165

tan (2.00A) tan ( 20.0 )

mR
I





 
   

 
, 

 

(b) 1

2 o

tan 120V tan10.0
1 2 1 2 0.313 H

tan 2 (60.0 Hz)(2.00 A) tan ( 20.0 )

m

d

L
I

 

 

   
       

    
, 

 

(c) and 

   
2

1 0

5

2.00 A

2 1 tan / tan 2(2 )(60.0 Hz)(120 V) 1 tan10.0 / tan( 20.0 )

1.49 10  F.

d m

I
C

    



 
    

 

 

 

88. (a) Eqs. 31-4 and 31-14 lead to  

 

61
1.27 10 C .Q I LC



     

 

(b) We choose the phase constant in Eq. 31-12 to be     , so that i0 = I in Eq.  

31-15). Thus, the energy in the capacitor is 

 

U
q

C

Q

C
tE  

2 2
2

2 2
(sin ) .  

 

Differentiating and using the fact that 2 sin  cos   = sin 2, we obtain 

 

dU

dt

Q

C
tE 

2

2
2 sin .  

 

We find the maximum value occurs whenever sin 2 1t  , which leads (with n = odd 

integer) to 

5 41
8.31 10 s, 2.49 10 s, .

2

n n n
t LC

  

 

      
  

 

 

The earliest time is 58.31 10 s.t    

 

(c) Returning to the above expression for /EdU dt  with the requirement that sin2 1t  , 

we obtain 
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dU

dt

Q

C

I LC

C

I

LC

I L

C

EF
HG
I
KJ      

max

. .
2

2
2

3

2 2 2
544 10

d i
J / s  

 

89. THINK In this problem, we demonstrate that in a driven RLC circuit, the energies 

stored in the capacitor and the inductor stay constant; however, energy is transferred from 

the driving emf device to the resistor.  

 

EXPRESS The energy stored in the capacitor is given by U q CE 
2 2/ . Similarly, the 

energy stored in the inductor is 21
2

.BU Li  The rate of energy supply by the driving emf 

device is ,P i   where sin( )di I     and sin .m dt    The rate with which energy 

dissipates in the resistor is 2 .RP i R  

 

ANALYZE (a) Since the charge q is a periodic function of t with period T, so must be UE. 

Consequently, UE will not be changed over one complete cycle. Actually, UE has period 

T/2, which does not alter our conclusion. 

 

(b) Since the current i is a periodic function of t with period T, so must be UB.  

 

(c) The energy supplied by the emf device over one cycle is 

 

0 0 0
sin( )sin( ) [sin cos cos sin ]sin( )

cos ,
2

T T T

m d d m d d d

m

U P dt I t t dt I t t t dt

T
I

           

 

    



  

 

where we have used   

2

0 0
sin ( ) , sin( )cos( ) 0.

2

T T

d d d

T
t dt t t dt      

 

(d) Over one cycle, the energy dissipated in the resistor is  

 

2 2 2

0 0
sin ( ) .

2

T T

R R d

T
U P dt I R t dt I R       

 

(e) Since      m m R m m mI I V I IR I Rcos / / ,  b g b g 2  the two quantities are indeed the 

same. 

 

LEARN In solving for (c) and (d), we could have used Eqs. 31-74 and 31-71: By doing 

so, we find the energy supplied by the generator to be 

 

P T I T T Imavg rms rms 
F
HG
I
KJ   cos cosb g 1

2
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where we substitute I I mrms rmsand / / .2 2   Similarly, the energy dissipated by 

the resistor is 

P T I V T I I R T T I RRavg,resistor rms rms rms  
F
HG
I
KJb g b g 1

2

2 . 

 

The same results are obtained without any integration. 

 

90. From Eq. 31-4, we have C = (2
L)

1
 = ((2f)

2
L)

1
 = 1.59 F. 

 

91. Resonance occurs when the inductive reactance equals the capacitive reactance.  

Reactances of a certain type add (in series) just like resistances. Thus, since the resonance 

values are the same for both circuits, we have for each circuit: 

 

 
1 2

1 2

1 1
,L L

C C
 

 
   

 

and adding these equations we find 

 1 2

1 2

1 1 1
L L

C C




 
   

 
. 

Since eq 1 2L L L   and 1 1 1

eq 1 2( )C C C    , 

 

Leq = 
eq

1

C
       resonance in the combined circuit. 

 

92. When switch S1 is closed and the others are open, the inductor is essentially out of the 

circuit and what remains is an RC circuit. The time constant is C = RC. When switch S2 

is closed and the others are open, the capacitor is essentially out of the circuit. In this case, 

what we have is an LR circuit with time constant L = L/R. Finally, when switch S3 is 

closed and the others are open, the resistor is essentially out of the circuit and what 

remains is an LC circuit that oscillates with period 2T LC . Substituting L = RL and 

C = C/R, we obtain 2 C LT    . 

 

93. (a) We note that we obtain the maximum value in Eq. 31-28 when we set 

 

t
fd

   




1

4

1

4 60
0 00417

( )
. s  

 

or 4.17 ms. The result is  m msin( sin( ) .   90 360  V .  

 

(b) At t = 4.17 ms, the current is 
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sin ( ) sin (90 ( 24.3 )) (0.164A) cos(24.3 )

0.1495A 0.150 A.

di I t I        

 
 

 

Ohm’s law directly gives 

 

(0.1495A)(200 ) 29.9V.Rv iR     

 

(c) The capacitor voltage phasor is 90° less than that of the current. Thus, at t = 4.17 ms, 

we obtain 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(177 )sin(24.3 )

11.9V.

C C Cv I X IX          


 

 

(d) The inductor voltage phasor is 90° more than that of the current. Therefore, at t =  

4.17 ms, we find 

 

sin(90 ( 24.3 ) 90 ) sin(24.3 ) (0.164A)(86.7 )sin(24.3 )

5.85V.

L L Lv I X IX            

 
 

 

(e) Our results for parts (b), (c) and (d) add to give 36.0 V, the same as the answer for 

part (a).  


