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Chapter 32 
 
 

1. We use 
6

1
0Bnn

   to obtain 

 

 
5

6

1

1Wb 2Wb 3Wb 4Wb 5Wb 3Wb .B Bn

n

              

 

2. (a)   The flux through the top is +(0.30 T)r
2
 where r = 0.020 m.  The flux through the 

bottom is +0.70 mWb as given in the problem statement.  Since the net flux must be zero 

then the flux through the sides must be negative and exactly cancel the total of the 

previously mentioned fluxes.  Thus (in magnitude) the flux though the sides is 1.1 mWb. 

 

(b) The fact that it is negative means it is inward. 

 

3. THINK Gauss’ law for magnetism states that the net magnetic flux through any closed 

surface is zero.  

 

EXPRESS Mathematically, Gauss’ law for magnetism is expressed as 0.B dA   Now, 

our Gaussian surface has the shape of a right circular cylinder with two end caps and a 

curved surface. Thus,  

1 2 ,CB dA     

 

where 1 is the magnetic flux through the first end cap, 2 is the magnetic flux through 

the second end cap, and C is the magnetic flux through the curved surface. Over the first 

end the magnetic field is inward, so the flux is 1 = –25.0 Wb. Over the second end the 

magnetic field is uniform, normal to the surface, and outward, so the flux is 2 = AB = 

r
2
B, where A is the area of the end and r is the radius of the cylinder.  

 

ANALYZE (a) Substituting the values given, the flux through the second end is  

 

   
2 3 5

2 0.120m 1.60 10 T 7.24 10 Wb 72.4 Wb.        

 

Since the three fluxes must sum to zero, 

 

1 2 25.0 Wb 72.4 Wb 47.4 Wb.C          

 

Thus, the magnitude is | | 47.4 Wb.C    
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(b) The minus sign in 
C indicates that the flux is inward through the curved surface. 

 

LEARN Gauss’ law for magnetism implies that magnetic monopoles do not exist; the 

simplest magnetic structure is a magnetic dipole (having a north pole and a south pole).  

 

4. From Gauss’ law for magnetism, the flux through S1 is equal to that through S2, the 

portion of the xz plane that lies within the cylinder. Here the normal direction of S2 is +y. 

Therefore, 

0 0
1 2 left

1
( ) ( ) ( ) 2 ( ) 2 ln3 .

2 2

r r r

B B
r r r

i iL
S S B x L dx B x L dx L dx

r x

 

   
     

    

 

5. THINK Changing electric flux induces a magnetic field. 

 

EXPRESS Consider a circle of radius r between the plates, with its center on the axis of 

the capacitor. Since there is no current between the capacitor plates, the Ampere-

Maxwell’s law reduces to  

0 0
Ed

B dA
dt

 


  , 

 

where B  is the magnetic field at points on the circle, and E  is the electric flux through 

the circle. Since the B  field on the circle is in the tangential direction, and 
2 ,E AE R E    where R is the radius of the capacitor, we have 

2

0 02
dE

rB R
dt

     

or 

 
2

0 0

2

R dE
B r R

r dt

 
  . 

 

ANALYZE Solving for dE/dt, we obtain 

 

  

   

7 3

13

22
12 2 2 3

0 0

2 2.0 10 T 6.0 10 m2 V
2.4 10 .

m s4 T m A 8.85 10 C /N m 3.0 10 m

dE Br

dt R 

 

  

 
   

    
 

 

LEARN Outside the capacitor, the induced magnetic field decreases with increased 

radial distance r, from a maximum value at the plate edge r = R. 

 

6. The integral of the field along the indicated path is, by Eq. 32-18 and Eq. 32-19, equal 

to  

 
0 0 2

enclosed area (4.0 cm)(2.0 cm)
(0.75 A) 52 nT m

total area 12 cm
di 
 

   
 

. 
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7. (a) Inside we have (by Eq. 32-16) 2

0 1 / 2dB i r R  , where 
1 0.0200 m,r   

0.0300 m,R   and the displacement current is given by Eq. 32-38 (in SI units):  

 

 12 2 2 3 14

0 (8.85 10 C /N m )(3.00 10 V/m s) 2.66 10 AE
d

d
i

dt
   

        . 

Thus, we find  

 
7 14

190 1

2 2

(4 10 T m/A)(2.66 10 A)(0.0200 m)
1.18 10  T

2 2 (0.0300 m)

di r
B

R

 

 

 
  

    . 

 

(b) Outside we have (by Eq. 32-17) 0 2/ 2dB i r   where r2 = 0.0500 cm.  Here we 

obtain  
7 14

190

2

(4 10 T m/A)(2.66 10 A)
1.06 10  T

2 2 (0.0500 m)

diB
r

 

 

 
  

     

 

8. (a) Application of Eq. 32-3 along the circle referred to in the second sentence of the 

problem statement (and taking the derivative of the flux expression given in that sentence) 

leads to 

 0 0(2 ) 0.60 V m/s
r

B r
R

    . 

 

Using r = 0.0200 m (which, in any case, cancels out) and R = 0.0300 m, we obtain 

 
12 2 2 7

0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)

2 2 (0.0300 m)

3.54 10  T .

B
R

 

 

 



     
 

 

 

 

(b) For a value of r larger than R, we must note that the flux enclosed has already reached 

its full amount (when r = R in the given flux expression).  Referring to the equation we 

wrote in our solution of part (a), this means that the final fraction ( /r R ) should be 

replaced with unity.  On the left hand side of that equation, we set r = 0.0500 m and solve.  

We now find  

 
12 2 2 7

0 0

17

(0.60 V m/s) (8.85 10 C /N m )(4 10 T m/A)(0.60 V m/s)

2 2 (0.0500 m)

2.13 10  T .

B
r

 

 

 



     
 

 

 

 

9. (a) Application of Eq. 32-7 with A = r
2
 (and taking the derivative of the field 

expression given in the problem) leads to 

 

  2

0 0(2 ) 0.00450 V/m sB r r     . 
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For r = 0.0200 m, this gives  

 

0 0

12 2 2 7

22

1
(0.00450 V/m s)

2
1

(8.85 10 C /N m )(4 10 T m/A)(0.0200 m)(0.00450 V/m s)
2
5.01 10  T .

B r 

 



 

     

 

 

 

(b) With r > R, the expression above must replaced by 

 

 2

0 0(2 ) 0.00450 V/m sB r R     . 

 

Substituting r = 0.050 m and R = 0.030 m, we obtain B = 4.51  10
22 

T. 

 

10. (a) Here, the enclosed electric flux is found by integrating 

 
3

2

0 0

1
2 (0.500 V/m s)(2 ) 1

2 3

r r

E

r r
E rdr t rdr t r

R R
  

  
        

   
   

 

with SI units understood.  Then (after taking the derivative with respect to time) Eq. 32-3 

leads to   
3

2

0 0

1
(2 )

2 3

r
B r r

R
   

 
  

 
. 

 

For r = 0.0200 m and R = 0.0300 m, this gives B = 3.09  10
20 

T. 

 

(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 

the upper limit is now R.  Thus, 
3

2 21 1

2 3 6
E

R
t R t R

R
 
 

    
 

.

Consequently, Eq. 32-3 becomes 

2

0 0

1
(2 )

6
B r R     

which for r = 0.0500 m, yields   

 
2 12 7 2

200 0 (8.85 10 )(4 10 )(0.030)
1.67 10  T .

12 12(0.0500)

R
B

r

   
 

     

 

11. (a) Noting that the magnitude of the electric field (assumed uniform) is given by E = 

V/d (where d = 5.0 mm), we use the result of part (a) in Sample Problem 32.01 – 

“Magnetic field induced by changing electric field:” 
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 0 0 0 0 .
2 2

r rdE dV
B r R

dt d dt

   
    

 

We also use the fact that the time derivative of sin (t) (where  = 2f = 2(60)  377/s 

in this problem) is  cos(t). Thus, we find the magnetic field as a function of r (for r  

R; note that this neglects “fringing” and related effects at the edges): 

 

 0 0 0 0 max
max maxcos

2 2

r rV
B V t B

d d

    
     

 

where Vmax = 150 V. This grows with r until reaching its highest value at r = R = 30 mm: 

 

     

 

12 3

0 0 max
max

3

12

4 H m 8.85 10 F m 30 10 m 150V 377 s

2 2 5.0 10 m

1.9 10 T.

r R

RVB
d

  
  

 



  
 



 

 

 

(b) For r  0.03 m, we use the expression  

 

max 0 0 max / 2B rV d    

 

found in part (a) (note the B  r dependence), and for r  0.03 m we perform a similar 

calculation starting with the result of part (b) in Sample Problem 32.01 — “Magnetic 

field induced by changing electric field:” 

 

 

 

2 2 2

0 0 0 0 0 0
max max

max max max

2

0 0 max

cos
2 2 2

   for
2

R R RdE dV
B V t

r dt rd dt rd

R V
r R

rd

     
 

  

     
       
     

 

 

 

(note the B  r
–1

 dependence — see also Eqs. 32-16 and 

32-17). The plot, with SI units understood, is shown to 

the right. 

 

12. From Sample Problem 32.01 — “Magnetic field 

induced by changing electric field,” we know that B  r 

for r  R and B  r
–1

 for r  R. So the maximum value of 

B occurs at r = R, and there are two possible values of r 

at which the magnetic field is 75% of Bmax. We denote 

these two values as r1 and r2, where r1 < R and r2 > R.  

 

(a) Inside the capacitor, 0.75 Bmax/Bmax = r1/R, or r1 = 0.75 R = 0.75 (40 mm) =30 mm. 

 

(b) Outside the capacitor, 0.75 Bmax/Bmax = (r2/R)
–1

, or  
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r2 = R/0.75 = 4R/3 = (4/3)(40 mm) = 53 mm. 

 

(c) From Eqs. 32-15 and 32-17, 

 

  

 

7

50 0
max

4 10 T m A 6.0A
3.0 10 T.

2 2 2 0.040m

di i
B

R R

 

  




 

      

 

13. Let the area plate be A and the plate separation be d. We use Eq. 32-10: 

 

i
d

dt

d

dt
AE A

d

dt

V

d

A

d

dV

dt
d

E  
F
HG
I
KJ 

F
HG
I
KJ  


0 0 0

0 b g ,  

or 

dV

dt

i d

A

i

C

d d  


 
 0

6

515
7 5 10

.
. .

A

2.0 10 F
V s  

 

Therefore, we need to change the voltage difference across the capacitor at the rate of 
57.5 10  V/s . 

 

14. Consider an area A, normal to a uniform electric field 

E . The displacement current 

density is uniform and normal to the area. Its magnitude is given by Jd = id/A. For this 

situation , 0 ( / )di A dE dt , so 

J
A

A
dE

dt

dE

dt
d  

1
0 0  .  

 

15. THINK The displacement current is related to the changing electric flux by 

0( / ).d Ei d dt   

 

EXPRESS Let A be the area of a plate and E be the magnitude of the electric field 

between the plates. The field between the plates is uniform, so E = V/d, where V is the 

potential difference across the plates and d is the plate separation.  

 

ANALYZE Thus, the displacement current is 

 

0
0 0 0

( )
.E

d

Ad d EA dE dV
i A

dt dt dt d dt


  


     

 

Now, 0A/d is the capacitance C of a parallel-plate capacitor (not filled with a dielectric), 

so 

i C
dV

dt
d  .  

 

LEARN The real current charging the capacitor is 
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  
dq d dV

i CV C
dt dt dt

   . 

Thus, we see that di i . 

 

16. We use Eq. 32-14: 0 ( / ).di A dE dt  Note that, in this situation, A is the area over 

which a changing electric field is present. In this case r > R, so A = R
2
. Thus, 

 

  
12

22 12 2 2
0 0

2.0A V
7.2 10 .

m s8.85 10 C /N m 0.10m

d di idE

dt A R    
    

 
 

 

17. (a) Using Eq. 27-10, we find E J
i

A
  

 









 162 10 100

500 10
0 324

8

6

.

.
. .

 m A

m
V m

2

c hb g
 

 

(b) The displacement current is 

 

   12 8

0 0 0 0

16

8.85 10 F/m 1.62 10 2000A s

2.87 10 A.

E
d

d dE d i di
i A A

dt dt dt A dt


      



  
        

 

 

 

(c) The ratio of fields is 
 

 

16
180

0

due to 2 2.87 10 A
2.87 10 .

due to 2 100A

d d d
B i i r i

B i i r i

 

 




      

 

18. From Eq. 28-11, we have i = ( / R ) e
t/

  since we are ignoring the self-inductance of 

the capacitor. Equation 32-16 gives 

 0

22

di r
B

R




 . 

 

Furthermore, Eq. 25-9 yields the capacitance  

 

 
2

110 (0.05 m)
2.318 10 F

0.003 m
C

     , 

 

so that the capacitive time constant is  

 

 = (20.0 × 10
6 
)(2.318 × 10

11 
F) = 4.636 × 10

4 
s. 

 

At t = 250 × 10
6 

s, the current is 

 

i = 
12.0 V

20.0 x 10
6 


  e
t/

  = 3.50  × 10
7 

A . 
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Since i = id (see Eq. 32-15) and r = 0.0300 m, then (with plate radius R = 0.0500 m) we 

find 
7 7

130

2 2

(4 10 T m/A)(3.50 10 A)(0.030 m)
8.40 10  T

2 2 (0.050 m)

di r
B

R



 

 
  

    . 

 

19. (a) Equation 32-16 (with Eq. 26-5)  gives, with A = R
2
,  

 
2

0 0 0
02 2 2

7 2

( ) 1

2 2 2 2

1
(4 10 T m/A)(6.00 A/m )(0.0200 m) 75.4 nT .

2

d d d
d

i r J Ar J R r
B J r

R R R

   


  



   

   

  

(b) Similarly, Eq. 32-17 gives 
2

0 0 67.9 nT
2 2

d di J R
B

r r

  

 
   . 

 

20. (a) Equation 32-16 gives  0

2
2.22 T

2

di r
B

R





  .  

(b) Equation 32-17 gives 0 2.00 T
2

diB
r





  .  

 

21. (a) Equation 32-11 applies (though the last term is zero) but we must be careful with 

id,enc .  It is the enclosed portion of the displacement current, and if we related this to the 

displacement current density Jd , then 

 

 
3

2 2

enc
0 0

1
2 (4.00 A/m )(2 ) 1 / 8

2 3

r r

d d

r
i J r dr r R r dr r

R
  

 
     

 
   

 

with SI units understood.  Now, we apply Eq. 32-17 (with id replaced with id,enc) or start 

from scratch with Eq. 32-11, to get 
0 enc

27.9 nT
2

di
B

r




  . 

 

(b) The integral shown above will no longer (since now r > R) have r as the upper limit; 

the upper limit is now R.  Thus,  

 
3

2 2

enc

1 4
8

2 3 3
d d

R
i i R R

R
 
 

    
 

. 

Now Eq. 32-17 gives 0 15.1 nT
2

diB
r




  .  

 

22. (a) Eq. 32-11 applies (though the last term is zero) but we must be careful with id,enc .  

It is the enclosed portion of the displacement current.  Thus Eq. 32-17 (which derives 

from Eq. 32-11) becomes, with id replaced with id,enc, 
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0 enc 0 (3.00 A)( / )

2 2

di r R
B

r r

 

 
   

 

which yields (after canceling r, and setting R = 0.0300 m) B = 20.0 T. 

 

(b) Here id = 3.00 A, and we get 0 12.0 T
2

diB
r





  . 

 

23. THINK The electric field between the plates in a parallel-plate capacitor is changing, 

so there is a nonzero displacement current 
0( / )d Ei d dt   between the plates. 

 

EXPRESS Let A be the area of a plate and E be the magnitude of the electric field 

between the plates. The field between the plates is uniform, so E = V/d, where V is the 

potential difference across the plates and d is the plate separation. The current into the 

positive plate of the capacitor is 

 

   0
0 0

( ) E
A ddq d dV d Ed dE

i CV C A
dt dt dt d dt dt dt


 


      , 

 

which is the same as the displacement current.  

 

ANALYZE (a) Thus, at any instant the displacement current id in the gap between the 

plates equals the conduction current i in the wires: id = i = 2.0 A. 

 

(b) The rate of change of the electric field is 

 

dE

dt A

d

dt

i

A

E d
F
HG

I
KJ  


 



1 2 0

85 10 10
2 3 10

0

0

0
12 2

11






 .

. .
. .

A

8 F m m

V

m sc hb g  

 

(c) The displacement current through the indicated path is 

 

 
2

2

2

0.50m
2.0 A 0.50 A.

1.0m
d d

d
i i

L

   
      

  
 

 

(d) The integral of the field around the indicated path is 

 
 
B ds id        z 0

16 7126 10 050 6 3 10. . .H m A T m.c hb g  

 

LEARN the displacement through the dashed path is proportional to the area encircled by 

the path since the displacement current is uniformly distributed over the full plate area.  

 

24. (a) From Eq. 32-10, 
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     

   

5 4 4

0 0 0 0

12 2 2 2 2 4

8

4.0 10 6.0 10 6.0 10 V m s

8.85 10 C /N m 4.0 10 m 6.0 10 V m s

2.1 10 A.

E
d

d dE d
i A A t A

dt dt dt
   

 




         
 

      

  

 

 

Thus, the magnitude of the displacement current is 8| | 2.1 10 A.di
   

 

(b) The negative sign in di implies that the direction is downward.  

 

(c) If one draws a counterclockwise circular loop s around the plates, then according to 

Eq. 32-18, 

s
dB ds iz   

 
0 0,  

 

which means that 
 
B ds  0 . Thus 


B  must be clockwise. 

 

25. (a) We use 
 
B ds I z 0 enclosed  to find 

 

 
   

2

0 6 2 30 enclosed
0

7

1 1
1.26 10 H m 20A m 50 10 m

2 2 2 2

6.3 10 T.

d

d

J rI
B J r

r r




 

 




     

 

 

 

(b) From 2 2

0 0
E

d d

d dE
i J r r

dt dt
   


   , we get 

 

dE

dt

Jd 


 
 0

12

1220

885 10
2 3 10

A m

F m

V

m s

2

.
. . 

 

26. (a) Since i = id (Eq. 32-15) then the portion of displacement current enclosed is 

 

 
2

,enc 2

/ 3
1.33A.

9
d

R i
i i

R




    

 

(b) We see from Sample Problem 32.01 — “Magnetic field induced by changing electric 

field” that the maximum field is at r = R and that (in the interior) the field is simply 

proportional to r. Therefore, 

B

B

r

Rmax

.
 

300mT

12.0mT
 

 

which yields r = R/4 = (1.20 cm)/4 = 0.300 cm.  
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(c) We now look for a solution in the exterior region, where the field is inversely 

proportional to r (by Eq. 32-17): 

B

B

R

rmax

.
 

300mT

12.0mT
 

 

which yields r = 4R = 4(1.20 cm) = 4.80 cm.   

 

27. (a) In region a of the graph, 

 

  
5 5

12 2

0 0 6

4.5 10 N C 6.0 10 N C
8.85 10 F m 1.6m 0.71A.

4.0 10 s

E
d

d dE
i A

dt dt
  



   
    



 

(b) id  dE/dt = 0. 

 

(c) In region c of the graph, 

 

  
5

12 2

0 6

4.0 10 N C
| | 8.85 10 F m 1.6m 2.8A.

2.0 10 s
d

dE
i A

dt
 



 
   


 

 

28. (a) Figure 32-35 indicates that i = 4.0 A when t = 20 ms.  Thus,  

 

Bi = oi/2r  = 0.089 mT. 

 

(b) Figure 32-35 indicates that i = 8.0 A when t = 40 ms. Thus, Bi  0.18 mT. 

 

(c) Figure 32-35 indicates that i = 10 A when t > 50 ms. Thus, Bi   0.220 mT.  

 

(d) Equation 32-4 gives the displacement current in terms of the time-derivative of the 

electric field: id = oA(dE/dt), but using Eq. 26-5 and Eq. 26-10 we have E = i/A (in 

terms of the real current); therefore, id = o(di/dt). For 0 < t < 50 ms, Fig. 32-35 indicates 

that di/dt = 200 A/s.  Thus,  

Bid = oid /2r  = 6.4  10
22 

T. 

 

(e) As in (d), Bid = oid /2r  = 6.4  10
22 

T. 

 

(f) Here di/dt = 0, so (by the reasoning in the previous step) B = 0. 

 

(g) By the right-hand rule, the direction of iB at t = 20 s is out of the page. 

 

(h) By the right-hand rule, the direction of idB at t = 20 s is out of the page. 

 

29. (a) At any instant the displacement current id in the gap between the plates equals the 

conduction current i in the wires. Thus imax = id max = 7.60 A. 
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(b) Since id = 0 (dE/dt), we have 

 

d

dt

i
E dF

HG
I
KJ  




  





max

max .
. .

 0

6

12

57 60 10
859 10

A

8.85 10 F m
V m s  

 

(c) Let the area plate be A and the plate separation be d. The displacement current is 

 

  0
0 0 0

E
d

Ad d d V dV
i AE A

dt dt dt d d dt


  

    
      

   
. 

 

Now the potential difference across the capacitor is the same in magnitude as the emf of 

the generator, so V = m sin t and dV/dt = m cos t. Thus, 0 m( / )cosdi A d t    

and max 0 m / .di A d   This means 

 

      
212

30 m

6

max

8.85 10 F m 0.180 m 130rad s 220 V
3.39 10 m,

7.60 10 Ad

A
d

i

 






 
   


 

 

where A = R
2
 was used. 

 

(d) We use the Ampere-Maxwell law in the form 
 
B ds Id z 0 , where the path of 

integration is a circle of radius r between the plates and parallel to them. Id is the 

displacement current through the area bounded by the path of integration. Since the 

displacement current density is uniform between the plates, Id = (r
2
/R

2
)id, where id is the 

total displacement current between the plates and R is the plate radius. The field lines are 

circles centered on the axis of the plates, so 

B  is parallel to ds


. The field has constant 

magnitude around the circular path, so 
 
B ds rB z 2 . Thus, 

 
2

0
0 2 2

2       .
2

d
d

i rr
rB i B

R R


 



 
   

 
 

 

The maximum magnetic field is given by 

 

   

 

6

120 max
max 22

4 T m A 7.6 10 A 0.110m
5.16 10 T.

2 2 0m

di r
B

R



 

 


  

   


 

 

30. (a) The flux through Arizona is 

 

        B Ar 43 10 295 000 10 13 106 3
2

7T km m km Wb2c hc hc h, . ,  
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inward. By Gauss’ law this is equal to the negative value of the flux ' through the rest of 

the surface of the Earth. So ' = 1.3  10
7
 Wb. 

 

(b) The direction is outward. 

 

31. The horizontal component of the Earth’s magnetic field is given by Bh i Bcos , 

where B is the magnitude of the field and i  is the inclination angle. Thus 

 

B
Bh

i

 



cos cos




16

73
55

T
T .  

 

32. (a) The potential energy of the atom in association with the presence of an external 

magnetic field 

Bext  is given by Eqs. 32-31 and 32-32: 

 

orb ext orb, ext ext .z BU B B m B          

 

For level E1 there is no change in energy as a result of the introduction of 

Bext , so U m  

= 0, meaning that m = 0 for this level.  

 

(b) For level E2 the single level splits into a triplet (i.e., three separate ones) in the 

presence of 

Bext , meaning that there are three different values of m . The middle one in 

the triplet is unshifted from the original value of E2 so its m  must be equal to 0. The 

other two in the triplet then correspond to m  = –1 and m  = +1, respectively. 

 

(c) For any pair of adjacent levels in the triplet, |m | = 1. Thus, the spacing is given by 

 
24 24| ( ) | | | (9.27 10 J/T)(0.50T) 4.64 10 J.B B BU m B m B B                

 

33. THINK An electron in an atom has both orbital angular momentum and spin angular 

momentum; the z components of the angular momenta are quantized.    

 

EXPRESS The z component of the orbital angular momentum is give by 

 

orb,
2

z

m h
L 


 

 

where h is the Planck constant and m  is the orbital magnetic quantum number. The 

corresponding z component of the orbital magnetic dipole moment is  

 

orb, Bz m   
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where 
B / 4eh m   is the Bohr magneton. When placed in an external field 

ext ,B  the 

energy associated with the orientation of 
orb  is given by 

 

orb ext .U B   

 

ANALYZE (a) Since m  = 0, Lorb,z = m h/2 = 0. 

 

(b) Since m  = 0, orb,z = – m B = 0. 

 

(c) Since m  = 0, then from Eq. 32-32, U = –orb,zBext = – m BBext = 0. 

 

(d) Regardless of the value of m , we find for the spin part 

 

U B Bs z B           , . . .9 27 10 35 32 1024 25J T mT Jc hb g  

 

(e) Now m  = –3, so 

   27

34 34

orb,

3 6.63 10 J s
3.16 10 J s 3.2 10 J s

2 2
z

m h
L

 



 
  

         

 

(f) and    24 23 23

orb, 3 9.27 10 J T 2.78 10 J T 2.8 10 J T .z Bm             

 

(g) The potential energy associated with the electron’s orbital magnetic moment is now 

 

  23 3 25

orb, ext 2.78 10 J T 35 10 T 9.7 10 J.zU B          

 

(h) On the other hand, the potential energy associated with the electron spin, being 

independent of m , remains the same: ±3.2  10
–25

 J. 

 

LEARN Spin is an intrinsic angular momentum that is not associated with the motion of 

the electron. Its z component is quantized, and can be written as 

 

2

s
z

m h
S 


 

   

where 1/ 2sm    is the spin magnetic quantum number. 

 

34. We use Eq. 32-27 to obtain  

 

U = –(s,zB) = –Bs,z, 
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where  s z e Beh m,    4  (see Eqs. 32-24 and 32-25). Thus, 

 

U B BB B B           b g c hb g2 2 9 27 10 0 25 4 6 1024 24. . . .J T T J  

 

35. We use Eq. 32-31: orb, z = – m B. 

 

(a) For m  = 1, orb,z = –(1) (9.3  10
–24

 J/T) = –9.3  10
–24

 J/T. 

 

(b) For m  = –2, orb,z = –(–2) (9.3  10
–24

 J/T) = 1.9  10
–23

 J/T. 

 

36. Combining Eq. 32-27 with Eqs. 32-22 and 32-23, we see that the energy difference is 

 

2 BU B   

 

where B is the Bohr magneton (given in Eq. 32-25). With U = 6.00  10
25

 J, we obtain 

B = 32.3 mT. 

 

37. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 

the loop is shown below: 

 
 

(b) The primary conclusion of Section 32-9 is two-fold: 

u  is opposite to 


B , and the 

effect of 

F  is to move the material toward regions of smaller | |B  values. The direction 

of the magnetic moment vector (of our loop) is toward the right in our sketch, or in the +x 

direction. 

 

(c) The direction of the current is clockwise (from the perspective of the bar magnet). 

 

(d) Since the size of | |B  relates to the “crowdedness” of the field lines, we see that 

F  is 

toward the right in our sketch, or in the +x direction. 

 

38. An electric field with circular field lines is induced as the magnetic field is turned on. 

Suppose the magnetic field increases linearly from zero to B in time t. According to Eq. 

31-27, the magnitude of the electric field at the orbit is given by 

 

E
r dB

dt

r B

t

F
HG
I
KJ 
F
HG
I
KJ2 2

,  
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where r is the radius of the orbit. The induced electric field is tangent to the orbit and 

changes the speed of the electron, the change in speed being given by 

 

v at
eE

m
t

e

m

r B

t
t

erB

me e e

  
F
HG
I
KJ
F
HG
I
KJ
F
HG
I
KJ 2 2

.  

 

The average current associated with the circulating electron is i = ev/2r and the dipole 

moment is 

 2 1
.

2 2

ev
Ai r evr

r
 



 
   

 
 

The change in the dipole moment is 

 

   
F
HG
I
KJ 

1

2

1

2 2 4

2 2

er v er
erB

m

e r B

me e

.  

 

39. For the measurements carried out, the largest ratio of the magnetic field to the 

temperature is (0.50 T)/(10 K) = 0.050 T/K. Look at Fig. 32-14 to see if this is in the 

region where the magnetization is a linear function of the ratio. It is quite close to the 

origin, so we conclude that the magnetization obeys Curie’s law. 

 

40. (a) From Fig. 32-14 we estimate a slope of B/T = 0.50 T/K when M/Mmax = 50%. So  

 

B = 0.50 T = (0.50 T/K)(300 K) = 1.5×10
2
 T. 

 

(b) Similarly, now B/T  2 so B = (2)(300) = 6.0×10
2
 T. 

 

(c) Except for very short times and in very small volumes, these values are not attainable 

in the lab. 

 

41. THINK As defined in Eq. 32-38, magnetization is the dipole moment per unit 

volume.  

 

EXPRESS Let M be the magnetization and   be the volume of the cylinder (  r L2 , 

where r is the radius of the cylinder and L is its length). The dipole moment is given by  

= M. 

 

ANALYZE Substituting the values given, we obtain  

 

        M r L   2 3
2

2 2530 10 500 10 2 08 10. . . .A m m m J Tc h c h c h  

 

LEARN In a sample with N atoms, the magnetization reaches maximum, or saturation, 

when all the dipoles are completely aligned, leading to max / .M N  
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42. Let 

K kT B B B      
3

2
2

   
  d i  

which leads to 

T
B

k
 










4

3

4 10 10 050

3 138 10
0 48

23

23

 . .

.
. .

J T T

J K
K

c hb g
c h  

 

43. (a) A charge e traveling with uniform speed v around a circular path of radius r takes 

time T = 2r/v to complete one orbit, so the average current is 

 

.
2

e ev
i

T r
   

 

The magnitude of the dipole moment is this multiplied by the area of the orbit: 

 

2 .
2 2

ev evr
r

r
 


   

 

Since the magnetic force with magnitude evB is centripetal, Newton’s law yields evB = 

mev
2
/r, so / .er m v eB  Thus, 

 
F
HG
I
KJ 
F
HG
I
KJ
F
HG
I
KJ 

1

2

1 1

2

2ev
m v

eB B
m v

K

B

e
e

eb g .  

 

The magnetic force  ev B
 

 must point toward the center of the circular path. If the 

magnetic field is directed out of the page (defined to be +z direction), the electron will 

travel counterclockwise around the circle. Since the electron is negative, the current is in 

the opposite direction, clockwise and, by the right-hand rule for dipole moments, the 

dipole moment is into the page, or in the –z direction. That is, the dipole moment is 

directed opposite to the magnetic field vector. 

 

(b) We note that the charge canceled in the derivation of  = Ke/B. Thus, the relation  = 

Ki/B holds for a positive ion.  

 

(c) The direction of the dipole moment is –z, opposite to the magnetic field. 

 

(d) The magnetization is given by M = ene + ini, where e is the dipole moment of an 

electron, ne is the electron concentration, i is the dipole moment of an ion, and ni is the 

ion concentration. Since ne = ni, we may write n for both concentrations. We substitute e 

= Ke/B and i = Ki/B to obtain 

 

   
21 3

20 21 25.3 10 m
6.2 10 J+7.6 10 J 3.1 10 A m.

1.2T
e i

n
M K K

B


 

        
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44. Section 32-10 explains the terms used in this problem and the connection between M 

and . The graph in Fig. 32-39 gives a slope of 

 

max

ext

/ 0.15
0.75 K/T

/ 0.20 T/K

M M

B T
   .  

Thus we can write 

 
max

0.800 T
(0.75 K/T) 0.30

2.00 K




  . 

 

45. THINK According to statistical mechanics, the probability of a magnetic dipole 

moment placed in an external magnetic field having energy U is / ,U kTP e  where k is 

the Boltzmann’s constant.  

    

EXPRESS The orientation energy of a dipole in a magnetic field is given by .U B    

So if a dipole is parallel with ,B  then ;U B   however, U B   if the alignment is 

anti-parallel. We use the notation /( ) B kTP e   for the probability of a dipole that is 

parallel to 

B , and /( ) B kTP e     for the probability of a dipole that is anti-parallel to 

the field. The magnetization may be thought of as a “weighted average” in terms of these 

probabilities. 

 

ANALYZE (a) With N atoms per unit volume, we find the magnetization to be 

 

   

   

 
tanh .

B kT B kT

B kT B kT

N e eN P N P B
M N

P P e e kT

 

 

    


 





   
    

    
 

 

(b) For B kT  (that is, B kT/  1) we have e
±B/kT

  1 ± B/kT, so 

 

M N
B

kT

N B kT B kT

B kT B kT

N B

kT


F
HG
I
KJ 

  

  


   

 


tanh .

1 1

1 1

2b g b g
b g b g  

 

(c) For B kT  we have tanh(B/kT)  1, so tanh .
B

M N N
kT


 

 
  

 
 

 

(d) One can easily plot the tanh function using, for instance, a graphical calculator. One 

can then note the resemblance between such a plot and Fig. 32-14. By adjusting the 

parameters used in one’s plot, the curve in Fig. 32-14 can reliably be fit with a tanh 

function. 

 

LEARN As can be seen from Fig. 32-14, the magnetization M is linear in B/kT in the 

regime / 1B T  . On the other hand, when ,B T  M approaches a constant.    
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46. From Eq. 29-37 (see also Eq. 29-36) we write the torque as   = Bh sin where the 

minus indicates that the torque opposes the angular displacement  (which we will 

assume is small and in radians).  The small angle approximation leads to 

hB    which is an indicator for simple harmonic motion (see section 16-5, 

especially Eq. 16-22).  Comparing with Eq. 16-23, we then find the period of oscillation 

is 

2
h

I
T

B



  

 

where I is the rotational inertial that we asked to solve for. Since the frequency is given as 

0.312 Hz, then the period is T = 1/f = 1/(0.312 Hz) = 3.21 s. Similarly, Bh = 18.0  10
6

 T 

and = 6.80  10
4

 J/T.  The above relation then yields I = 3.19  10
9 2kg m .  

  

47. THINK In this problem, we model the Earth’s magnetic dipole moment with a 

magnetized iron sphere.   

 

EXPRESS If the magnetization of the sphere is saturated, the total dipole moment is total 

= N, where N is the number of iron atoms in the sphere and  is the dipole moment of an 

iron atom. We wish to find the radius of an iron sphere with N iron atoms. The mass of 

such a sphere is Nm, where m is the mass of an iron atom. It is also given by 4R
3
/3, 

where  is the density of iron and R is the radius of the sphere. Thus Nm = 4R
3
/3 and 

 

N
R

m


4

3

3
.  

We substitute this into total = N  to obtain 

 
1 33

total
total

34
.

3 4

mR
R

m

 




 
    

 
 

 

 

ANALYZE (a) The mass of an iron atom is 

 

m      56 56 166 10 9 30 1027 26u u kg u kg.b gc h. .  

 

Therefore, the radius of the iron sphere is 

 

R 
 

 

L
N
MM

O
Q
PP  





3 9 30 10 8 0 10

4 21 10
18 10

26 22

23

1 3

5
. .

.
.

kg J T

kg m J T
m.

3

c hc h
c hc h  
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(b) The volume of the sphere is V Rs     
4 4

182 10 2 53 103 5
3

16






. .m m3c h  and the 

volume of the Earth is 

 
3

3 6 21 34 4
6.37 10 m 1.08 10 m ,E EV R

 
    

 
 

 

so the fraction of the Earth’s volume that is occupied by the sphere is 

 
16 3

5

21 3

2.53 10 m
2.3 10 .

1.08 10 m

s

E

V

V


  


 

 

LEARN The finding that s EV V  makes it unlikely that our simple model of a 

magnetized iron sphere could explain the origin of Earth’s magnetization.  

 

48. (a) The number of iron atoms in the iron bar is 

 

N 


 
7 9 50 10

55847 6 022 10
4 3 10

23

23
. . .

. .
. .

g cm cm cm

g mol mol

3 2c hb gc h
b g c h  

 

Thus the dipole moment of the iron bar is 

 

     21 10 4 3 10 8 923 23. . . .J T A m2c hc h  

 

(b)  = B sin 90° = (8.9 A · m
2
)(1.57 T) = 13 N · m. 

 

49. THINK Exchange coupling is a quantum phenomenon in which electron spins of one 

atom interact with those of neighboring atoms. 

 

EXPRESS The field of a dipole along its axis is given by Eq. 30-29:  

 

B
z


 0

32
,  

 

where  is the dipole moment and z is the distance from the dipole. The energy of a 

magnetic dipole 

  in a magnetic field 


B  is given by 

 

U B B    
 
  cos , 

 

where  is the angle between the dipole moment and the field. 

 

ANALYZE (a) Thus, the magnitude of the magnitude field at a distance 10 nm away 

from the atom is 
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  
 

7 23

6
4 10 T m A 1.5 10 J T

3.0 10 T.
2 m

B

 





  
  

 
 

 

(b) The energy required to turn it end-for-end (from  = 0° to  = 180°) is 

 

U B         2 2 15 10 30 10 9 0 1023 6 29 10 . . .J T T J = 5.6 10 eV.c hc h  

 

(c) The mean kinetic energy of translation at room temperature is about 0.04 eV. Thus, if 

dipole-dipole interactions were responsible for aligning dipoles, collisions would easily 

randomize the directions of the moments and they would not remain aligned. 

 

LEARN The persistent alignment of magnetic dipole moments despite the randomizing 

tendency due to thermal agitation is what gives the ferromagnetic materials their 

permanent magnetism.   

 

50. (a)  Equation 29-36 gives  

 

  = rod B sin = (2700 A/m)(0.06 m)(0.003 m)
2
(0.035 T)sin(68°) = 1.49  10

4  
N m . 

 

We have used the fact that the volume of a cylinder is its length times its (circular) cross 

sectional area. 

 

(b) Using Eq. 29-38, we have 

 

U = – rod B(cos f  – cos i) 

                     = –(2700 A/m)(0.06 m)(0.003m)
2
(0.035T)[cos(34°) – cos(68°)] 

=  –72.9 J. 

 

51. The saturation magnetization corresponds to complete alignment of all atomic dipoles 

and is given by Msat = n, where n is the number of atoms per unit volume and  is the 

magnetic dipole moment of an atom. The number of nickel atoms per unit volume is n = 

/m, where  is the density of nickel. The mass of a single nickel atom is calculated using 

m = M/NA, where M is the atomic mass of nickel and NA is Avogadro’s constant. Thus, 

 

  3 23

22 3

28 3

8.90g cm 6.02 10 atoms mol
9.126 10 atoms cm

58.71g mol

9.126 10 atoms m .

AN
n

M

 
   

 

 

 

The dipole moment of a single atom of nickel is 

 

  



  M

n

sat

3

2A m

m
A m

4 70 10

9126 10
515 10

5

28

24.

.
. .  
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52. The Curie temperature for iron is 770°C. If x is the depth at which the temperature 

has this value, then 10°C + (30°C/km)x = 770°C. Therefore, 

 

x 
  




770 10
25

C C

30 C km
km.  

 

53. (a) The magnitude of the toroidal field is given by B0 = 0nip, where n is the number 

of turns per unit length of toroid and ip is the current required to produce the field (in the 

absence of the ferromagnetic material). We use the average radius (ravg = 5.5 cm) to 

calculate n: 

3

2

avg

400 turns
1.16 10 turns/m .

2 2 m)

N
n

r  
   


 

Thus, 

i
B

n
p  



  






0

0

3

7

0 20 10

4
014



.

( /
.

T

T m / A)(1.16 10 m)
 A .

3 
 

 

(b) If  is the magnetic flux through the secondary coil, then the magnitude of the emf 

induced in that coil is  = N(d/dt) and the current in the secondary is is = /R, where R is 

the resistance of the coil. Thus, 

i
N

R

d

dt
s 
F
HG
I
KJ


.  

 

The charge that passes through the secondary when the primary current is turned on is 

 

0
.s

N d N N
q i dt dt d

R dt R R

 
        

 

The magnetic field through the secondary coil has magnitude B = B0 + BM = 801B0, 

where BM is the field of the magnetic dipoles in the magnetic material. The total field is 

perpendicular to the plane of the secondary coil, so the magnetic flux is  = AB, where A 

is the area of the Rowland ring (the field is inside the ring, not in the region between the 

ring and coil). If r is the radius of the ring’s cross section, then A = r
2
. Thus, 

 

  801 2

0r B . 

 

The radius r is (6.0 cm – 5.0 cm)/2 = 0.50 cm and 

 
2 2 3 5801 m) (0.20 10 T) 1.26 10 Wb .         

 

Consequently, 
5

550(1.26 10 Wb)
7.9 10 C .

8.0
q




  

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54. (a) At a distance r from the center of the Earth, the magnitude of the magnetic field is 

given by 

20

3
1 3sin ,

4
mB

r

 



   

 

where  is the Earth’s dipole moment and m is the magnetic latitude. The ratio of the 

field magnitudes for two different distances at the same latitude is 

 

B

B

r

r

2

1

1

3

2

3
 .  

 

With B1 being the value at the surface and B2 being half of B1, we set r1 equal to the 

radius Re of the Earth and r2 equal to Re + h, where h is altitude at which B is half its 

value at the surface. Thus, 

1

2

3

3




R

R h

e

eb g .  

 

Taking the cube root of both sides and solving for h, we get 

 

    1 3 1 3 32 1 2 1 6370km 1.66 10 km.eh R       

 

(b) For maximum B, we set sin m = 1.00. Also, r = 6370 km – 2900 km = 3470 km. Thus, 

 

   

 
 

7 22 2

220
max 33 6

4

4 10 T m A 8.00 10 A m
1 3sin 1 3 1.00

4 4 m

3.83 10 T.

mB
r

 

 





   
    



 

 

 

(c) The angle between the magnetic axis and the rotational axis of the Earth is 11.5°, so 

m = 90.0° – 11.5° = 78.5° at Earth’s geographic north pole. Also r = Re = 6370 km. Thus, 

 

   

 

7 22 2

20

33

5

4 10 T m A 8.0 10 J T 1 3sin 78.5
1 3sin

4 4 m

6.11 10 T.

m

E

B
R

 

 







    
   



 

 

 

(d) i    tan tan . . .1 2 785 84 2b g  

 

(e) A plausible explanation to the discrepancy between the calculated and measured 

values of the Earth’s magnetic field is that the formulas we used are based on dipole 

approximation, which does not accurately represent the Earth’s actual magnetic field 



 

  

1401 

distribution on or near its surface. (Incidentally, the dipole approximation becomes more 

reliable when we calculate the Earth’s magnetic field far from its center.) 

 

55. (a) From 2

eiA i R    we get  

i
Re

 



 



  2

22

6

88 0 10
6 3 10

.
.

J / T

 m)
A .

2
 

 

(b) Yes, because far away from the Earth the fields of both the Earth itself and the current 

loop are dipole fields. If these two dipoles cancel each other out, then the net field will be 

zero. 

 

(c) No, because the field of the current loop is not that of a magnetic dipole in the region 

close to the loop. 

 

56. (a) The period of rotation is T = 2/ and in this time all the charge passes any fixed 

point near the ring. The average current is i = q/T = q/2 and the magnitude of the 

magnetic dipole moment is 

2 21
.

2 2

q
iA r q r


  


    

 

(b) We curl the fingers of our right hand in the direction of rotation. Since the charge is 

positive, the thumb points in the direction of the dipole moment. It is the same as the 

direction of the angular momentum vector of the ring. 

 

57. The interacting potential energy between the magnetic dipole of the compass and the 

Earth’s magnetic field is  

U B Be e    
 
  cos , 

 

where  is the angle between 

  and 


Be . For small angle 

 

U B B Be e e   


 b g     
F
HG
I
KJ  cos 1

2

1

2

2
2  

 

where  = Be. Conservation of energy for the compass then gives 

 
2

21 1
const.

2 2

d
I

dt




 
  

 
 

 

This is to be compared with the following expression for the mechanical energy of a 

spring-mass system: 

1

2

1

2

2

2m
dx

dt
kx

F
HG
I
KJ   const. ,  
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which yields   k m . So by analogy, in our case 

 


  

  
I

B

I

B

ml

e e

2 12
,  

which leads to 




 



 





ml

Be

2 2 2
2 2

6

2

12

0 050 4 0 10 45

12 16 10
8 4 10

. .
. .

kg m rad s

T
J T

b gc h b g
c h  

 

58. (a) Equation 30-22 gives  0

2
222 T

2

ir
B

R





  .  

 

(b) Equation 30-19 (or Eq. 30-6) gives 0 167 T
2

i
B

r





  .  

 

(c) As in part (b), we obtain a field of 0 22.7 T
2

i
B

r





  . 

 

(d) Equation 32-16 (with Eq. 32-15) gives 0

2
1.25 T

2

di r
B

R





  .   

 

(e) As in part (d), we get 0

2
3.75 T

2

di r
B

R





  .   

 

(f) Equation 32-17 yields B = 22.7 T. 

 

(g) Because the displacement current in the gap is spread over a larger cross-sectional 

area, values of B within that area are relatively small. Outside that cross-sectional area, 

the two values of B are identical.  

 

59. (a) We use the result of part (a) in Sample Problem 32.01 — “Magnetic field induced 

by changing electric field:” 

B
r dE

dt
r R 

 0 0

2
forb g ,  

where r = 0.80R , and 

 

dE

dt

d

dt

V

d d

d

dt
V e

V

d
et t

F
HG
I
KJ    1

0
0 


c h .  

 

Here V0 = 100 V. Thus, 
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B t
r V

d
e

V r

d
e

e

e

t t

t

t

b g
c hd ib gb gb g

c hb g
c h


F
HG
I
KJ 
F
HG

I
KJ  

 
  



  

 

 







 

 



 



 0 0 0 0 0 0

7 12

3

12

13 12

2 2

4 10 885 10 100 080 16

2 12 10 50

12 10

2 T m A V mm

s mm

T

C

N m ms

ms

2

. .

.

. .

 

 

The magnitude is  13 12ms( ) 1.2 10 T .tB t e    

 

(b) At time t = 3, B(t) = –(1.2  10
–13

 T)e
–3/

 = –5.9  10
–15

 T, with a magnitude |B(t)|= 

5.9  10
–15

 T. 

 

60. (a) From Eq. 32-1, we have 

 

      2 3

in out
0.0070Wb 0.40T 9.2 10 Wb.B B r          

 

Thus, the magnetic of the magnetic flux is 9.2 mWb. 

 

(b) The flux is inward. 

 

61. THINK The Earth’s magnetic field at a given latitude has both horizontal and vertical 

components. 

 

EXPRESS Let Bh and Bv be the horizontal and vertical components of the Earth’s 

magnetic field, respectively. Since Bh and Bv are perpendicular to each other, the 

Pythagorean theorem leads to 2 2

h vB B B  . The tangent of the inclination angle is given 

by tan / .i v hB B   

 

ANALYZE (a) Substituting the expression given in the problem statement, we have 

 

2 2

2 2 2 20 0 0

3 3 3

20

3

cos sin cos 4sin
4 2 4

1 3sin ,
4

h v m m m m

m

B B B
r r r

r

     

 

   
            

     

  


 

 

where cos
2
 m + sin

2
 m = 1 was used. 

 

(b) The inclination i is related to m by 
 
 

3

0

3

0

2 sin
tan 2 tan .

4 cos

mv
i m

h m

rB

B r

 


 

 
   

 
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LEARN At the magnetic equator (m = 0), i = 0 , and the field is 

 

   

 

7 22 2

50

33 6

4 10 T m A 8.00 10 A m
3.10 10 T.

4 4 6.37 10 m
B

r

 



   

   
  

 

 

62. (a) At the magnetic equator (m = 0), the field is 

 

   

 

7 22 2

50

33 6

4 10 T m A 8.00 10 A m
3.10 10 T.

4 4 6.37 10 m
B

r

 

 




   

   


 

 

(b) i = tan
–1

 (2 tan m) = tan
–1

 (0) = 0 . 

 

(c) At m = 60.0°, we find 

 

 2 5 2 50

3
1 3sin 3.10 10 1 3sin 60.0 5.59 10 T.

4
mB

r

 




          

 

(d)i = tan
–1

 (2 tan 60.0°) = 73.9°. 

 

(e) At the north magnetic pole (m = 90.0°), we obtain 

 

   
22 5 50

3
1 3sin 3.10 10 1 3 1.00 6.20 10 T.

4
mB

r

 




         

 

(f) i = tan
–1

 (2 tan 90.0°) = 90.0°. 

 

63. Let R be the radius of a capacitor plate and r be the distance from axis of the capacitor. 

For points with r  R, the magnitude of the magnetic field is given by 

 

B
r dE

dt

 0 0

2
,  

and for r  R, it is 

B
R

r

dE

dt

 0 0

2

2
. 

 

The maximum magnetic field occurs at points for which r = R, and its value is given by 

either of the formulas above: 

B
R dE

dt
max .

 0 0

2
 

 

There are two values of r for which B = Bmax/2: one less than R and one greater.  
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(a) To find the one that is less than R, we solve 

 

   0 0 0 0

2 4

r dE

dt

R dE

dt
  

 

for r. The result is r = R/2 = (55.0 mm)/2 = 27.5 mm.  

 

(b) To find the one that is greater than R, we solve 

 

   0 0

2

0 0

2 4

R

r

dE

dt

R dE

dt
  

 

for r. The result is r = 2R = 2(55.0 mm) = 110 mm. 

 

64. (a) Again from Fig. 32-14, for M/Mmax = 50% we have B/T = 0.50. So T = B/0.50 = 

2/0.50 = 4 K. 

 

(b) Now B/T = 2.0, so T = 2/2.0 = 1 K. 

 

65. Let the area of each circular plate be A and that of the central circular section be a. 

Then 

 

2

2
4 .

2

A R

a R




   

 

Thus, from Eqs. 32-14 and 32-15 the total discharge current is given by i = id = 4(2.0 A) 

= 8.0 A. 

 

66. Ignoring points where the determination of the slope is problematic, we find the 

interval of largest | | /E t   is 6 s < t < 7 s. During that time, we have, from Eq. 32-14, 

 

12 2 2 2 6 5

0

| |
(8.85 10 C /N m )(2.0m )(2.0 10 V m) 3.5 10 A.d

E
i A

t
  

      


 

 

67. (a) Using Eq. 32-13 but noting that the capacitor is being discharged, we have 

 

15

12 2 2 2

0

| | 5.0 A
8.8 10 V/m s

(8.85 10 C /N m )(0.0080 m)

d E i

dt A 
       

 
 . 

 

(b) Assuming a perfectly uniform field, even so near to an edge (which is consistent with 

the fact that fringing is neglected in Section 32-4), we follow part (a) of Sample Problem 

32.02 — “Treating a changing electric field as a displacement current” and relate the 

(absolute value of the) line integral to the portion of displacement current enclosed: 
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 

  

 

68. (a) Using Eq. 32-31, we find  

 

orb,z = –3B = –2.78  10
–23

 J/T. 

 

That these are acceptable units for magnetic moment is seen from Eq. 32-32 or Eq. 32-27; 

they are equivalent to A·m
2
. 

 

(b) Similarly, for m  4we obtain orb,z = 3.71  10
–23

 J/T. 

 

69. (a) Since the field lines of a bar magnet point toward its South pole, then the 

B  

arrows in one’s sketch should point generally toward the left and also towards the central 

axis. 

 

(b) The sign of 
 
B dA  for every dA


 on the side of the paper cylinder is negative. 

 

(c) No, because Gauss’ law for magnetism applies to an enclosed surface only. In fact, if 

we include the top and bottom of the cylinder to form an enclosed surface S then 

s
B dAz  
 

0  will be valid, as the flux through the open end of the cylinder near the 

magnet is positive. 

 

70. (a) From Eq. 21-3, 

E
e

r
 

  


 



4
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(b) We use Eq. 29-28: 
  

 

7 26

20

33 11

4 10 T m A 1.4 10 J T
2.0 10 T .
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p
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

 
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


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   


 

 

(c) From Eq. 32-30, 


 




orb J T

J Tp

e

p

B

p

eh m
  




 




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71. (a) A sketch of the field lines (due to the presence of the bar magnet) in the vicinity of 

the loop is shown below: 
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(b) For paramagnetic materials, the dipole moment

  is in the same direction as 


B . From 

the above figure,

  points in the –x direction. 

 

(c) Form the right-hand rule, since 

  points in the –x direction, the current flows 

counterclockwise, from the perspective of the bar magnet. 

 

(d) The effect of 

F  is to move the material toward regions of larger 


B  values. Since the 

size of 

B  relates to the “crowdedness” of the field lines, we see that 


F  is toward the left, 

or –x. 

 

72. (a)  Inside the gap of the capacitor, B1 = oid r1 /2R
2
 (Eq. 32-16); outside the gap the 

magnetic field is B2 = oid /2r2 (Eq. 32-17).  Consequently, B2 = B1R
2
/r1 r2 = 16.7 nT. 

 

(b) The displacement current is id  = 2B1R
2
/or1  = 5.00 mA. 

 

73. THINK The z component of the orbital angular momentum is give 

by orb, / 2 ,zL m h   where h is the Planck constant and m  is the orbital magnetic 

quantum number.  

 

EXPRESS The “limit” for m  is 3. This means that the allowed values of m are: 

0, 1, 2, and 3.    

 

ANALYZE (a) The number of different m ’s is 2(3) + 1 = 7. Since Lorb,z m , there are 

a total of seven different values of Lorb,z. 

 

(b) Similarly, since orb,z m , there are also a total of seven different values of orb,z. 

 

(c) The greatest allowed value of Lorb,z is given by | m |maxh/2 = 3h/2. 

 

(d) Similar to part (c), since orb,z = – m B, the greatest allowed value of orb,z is given by 

| m |maxB = 3eh/4me. 

 

(e) From Eqs. 32-23 and 32-29 the z component of the net angular momentum of the 

electron is given by 

net, orb, , .
2 2

s
z z s z

m hm h
L L L   

 
 

 

For the maximum value of Lnet,z let m  = [ m ]max = 3 and ms 
1
2

. Thus 

 

L
h h

znet ,
max

.
. 

F
HG
I
KJ 3

1

2 2

35

2 
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(f) Since the maximum value of Lnet,z is given by [mJ]maxh/2 with [mJ]max = 3.5 (see the 

last part above), the number of allowed values for the z component of Lnet,z is given by 

2[mJ]max + 1 = 2(3.5) + 1 = 8. 

 

LEARN As we shall see in Chapter 40, the allowed values of m  range from   to + , 

where  is called the orbital quantum number.  

 

74. The definition of displacement current is Eq. 32-10, and the formula of greatest 

convenience here is Eq. 32-17: 

 

  6
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 
 

 

75. (a) The complete set of values are  

 

{4,3,2,1, 0, +1, +2, +3, +4}        nine values in all. 

 

(b) The maximum value is 4B = 3.71  10
23 

J/T. 

 

(c) Multiplying our result for part (b) by 0.250 T gives U = +9.27  10
24 

J. 

 

(d) Similarly, for the lower limit, U = 9.27  10
24 

J. 

 

76. (a) The z component of the orbital magnetic dipole moment is  

 

orb, Bz m   

 

where 24

B / 4 9.27 10 J/Teh m      is the Bohr magneton. For 3,lm   we have 

 
24 23

orb, B (3)(9.27 10 J T) 2.78 10 J T.z m           

 

(b) Similarly, for 4,lm    the result is 

 
24 23

orb, B ( 4)(9.27 10 J T) 3.71 10 J T.z m           


