Chapter 28

1. THINK The magnetic force on a charged parti0l4cle is given by F, =qv x B, where
vV is the velocity of the charged particle and B is the magnetic field.

EXPRESS The magnitude of the magnetic force on the proton (of charge +e) is
F; =evBsing, where ¢is the angle between vV and B.

ANALYZE (a) The speed of the proton is

o P _ 650x 107N
eBsing (160x107°C)(2.60x107°T)sin230°

=4.00x10° m/s.

(b) The Kkinetic energy of the proton is
K = % mv? = %(1.67><1027 kg)(4.00x10° m/s)2 =1.34x107J,

which is equivalent to

K =(1.34 x 10 %)/ (1.60 x 10 * J/eV) = 835 eV.

LEARN from the definition of B given by the expression IfB =V x B, we see that the
magnetic force F, is always perpendicular to v and B.

2. The force associated with the magnetic field must point in the ] direction in order to
cancel the force of gravity in the —] direction. By the right-hand rule, B points in the
—k direction (since?x(—lA() = ]). Note that the charge is positive; also note that we need

to assume By = 0. The magnitude |B,| is given by Eq. 28-3 (with ¢ = 90°). Therefore, with
m=1.0x107 kg, v=2.0x10" m/s, and q=8.0x10"°C, we find

B=Bk :-(@j k = (~0.061 T)K .
qv

3. (a) The force on the electron is
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Fo =avxB=q(v,i+v,j)x(Bi+B,)=a(v,B,-v,B,)k
=(-16x10°C)[ (2.0x10° m/s)(-0.15 T) ~(3.0x10° m/s)(0.030 T) |
=(6.2x10™ N)k.

Thus, the magnitude of F, is 6.2 x 10" N, and F, points in the positive z direction.

(b) This amounts to repeating the above computation with a change in the sign in the
charge. Thus, IfB has the same magnitude but points in the negative z direction, namely,

Fy =—(62x10" N)k.
4. (a) We use Eq. 28-3:
Fg = |q| vB sin ¢= (+ 3.2 x 10 *° C) (550 m/s) (0.045 T) (sin 52°) = 6.2 x 10 ® N.
(b) The acceleration is
a=Fg/m=(6.2x10 ¥ N)/ (6.6 x 10 *" kg) = 9.5 x 10 m/s*.
(c) Since it is perpendicular to v, F, does not do any work on the particle. Thus from the
work-energy theorem both the kinetic energy and the speed of the particle remain

unchanged.

5. Using Eqg. 28-2 and Eq. 3-30, we obtain
F= q(vXBy —vyBX)R = q(vx(3BX)—vyBX)I2

where we use the fact that B, = 3B,. Since the force (at the instant considered) is F, k
where F, = 6.4 x 10*° N, then we are led to the condition

q(3v,-v,)B,=F, = B, :W

Substituting vy = 2.0 m/s, vy = 4.0 m/s, and q = —1.6 x 10 *° C, we obtain

-19
B-— 11 7196'4“0 N =—20T.
q@v,—-v,) (-1.6x107°C)[3(2.0 m/s)—4.0 m]

6. The magnetic force on the proton is given by F =qv x B, where q = +e . Using Eq. 3-
30 this becomes
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(4 x 1077)i + (2 x 1071)] = e[(0.03v, + 40)i + (20— 0.03vy)] — (0.02vy + 0.01v,)K]
with S1 units understood. Equating corresponding components, we find

(a) v, = —3.5x10° m/s, and

(b) vy = 7.0x10° m/s.

7.We apply F =q(E +Vx B)=m,4 tosolve for E :

jsb]

L
q
(911x10"kg)(2.00x 10 mys? )i . ) )

) ~160x10°C +(4004T)i  (12.0km/s)j+(150kmy/s)k

= (~1141 - 6.00] + 480k) v/m.

<

+Bx

8. Letting F :q(E +V x I§)=O, we get vBsing=E . We note that (for given values of

the fields) this gives a minimum value for speed whenever the sin ¢ factor is at its
maximum value (which is 1, corresponding to ¢ = 90°). So

_E_150x10° V/m

Voo =3.75x10° m/s.
B 0.400T

9. Straight-line motion will result from zero net force acting on the system; we ignore
gravity. Thus, F =q(E +V xB)=0. Note that VLB so ‘\7 x I§‘ = VB . Thus, obtaining the
speed from the formula for kinetic energy, we obtain

E E 100 V /(20x10%m)

_E_ . —267x10°T.
Vo J2K/m, - [2(10x10°V) (1.60x107°C)/(9.11x10 kg)

In unit-vector notation, B=—(2.67x10* T)k.

10. (a) The net force on the proton is given by

F

F.+F =qE+quxB= (1.6O><10’19C)[(4.Oov/m) k+(2000m/s ) jx (—2.50><10’3T)q

= (1.44x108N)k.
( )

(b) In this case, we have
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F= |3E+lfB —gE+qVxB
= (1.60x107°C)[ (-4.00V/m)k +(2000m/s) j(~2.50 mT)i |

(1.60x107°N) K.
(c) In the final case, we have
F= |3E+lfB —gE+qVxB
=(1.60x107°C)[ (4.00V/m)i+(2000m/s) jx(-2.50 mT)i |
=(6.41x10 N)i+(8.01x10-19N)F<.

11. Since the total force given by F =e(E +V x B) vanishes, the electric field E must be

perpendicular to both the particle velocity v and the magnetic field B. The magnetic

field is perpendicular to the velocity, so V x B has magnitude vB and the magnitude of
the electric field is given by E = vB. Since the particle has charge e and is accelerated

through a potential difference V, mv®/2=¢eV and v= a/2eV/m. Thus,

2(1.60x10°C)(10x10°V
E_B/%_(MT)J( - J(10~ ):6.8><105V/m.

(9.99x10%"kg)

12. (a) The force due to the electric field (F =qE) is distinguished from that associated

with the magnetic field (F =qVxB) in that the latter vanishes when the speed is zero
and the former is independent of speed. The graph shows that the force (y-component) is
negative at v = 0 (specifically, its value is —2.0 x 10™° N there), which (because q = —e)
implies that the electric field points in the +y direction. Its magnitude is

F -19
Eorey 2010 N o0 \yc—1.25 vim.

g 1.6x107"°C

(b) We are told that the x and z components of the force remain zero throughout the
motion, implying that the electron continues to move along the x axis, even though
magnetic forces generally cause the paths of charged particles to curve (Fig. 28-11). The
exception to this is discussed in Section 28-3, where the forces due to the electric and
magnetic fields cancel. This implies (Eq. 28-7) B = E/v = 2.50 x 1072T.

For F =qVxB to be in the opposite direction of F =qE we must have VxB in the

opposite direction from E, which points in the +y direction, as discussed in part (a).
Since the velocity is in the +x direction, then (using the right-hand rule) we conclude that
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the magnetic field must point in the +z direction (? xk = —f ). In unit-vector notation, we
have B=(2.50x102 T)k.

13. We use Eq. 28-12 to solve for V:

v-1B_ (23A)(065T) =7.4x10°V,
nle (8.47x10%*/m*)(150.m)(1.6x107°C)

14. For a free charge q inside the metal strip with velocity Vv we have F = q(E +V x I§) .

We set this force equal to zero and use the relation between (uniform) electric field and
potential difference. Thus,

= =0.382m/s.

E M-V|/d, (390x10°V)
V=—=
B B (120x107°T)(0.850 x 10 m)

15. (a) We seek the electrostatic field established by the separation of charges (brought on
by the magnetic force). With Eq. 28-10, we define the magnitude of the electric field as

|E|=v|B|=(20.0 m/s)(0.030 T)=0.600 V/m.

Its direction may be inferred from Figure 28-8; its direction is opposite to that defined by
V x B. In summary,
E =—(0.600V/m)k

which insures that F =q(E +V x B) vanishes.
(b) Equation 28-9 yields V =Ed =(0.600 VV/m)(2.00 m)=1.20 V.

16. We note that B must be along the x axis because when the velocity is along that axis
there is no induced voltage. Combining Eg. 28-7 and Eq. 28-9 leads to

d=

V.V
E vB
where one must interpret the symbols carefully to ensure that d, v, and B are mutually

perpendicular. Thus, when the velocity if parallel to the y axis the absolute value of the
voltage (which is considered in the same “direction” as d )is0.012 V, and

0.012V
z = = 2 m
(3.0 m/s)(0.020 T)
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On the other hand, when the velocity is parallel to the z axis the absolute value of the
appropriate voltage is 0.018 V, and

B 0.018 V B
Y (3.0m/s)(0.020T)

Thus, our answers are

(a) dx =25 cm (which we arrive at “by elimination,” since we already have figured out dy

and d;),

(b) dy =30 cm, and

(c) d; =20 cm.

17. (a) Using Eq. 28-16, we obtain

2(450x1072 m)(1L60x 107" C)(L20T
y_raB _ 2eB _2(450x107 m)(160x JL2T) _ oo m/s.
m, 400u (4.00u)(166 x 107" kg/u)

a

(b) T = 2ar/v = 27(4.50 x 1072 m)/(2.60 x 10° m/s) = 1.09 x 10" s.

(c) The kinetic energy of the alpha particle is

1, (400u)(166x107 kg/u)(260x10° m/s)

K==myv’= 5 =140x10°eV .
2 2(160x107J/eV)

(d) AV = K/q = 1.40 x 10° eV/2e = 7.00 x 10* V.

18. With the B pointing “out of the page,” we evaluate the force (using the right-hand
rule) at, say, the dot shown on the left edge of the particle’s path, where its velocity is
down. If the particle were positively charged, then the force at the dot would be toward
the left, which is at odds with the figure (showing it being bent toward the right).
Therefore, the particle is negatively charged; it is an electron.

(a) Using Eq. 28-3 (with angle ¢ equal to 90°), we obtain
|F|

V=—— =4.99x10°m/s.
e|[B|

(b) Using either Eq. 28-14 or Eq. 28-16, we find r =0.00710 m.

(c) Using Eq. 28-17 (in either its first or last form) readily yields T = 8.93 x 10 s.
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19. Let & stand for the ratio (m/|q|) we wish to solve for. Then Eq. 28-17 can be written

as T = 27&/B. Noting that the horizontal axis of the graph (Fig. 28-37) is inverse-field
(1/B) then we conclude (from our previous expression) that the slope of the line in the
graph must be equal to 27 We estimate that slope is 7.5 x 10~° T's, which implies

£=m/|q|=1.2x10"° kg/C.

20. Combining Eqg. 28-16 with energy conservation (eV = > mev® in this particular

application) leads to the expression
_m, |2eV
eB\ m,

which suggests that the slope of the r versus W graph should be 4/2me /eB? . From Fig.
28-38, we estimate the slope to be 5 x 10 in Sl units. Setting this equal to 4/Zme /eB®
and solving, we find B = 6.7 x 10 T.

21. THINK The electron is in circular motion because the magnetic force acting on it
points toward the center of the circle.

EXPRESS The kinetic energy of the electron is given by K =%mev2, where me is the

mass of electron and v is its speed. The magnitude of the magnetic force on the electron is
F; =evB which is equal to the centripetal force:

2
m,v

r

evB =

ANALYZE (a) From K = % m,v? we get

2(120x10°eV)(1L60x 107" eV/J
V= 2K _ ( )( — / ) =205x10" m/s.
m, 911x10"kg

(b) Since evB =m,v?/r, we find the magnitude of the magnetic field to be

_my (911x10"*kg)(2.05x10" mys)

_ —4
Cer (1.60x107°C)(25.0x107m) =400,

(c) The “orbital” frequency is
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v 2.07x10"mys
27r 271(25.0><10‘2m)

f= =1.31x10" Hz.

(d) The period is simply equal to the reciprocal of frequency:
T=1f=(131x10"Hz) ' =7.63x 10°%s.
LEARN The period of the electron’s circular motion can be written as

2zr _ 2r mv 27m

T= == = :
v v |[e|B |e|B

The period is inversely proportional to B.

22. Using Eq. 28-16, the radius of the circular path is

pomv_ J2mK
gB gB
where K =mv?/2 is the kinetic energy of the particle. Thus, we see that K = (rqB)?/2m
2.-1
ocg‘m,

(@) K, :(qa/qp)z (mp/ma)Kp :(2)2 (1/4) Ky =K, =1.0MeV;
(b) K, =(au/a,) (m,/m,)K,=(1)° (1/2)K, =1.0 MeV/2=0.50MeV.
23. From Eq. 28-16, we find

-31 6
5 MY _ (9.11x10"**kg)(1.30x10° mys) 1105 T,
er (1.60x10*°C)(0.350 m)

24. (a) The accelerating process may be seen as a conversion of potential energy eV into

— . . 1
kinetic energy. Since it starts from rest, Emev2 =eV and

2(1.60x10°C)(350 V
,o 2 _ A _32( ) 11010 ms.
m, 9.11x10"kg

(b) Equation 28-16 gives
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“my (911x10%kg)(L.11x10" m/s)

= = =3.16x10"*m.
eB  (160x107°C)(200x10°T)
25. (a) The frequency of revolution is
350x107°T)(160x10"°C
f-_Bd _ ) ):9.78><105Hz.

2mm, 21(9.11x10* kg)

(b) Using Eq. 28-16, we obtain

_my_2mK /2(911x10* kg)(100V/)(L60x 10 ** J/eV)

= =0964m.
B 9B (160x107°C)(3560x10°T) "

26. We consider the point at which it enters the field-filled region, velocity vector

pointing downward. The field points out of the page so that V x B points leftward, which
indeed seems to be the direction it is “pushed’’; therefore, g > 0 (it is a proton).

() Equation 28-17 becomes T =2zm, /€| B|, or

2 (1.67x107")
(1.60x107)B]

2(130><10*9)=

which yields |B|=0.252T.

(b) Doubling the kinetic energy implies multiplying the speed by V2 . Since the period T
does not depend on speed, then it remains the same (even though the radius increases by a

factor of +/2). Thus, t = T/2 = 130 ns.

27. (a) We solve for B from m = B%qx%/8V (see Sample Problem 28.04 — “Uniform
circular motion of a charged particle in a magnetic field”):

8vm
=

gX

B=

We evaluate this expression using x = 2.00 m:

=0495T.

~ [8(100x10° V)(392 x 10 * kg)
| (320x107°C)(2.00m)’
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(b) Let N be the number of ions that are separated by the machine per unit time. The
current is i = N and the mass that is separated per unit time is M = mN, where m is the
mass of a single ion. M has the value

6
M = 100x107Kg 526 10 kg/s .
3600

Since N = M/m we have

320x107° C)(2.78x10° kg/s
o _( I - 99 5075107 A.
m 392 %10 kg

(c) Each ion deposits energy gV in the cup, so the energy deposited in time At is given by

E:NqVAtz%At:iVAt.

For At=1.0h,
E = (227 x107 A)(100x 10° V)(3600s) =817 x 10°J .

To obtain the second expression, i/q is substituted for N.

28. Using F =mv?/r (for the centripetal force) and K =mv?/2, we can easily derive
the relation

NI

K=75Fr.

With the values given in the problem, we thus obtain K = 2.09 x 107%J.

29. Reference to Fig. 28-11 is very useful for interpreting this problem. The distance
traveled parallel to B is d;= vT = vy(2nme/|q|B) using Eq. 28-17. Thus,

deB
V| = B 50.3 km/s

2zrm,

using the values given in this problem. Also, since the magnetic force is |q|Bv,, then we
find v, = 41.7 km/s. The speed is therefore v = v +v] = 65.3 km/s.

30. Eq. 28-17 gives T = 22m¢ /eB. Thus, the total time is

(Lj N +(L) _m(i+i N
2), Yt (%) ="¢ (B, "B fap -
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The time spent in the gap (which is where the electron is accelerating in accordance with
Eq. 2-15) requires a few steps to figure out: letting t = tgp then we want to solve

dzvot+1at2 — 025m= [Hop L[EAV o
2 m 2\ md

e

for t. We find in this way that the time spent in the gap is t = 6 ns. Thus, the total time is
8.7 ns.

31. Each of the two particles will move in the same circular path, initially going in the
opposite direction. After traveling half of the circular path they will collide. Therefore,
using Eq. 28-17, the time is given by

7(9.11x10 %k
_T_=m_ ( 9) ~5.07x107s.
2 Bq (353x10°T)(1.60x10*C)

32. Letyv, =vcos@d. The electron will proceed with a uniform speed v, in the direction of

B while undergoing uniform circular motion with frequency f in the direction
perpendicular to B: f = eB/2zm,. The distance d is then

otV (vcos®)2mm, _ 27 (1.5x107 m/s})(9.11x10"*"kg)(cos10°) _053m.
" eB (1.60x10°C)(1.0x10°T)

33. THINK The path of the positron is helical because its velocity V has components
parallel and perpendicular to the magnetic field B.

EXPRESS If v is the speed of the positron then v sin ¢ is the component of its velocity in
the plane that is perpendicular to the magnetic field. Here ¢ = 89° is the angle between
the velocity and the field. Newton’s second law yields eBv sin ¢ = me(v sin ¢)*/r, where r
is the radius of the orbit. Thus r = (mev/eB)sin ¢. The period is given by

T 2nr 2mm,
vsing eB

The equation for r is substituted to obtain the second expression for T. For part (b), the
pitch is the distance traveled along the line of the magnetic field in a time interval of one
period. Thus p = VT cos ¢.

ANALYZE (a) Substituting the values given, we find the period to be
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2m(9.11x10 "k
T2, (011 9) =3.58x10"s.
eB  (1.60x107°C)(0.100T)

(b) We use the kinetic energy, K =1m,v?, to find the speed:

2(2.00x10°eV)(1.60x107*° J/eV
v- PR A I - V) 656107 ms.
m, 9.11x10 kg

Thus, the pitch is p=(2.65x10" m/s)(3.58x10"°s)cos 89°=1.66x10*m.
(c) The orbit radius is

_mysing (9:11x10°kg)(2.65x10" m/s)sin89°

=1.51x10"m.
eB (1.60x10*° C)(0.100 T) "

R

LEARN The parallel component of the velocity, v, =vcosg, is what determines the

pitch of the helix. On the other hand, the perpendicular component, v, =vsin g,
determines the radius of the helix.

34. (a) Equation 3-20 gives ¢ = cos *(2/19) = 84°.

(b) No, the magnetic field can only change the direction of motion of a free
(unconstrained) particle, not its speed or its kinetic energy.

(c) No, as reference to Fig. 28-11 should make clear.
(d) We findv, =vsin ¢=61.3m/s,sor =mv, /eB= 5.7 nm.

35. (a) By conservation of energy (using qV for the potential energy, which is converted
into kinetic form) the kinetic energy gained in each pass is 200 eV.

(b) Multiplying the part (a) result by n = 100 gives AK = n(200 eV) = 20.0 keV.

(c) Combining Eq. 28-16 with the kinetic energy relation (n(200 eV) = mpv2/2 in this
particular application) leads to the expression

_m 2n(200 eV)
f=eB Mp

which shows that r is proportional to \ﬁ . Thus, the percent increase defined in the
problem in going from n = 100 to n = 101 is \/101/100 —1 =0.00499 or 0.499%.
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36. (a) The magnitude of the field required to achieve resonance is

=0.787T.

o 2z fm,  2m(12.0x10° Hz)(1.67x10*'kg)
- q 1.60x10°C

(b) The Kinetic energy is given by

K

Il
NI

mv? :%m(Zan ) =%(1.67x10‘27 kg)47*(0.530 m)*(12.0x10° Hz)?
=1.33x10"2J=8.34x10°V.

(c) The required frequency is

1.60x10°C)(1.57T
f__9B _ (160~ )( ) 2 30x107 He.
27m 27(1.67x10"kg)

p

(d) The Kinetic energy is given by

1

K %mVZ:Em(Zan )2:%(1.67x1027 kg)47?(0.530 m)*(2.39x10" Hz)*

=5.3069x10*?J=3.32x10"eV.

37. We approximate the total distance by the number of revolutions times the
circumference of the orbit corresponding to the average energy. This should be a good
approximation since the deuteron receives the same energy each revolution and its period
does not depend on its energy. The deuteron accelerates twice in each cycle, and each
time it receives an energy of qV = 80 x 10° eV. Since its final energy is 16.6 MeV, the

number of revolutions it makes is
6
G 166x10"eV ..,
2(80x10°%eV)

Its average energy during the accelerating process is 8.3 MeV. The radius of the orbit is
given by r = mv/gB, where v is the deuteron’s speed. Since this is given by v =,/2K/m,

the radius is
rzﬂwfﬁzi\/ZKm.
gBV m @B

/2(8:3x10°eV)(160x 10 J/eV/)(334 x 10 kg)
r= =0375m.
(160x107°C)(157T)

For the average energy
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The total distance traveled is about
n2zr = (104)(27)(0.375) = 2.4 x 10° m.

38. (a) Using Eq. 28-23 and Eq. 28-18, we find

1.60x107°C)(1.20T
fosc = qB = ( - )( ) :1.83X107 Hz.
27m 27(1.67x10*'kg)

p

(b) From r =m,v/gB = \/2m.k /qB we have

B 2
o (raB)’ :[(o.soom)(1.60x10 #C)(1.20T) | L gey
2m,  2(1.67x10%"kg)(1.60x10*° J/eV)

p

39. THINK The magnetic force on a wire that carries a current i is given by F, =iL x B,
where L is the length vector of the wire and B is the magnetic field.

EXPRESS The magnitude of the magnetic force on the wire is given by Fg = iLB sin ¢,
where ¢ is the angle between the current and the field.

ANALYZE (a) With ¢ =70°, we have

F, =(5000A)(100m)(60.0x10°° T)sin 70°=28.2N.

(b) We apply the right-hand rule to the vector product F, =iL x B to show that the force
is to the west.

LEARN From the expression IfB =iL x B, we see that the magnetic force acting on a
current-carrying wire is a maximum when L is perpendicular to B (¢=90°), and is zero
when L is parallel to B (¢=0°).

40. The magnetic force on the (straight) wire is

F, =iBLsin 6 =(13.0A) (1.50T) (1.80m) (sin 35.0°) = 20.1N.

41. (a) The magnetic force on the wire must be upward and have a magnitude equal to the
gravitational force mg on the wire. Since the field and the current are perpendicular to
each other the magnitude of the magnetic force is given by Fg = iLB, where L is the
length of the wire. Thus,
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0.0130kg)(9.8m/s?
iLB=mg = L 9)(o8m/s ):0.467A.
LB (0.620m)(0.440T)

(b) Applying the right-hand rule reveals that the current must be from left to right.

42. (a) From symmetry, we conclude that any x-component of force will vanish
(evaluated over the entirety of the bent wire as shown). By the right-hand rule, a field in

the k direction produces on each part of the bent wire a y-component of force pointing in
the —] direction; each of these components has magnitude

|F, [=ic] B |sin30° = (2.0 A)(2.0 m)(4.0 T)sin30°=8N.
Therefore, the force on the wire shown in the figure is (—16]) N.

(b) The force exerted on the left half of the bent wire points in the —k direction, by the

right-hand rule, and the force exerted on the right half of the wire points in the +k
direction. It is clear that the magnitude of each force is equal, so that the force (evaluated
over the entirety of the bent wire as shown) must necessarily vanish.

43. We establish coordinates such that the two sides of the right triangle meet at the
origin, and the ¢, =50 cm side runs along the +y axis, while the ¢, =120 cm side runs

along the +x axis. The angle made by the hypotenuse (of length 130 cm) is
0=tan* (50/120) = 22.6°,

relative to the 120 cm side. If one measures the angle counterclockwise from the +x
direction, then the angle for the hypotenuse is 180° — 22.6° = +157°. Since we are only
asked to find the magnitudes of the forces, we have the freedom to assume the current is
flowing, say, counterclockwise in the triangular loop (as viewed by an observer on the +z

axis. We take B to be in the same direction as that of the current flow in the hypotenuse.
Then, with B =|B[=00750T,

B, =—Bcos&=-0.0692T , B, =Bsin&=0.0288T.

(a) Equation 28-26 produces zero force when L||B so there is no force exerted on the
hypotenuse of length 130 cm.

(b) On the 50 cm side, the By, component produces a force iEyBXR, and there is no
contribution from the By component. Using Sl units, the magnitude of the force on the 7,

side is therefore
(4.00 A) (0.500 m) (0.0692 T) =0138N.



1233

(c) On the 120 cm side, the B, component produces a force ifxByI?, and there is no
contribution from the By component. The magnitude of the force on the ¢, side is also

(400A)(120m)(0.0288T) = 0138N.

(d) The net force is
it,B.k+i¢,B,k=0,

keeping in mind that B, < 0 due to our initial assumptions. If we had instead assumed B
went the opposite direction of the current flow in the hypotenuse, then B, >0, but B, <0

and a zero net force would still be the result.
44, Consider an infinitesimal segment of the loop, of length ds. The magnetic field is

perpendicular to the segment, so the magnetic force on it has magnitude dF = iB ds. The
horizontal component of the force has magnitude

dF, = (iBcos®)ds
and points inward toward the center of the loop. The vertical component has magnitude
dF, =(iBsing)ds
and points upward. Now, we sum the forces on all the segments of the loop. The
horizontal component of the total force vanishes, since each segment of wire can be
paired with another, diametrically opposite, segment. The horizontal components of these

forces are both toward the center of the loop and thus in opposite directions. The vertical
component of the total force is

F, =iBsin 6’]ds=2naiBsin 0=27(0.018 m)(4.6x107° A)(3.4x107° T)sin 20°
=6.0x10"" N.

We note that i, B, and 4 have the same value for every segment and so can be factored
from the integral.

45. The magnetic force on the wire is

Fs

iLxB=iLix(B,j+B,k)=iL(-B,j+BK|

(0.500A) (0.500m) | -(0.0100T)j+(0.00300T )k

:(-2.50><10*3]+o.750><10*3 k) N.
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46. (a) The magnetic force on the wire is Fg = idB, pointing to the left. Thus

yoate el idBt  (9.13x10°A)(2.56x10 ?m)(5.63x10°T)(0.0611s)
m m 2.41x10°kg

=3.34x10%m/s.

(b) The direction is to the left (away from the generator).

47. (a) The magnetic force must push horizontally on the rod to overcome the force of

friction, but it can be oriented so that it also pulls up on the rod and thereby reduces both
the normal force and the force of friction. The forces acting on the rod are: F, the force

of the magnetic field; mg, the magnitude of the (downward) force of gravity; F, the
normal force exerted by the stationary rails upward on the rod; and f, the (horizontal)
force of friction. For definiteness, we assume the rod is on the verge of moving eastward,
which means that f points westward (and is equal to its maximum possible value Fy).

Thus, F has an eastward component F, and an upward component Fy, which can be
related to the components of the magnetic field once we assume a direction for the
current in the rod. Thus, again for definiteness, we assume the current flows northward.

Then, by the right-hand rule, a downward component (By) of B will produce the
eastward F,, and a westward component (By) will produce the upward F,. Specifically,

F, =iLB,, F,=ilLB,.
Considering forces along a vertical axis, we find

Fv=mg-F =mg-iLB,

so that
f =1 = (Mg—iLB,).

It is on the verge of motion, so we set the horizontal acceleration to zero:
F-f=0 = iLB, =x(mg—iLB,).
The angle of the field components is adjustable, and we can minimize with respect to it.

Defining the angle by By, = B sind and By = B cosé (which means @ is being measured
from a vertical axis) and writing the above expression in these terms, we obtain

Mg
iL(cos@+ p,sin0)

iLBcos@ =y, (mg—iLBsingd) = B=
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which we differentiate (with respect to ) and set the result equal to zero. This provides a
determination of the angle:

@ =tan(u,)=tan™*(0.60) = 31°.
Consequently,

0.60(1.0kg)(9.8m/s?)
B. = _ =0.10T.
(50A)(1.0m)(cos31° +0.60sin 31°)

(b) As shown above, the angle is #=tan™ (,)=tan™ (0.60)=31°.
48. We use dF, =idL x B, where dL=dxiand B=B,i+B,]. Thus,
Fo = [idCxB=["idxix(B,i+B,j)=i] " B,dxk
:(—5.0A)( [ (8.0xax) (m.mT))R=(—o.35N)R.

49. THINK Magnetic forces on the loop produce a torque that rotates it about the hinge
line. Our applied field has two components: B, >0 and B, > 0.

EXPRESS Considering each straight segment of the rectangular coil, we note that Eq.
28-26 produces a nonzero force only for the component of B which is perpendicular to
that segment; we also note that the equation is effectively multiplied by N = 20 due to the
fact that this is a 20-turn coil. Since we wish to compute the torque about the hinge line,
we can ignore the force acting on the straight segment of the coil that lies along the y axis
(forces acting at the axis of rotation produce no torque about that axis). The top and
bottom straight segments experience forces due to Eq. 28-26 (caused by the B,
component), but these forces are (by the right-hand rule) in the ty directions and are thus
unable to produce a torque about the y axis. Consequently, the torque derives completely
from the force exerted on the straight segment located at x = 0.050 m, which has length L
= 0.10 m and is shown in Fig. 28-45 carrying current in the —y direction.

Now, the B, component will produce a force on this straight segment which points in
the —x direction (back toward the hinge) and thus will exert no torque about the hinge.
However, the By component (which is equal to B cos@where B = 0.50 T and &= 30°)
produces a force equal to F = NiLBy which points (by the right-hand rule) in the +z
direction.

ANALYZE Since the action of the force F is perpendicular to the plane of the coil, and is
located a distance x away from the hinge, then the torque has magnitude

7 =(NiLB, )(x) = NiLxB cos @ = (20)(0.10 A)(0.10 m)(0.050 m)(0.50 T)cos30°
=0.0043N-m.
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Since 7 =7 xF, the direction of the torque is —y. In unit-vector notation, the torque is
7=(~4.3x10"° N-m)j

LEARN An alternative way to do this problem is through the use of Eq. 28-37:
T=Mx B. The magnetic moment vector is

fi =—(NiA) k =—(20)(0.10A)(0.0050m" )k = —(0.01A-m*)k.
The torque on the loop is

7=1ixB=(—uKk)x(Bcos@i+Bsingk)=—(uBcos6)]
=—(0.01A-m?)(0.50 T)cos30°]
= (~4.3x10° N-m)j.

50. We use ., =|zixB|,, =u#B=inr’B, and note that i = gf = qv/2xr. So

max

:(%) B :% qurB :%(1.60><1019 C)(2.19x10° m/s)(5.29x10 ' m)(7.10x10°°T)
T

=6.58x10°N-m.

51. We use Eq. 28-37 where 7 is the magnetic dipole moment of the wire loop and B is
the magnetic field, as well as Newton’s second law. Since the plane of the loop is parallel
to the incline the dipole moment is normal to the incline. The forces acting on the
cylinder are the force of gravity mg, acting downward from the center of mass, the
normal force of the incline Fy, acting perpendicularly to the incline through the center of
mass, and the force of friction f, acting up the incline at the point of contact. We take the
X axis to be positive down the incline. Then the x component of Newton’s second law for
the center of mass yields
mgsind— f =ma.

For purposes of calculating the torque, we take the axis of the cylinder to be the axis of
rotation. The magnetic field produces a torque with magnitude B siné, and the force of
friction produces a torque with magnitude fr, where r is the radius of the cylinder. The
first tends to produce an angular acceleration in the counterclockwise direction, and the
second tends to produce an angular acceleration in the clockwise direction. Newton’s
second law for rotation about the center of the cylinder, 7=l ¢, gives

fr—Bsind=la.

Since we want the current that holds the cylinder in place, we set a = 0 and « =0, and use
one equation to eliminate f from the other. The result is mgr=B. The loop is
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rectangular with two sides of length L and two of length 2r, so its area is A = 2rL and the
dipole moment is z= NiA= Ni(2rL). Thus, mgr =2NirLB and

. mg (0.250kg)(9.8m/s?)
'ToNB 2(10.0)(0.100m)(0500T)

=245A.

52. The insight central to this problem is that for a given length of wire (formed into a
rectangle of various possible aspect ratios), the maximum possible area is enclosed when
the ratio of height to width is 1 (that is, when it is a square). The maximum possible value
for the width, the problem says, is X = 4 cm (this is when the height is very close to zero,
so the total length of wire is effectively 8 cm). Thus, when it takes the shape of a square
the value of x must be % of 8 cm; that is, x = 2 cm when it encloses maximum area
(which leads to a maximum torque by Eq. 28-35 and Eq. 28-37) of A = (0.020 m)? =
0.00040 m?. Since N = 1 and the torque in this case is given as 4.8 x 10~ N-m, then the
aforementioned equations lead immediately to i = 0.0030 A.

53. We replace the current loop of arbitrary shape with an assembly of small adjacent
rectangular loops filling the same area that was enclosed by the original loop (as nearly as
possible). Each rectangular loop carries a current i flowing in the same sense as the
original loop. As the sizes of these rectangles shrink to infinitesimally small values, the
assembly gives a current distribution equivalent to that of the original loop. The
magnitude of the torque A7 exerted by B on the nth rectangular loop of area AA, is given
by Az, = NiBsinGAA,. Thus, for the whole assembly

r=>Y Az, =NiB)_AA = NiABsiné.

54. (a) The kinetic energy gained is due to the potential energy decrease as the dipole
swings from a position specified by angle dto that of being aligned (zero angle) with the
field. Thus,

K=U, -U; =—uBcosd—(—Bcos0°).

Therefore, using Sl units, the angle is

6=cos* 1—£ =cos* 1—M =77°.
1B (0.020)(0.052)

(b) Since we are making the assumption that no energy is dissipated in this process, then
the dipole will continue its rotation (similar to a pendulum) until it reaches an angle 6 =
77° on the other side of the alignment axis.

55. THINK Our system consists of two concentric current-carrying loops. The net
magnetic dipole moment is the vector sum of the individual contributions.
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EXPRESS The magnitude of the magnetic dipole moment is given by z = NiA, where N
is the number of turns, i is the current in each turn, and A is the area of a loop. Each of the
loops is a circle, so the areais A= zr?, where r is the radius of the loop.

ANALYZE (a) Since the currents are in the same direction, the magnitude of the
magnetic moment vector is

=i, A =i + i, =(7.00A)| (0.200m)’ +(0.300m)’ | =2.86A-m”

(b) Now, the two currents flow in the opposite directions, so the magnitude of the
magnetic moment vector is

p=mtfi, i’y = (7.00A)[ (0.300m)’ (0.200m)" |=1.10A-m”.

LEARN In both cases, the directions of the dipole moments are into the page. The
direction of z is that of the normal vector i to the plane of the coil, in accordance with
the right-hand rule shown in Fig. 28-19(b).

56. () 1= NAi = tr%i = (0.150 m)’ (2.60A) = 0184A - m?,
(b) The torque is
r=|ixB| = uBsin0 =(0.184 A-m*)(12.0T)sin41.0°=1.45N-m.

57. THINK Magnetic forces on a current-carrying loop produce a torque that tends to
align the magnetic dipole moment with the magnetic field.

EXPRESS The magnitude of the magnetic dipole moment is given by 2= NiA, where N
is the number of turns, i is the current in each turn, and A is the area of a loop. In this case
the loops are circular, so A = nir?, where r is the radius of a turn.

ANALYZE (a) Thus, the current is

2
po__ 20AM oA,

Nrmr?  (160)(r)(0.00190m)*

(b) The maximum torque occurs when the dipole moment is perpendicular to the field (or
the plane of the loop is parallel to the field). It is given by

max

T = 4B =(2.30 A-m*)(35.0x10° T) =8.05x10* N-m.
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LEARN The torque on the coil can be written as 7 = zx B, with 7 = |7 |=uBsiné,

where @is the angle between z and B. Thus, zis a maximum when 6 =90°, and zero
when 6 =0°.

58. From z = NiA = inr® we get

22
jo#_ BOOXITIT 55 9004,

mr w(3500 % 10° m)

59. (a) The area of the loop is A=1(30cm)(40cm) =6.0x10°cm?, so
p=iA=(50A)(60x107m*)=030A-m’.
(b) The torque on the loop is
7= 1Bsin0=(030A-m?)(80x10° T)sin90°= 24 x10*N-m.

60. Let a=30.0 cm, b =20.0 cm, and ¢ = 10.0 cm. From the given hint, we write

A A

fi= i+ i, =iab (k) +iac(j) =ia(cj-bk ) = (5.00A)(0.300m)| (0.100m) - (0.200m k|

=(0.150]—0.300R)A-m2.

61. THINK Magnetic forces on a current-carrying coil produce a torque that tends to
align the magnetic dipole moment with the field. The magnetic energy of the dipole
depends on its orientation relative to the field.

EXPRESS The magnetic potential energy of the dipole is given by U =—/- B, where /i

is the magnetic dipole moment of the coil and B is the magnetic field. The magnitude of
1 is = NiA, where i is the current in the coil, N is the number of turns, A is the area of
the coil. On the other hand, the torque on the coil is given by the vector product

7 = [ixB.

ANALYZE (a) By using the right-hand rule, we see that z is in the —y direction. Thus,
we have
i = (NiA)(—]) = —(3)(2.00 A)(4.00x10"° m?)j =—(0.0240 A-m?)j.

The corresponding magnetic energy is

U=—7i-B=-uB, =—(-0.0240 A-m?)(—3.00x10"° T) =-7.20x10"° J.
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(b) Using the fact that j-i =0, jxj=0,and jxk =i, the torque on the coil is

7 =fixB=pB,i-uBk
= (—0.0240 A-m?)(—4.00x10° T)i —(—0.0240 A-m?)(2.00x107 T)k
=(9.60x107° N-m)i + (4.80x10° N-m)k.

LEARN The magnetic energy is highest when £ is in the opposite direction of B, and
lowest when z lines up with B.

62. Looking at the point in the graph (Fig. 28-51(b)) corresponding to i, = 0 (which
means that coil 2 has no magnetic moment) we are led to conclude that the magnetic
moment of coil 1 must be 1 =2.0x10° A-m* Looking at the point where the line
crosses the axis (at i, = 5.0 mA) we conclude (since the magnetic moments cancel there)
that the magnitude of coil 2’s moment must also be g, =2.0x10° A-m® when

i, =0.0050 A, which means (Eq. 28-35)

=4.0x10° m?.

NA, _ M 2.0x10° A-m?
22, 0.0050 A

Now the problem has us consider the direction of coil 2’s current changed so that the net
moment is the sum of two (positive) contributions, from coil 1 and coil 2, specifically for
the case that i, = 0.007 A. We find that total moment is

1£=(2.0x10°A-m?) + (N2Az ip) = 4.8 x 10° A-m?.
63. The magnetic dipole moment is 7= y(O.GO?—OBO]), where

2= NiA = Nizr® = 1(0.20 A) 7(0.080 m)® = 4.02 x 10* A-m*.

Here i is the current in the loop, N is the number of turns, A is the area of the loop, and r
is its radius.

(@) The torque is

x B = y(o.Goi - 0.80]) X (0.25? + 0.3012)

T=

I
u (060)(030)(i x k) - (080)(0.25)(j x i) - (0:80)(0.30)(j x K)
1 —018j+0.20k —0.24] .
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Here ixk=—j,jxi=—k, and jxk=i are used. We also use ixi=0. Now, we
substitute the value for x to obtain

7 :(—9.7xlO"‘i—7.2><104]+8.0><104IA() N-m.
(b) The orientation energy of the dipole is given by

U=—ji-B =—y(o.6oi—o.80])-(0.25i+o.3of<) — —1(0.60)(0.25) = —0.151 = —6.0x10™*J.

A

Here i-i=1i-k=0,j-i=0, and j-k=0 are used.

64. Eq. 28-39 gives U = —ﬁ-ﬁ = —uB cos¢, so at ¢= 0 (corresponding to the lowest
point on the graph in Fig. 28-52) the mechanical energy is

K+U=K;+ (—uB)=6.7x 10 + (-5 x 10%J) = 1.7 x 107*J.

The turning point occurs where K = 0, which implies Uwum = 1.7 x 10™J. So the angle
where this takes place is given by

4
) _008_1(1.7x1é) J] 1100
7]

where we have used the fact (see above) that B =5 x 107*J.

65. THINK The torque on a current-carrying coil is a maximum when its dipole moment
is perpendicular to the magnetic field.

EXPRESS The magnitude of the torque on the coil is given by 7 =|7 | = uBsin 8, where

@is the angle between z and B. The magnitude of z is x = NiA, where i is the current

in the coil, N is the number of turns, A is the area of the coil. Thus, if N closed loops are
formed from the wire of length L, the circumference of each loop is L/N, the radius of
each loop is R = L/2nN, and the area of each loop is

A=1R? = mi(L/2nN )" = L2/4nN2.

ANALYZE (a) For maximum torque, we orient the plane of the loops parallel to the
magnetic field, so the dipole moment is perpendicular (i.e., at a 90°angle) to the field.

(b) The magnitude of the torque is then

7= NiAB:(Ni)( L jB_ iL’B

4nN% )~ 4nN’
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To maximize the torque, we take the number of turns N to have the smallest possible
value, 1. Then 7= iL’B/4r.

(c) The magnitude of the maximum torque is

. iL’B B (4.51x107* A)(0.250 m)?(5.71x10°°T)
A A

=1.28x10" N-m.

LEARN The torque tends to align 2z with B. The magnitude of the torque is a maximum
when the angle between z and B is 6 =90°, and is zero when 6 = 0°.

66. The equation of motion for the proton is

F=qvx =q(vx?+v j

Thus,

where o = eB/m. The solution is vx = Voy, Vy= Vgy COS af, and v, = —Vgy Sin at. In summary,
we have

A

V(t) = Vo, i +Vo, CoS(@t)j—V,, (Sin et )k .

67. (a) We use 7= zzx B, where z points into the wall (since the current goes clockwise

around the clock). Since B points toward the one-hour (or “5-minute’’) mark, and (by
the properties of vector cross products) 7 must be perpendicular to it, then (using the
right-hand rule) we find 7 points at the 20-minute mark. So the time interval is 20 min.

(b) The torque is given by

7| fixB|= uBsin90°=NiAB = zNir’B=67(2.0A)(0.15m)’ (70x10°T)
=5.9x102N-m.

68. The unit vector associated with the current element (of magnitude d¢) is —j. The
(infinitesimal) force on this element is

A

dF = ide(~]) (03yi +0.44])
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with SI units (and 3 significant figures) understood. Since jxi=-k and jxj=0, we
obtain
dF =03iyd( k=(6.00x10"* N/m?)yd( k.

We integrate the force element found above, using the symbol & to stand for the
coefficient 6.00 x 10* N/m?, and obtain

0.25?
2

. . ~ 00.25 ~ SN
F:IszgkIO ydy =&k =(1.88x10° N)k .

69. From m = B°qx*/8V we have Am = (B%q/8V)(2xAx). Here x =,/8Vm/B?q, which we
substitute into the expression for Am to obtain

2
Am= B 2 STVAX:BJmAx.
v B A%

Thus, the distance between the spots made on the photographic plate is

o Am [ (37u—35u)(1.66x107 kg/u) 2(7.3x10°V)

X=——7 |— =

B \mq 0.50T (36u)(1.66x10* kg/u)(1.60x10C)
=8.2x10°m.

70. (a) Equating the magnitude of the electric force (F. = eE) with that of the magnetic
force (Eq. 28-3), we obtain B = E / v sin ¢. The field is smallest when the sin ¢ factor is at

its largest value; that is, when ¢ =90°. Now, we use K = %mv2 to find the speed:

2(25x10%°eV)(160x107° J/eV
B L ) 0107y ) 296x10" mys.
m, 911x10"kg

Thus,
3
_E_1010VIm 5, 104T,
v 296x10"m/s
The direction of the magnetic field must be perpendicular to both the electric field (—])
and the velocity of the electron (+i). Since the electric force Ife = (—e)E points in the +]
direction, the magnetic force F,=(-e)VxB points in the —j direction. Hence, the

direction of the magnetic field is —k . In unit-vector notation, B =(—3.4x10‘4T)R.



1244 CHAPTER 28

71. The period of revolution for the iodine ion is
T =2nr/v=2mm/Bq,

which gives
_ BqT _ (450x107°T)(160x107°C)(129%x10°°s)

Con (7)(27)(166x 10 kg/u) -

72. (a) For the magnetic field to have an effect on the moving electrons, we need a non-
negligible component of B to be perpendicular to v (the electron velocity). It is most
efficient, therefore, to orient the magnetic field so it is perpendicular to the plane of the
page. The magnetic force on an electron has magnitude Fg = evB, and the acceleration of
the electron has magnitude a = v?/r. Newton’s second law yields evB = mev?/r, so the
radius of the circle is given by r = mev/eB in agreement with Eq. 28-16. The Kinetic

energy of the electron is K =1m,yv?, so v=,/2K/m, . Thus,
_m [K_ [mK
B\ m, e’B®
. 82 sd or B>1/

(b) If the electrons are to travel as shown in Fig. 28-53, the magnetic field must be out of
the page. Then the magnetic force is toward the center of the circular path, as it must be
(in order to make the circular motion possible).

This must be less than d, so

73. THINK The electron moving in the Earth’s magnetic field is being accelerated by the
magnetic force acting on it.

EXPRESS Since the electron is moving in a line that is parallel to the horizontal
component of the Earth’s magnetic field, the magnetic force on the electron is due to the
vertical component of the field only. The magnitude of the force acting on the electron is
given by F = evB, where B represents the downward component of Earth’s field. With F
= mea, the acceleration of the electron is a = evB/me.

2.

ANALYZE (a) The electron speed can be found from its kinetic energy K = % m,v

2K \/ 2(120x10°V)(160x10*Jjev) o o /
2K _ =6.49 x mys.

m 9.11x10*kg

e

Therefore,
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evB (1.60x107°C) (6.49x10" m/s) (55.0x10°°T)
a = =
m 9.11x10*"kg

e

=6.27x10" m/s* ~ 6.3x10" m/s’.

(b) We ignore any vertical deflection of the beam that might arise due to the horizontal
component of Earth’s field. Then, the path of the electron is a circular arc. The radius of

the path is given by a=v*/R, or

v: _ (6.49%10" m/s)®
a 6.27x10"* m/s?

The dashed curve shown represents the path. Let
the deflection be h after the electron has traveled a
distance d along the x axis. With d =Rsiné&, we
have 9

h:R(l—cos@):R(l—xll—sinZH) R—-h R
- R(l—«/l—(d/R)z).

=6.72 m.

> X

Substituting R = 6.72 m and d = 0.20 m into the expression, we obtain h = 0.0030 m.
LEARN The deflection is so small that many of the technicalities of circular geometry
may be ignored, and a calculation along the lines of projectile motion analysis (see
Chapter 4) provides an adequate approximation:

dovt — ¢4 __ 0200m

== =308x10°s.
vV 6.49x10"m/s

Then, with our y axis oriented eastward,

h= % at’ = % (6.27 ><1014) (3.08><10‘9 )2 —0.00298m ~ 0.0030 m.

74. Letting B, = By = B; and B, = B, and using Eq. 28-2 (F =qvxB ) and Eq. 3-30, we
obtain (with SI units understood)

4i-20j+12k = 2((4B,~6B, )i+ (6B, - 2B, )]+ (2B, 4B, k).
Equating like components, we find B; = -3 and B, = —4. In summary,

B :(-3.0?-3.0]-4.012)1
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75. Using Eq. 28-16, the radius of the circular path is

[ mv _ \/2mK
qB qB

where K =mv?/2 is the kinetic energy of the particle. Thus, we see that roo\/mK/qB.

(a)r_d: meKy 9p _ &E:\/ﬁzlA,and
M m,K, 0y 10u e

r, m,K, q 40u e
(b) < = _K_P_ =
rp mp p qa

1.0u 2

76. Using Eq. 28-16, the charge-to-mass ratio is a_ BL’ With the speed of the ion
m r

given by v=E/B (using Eq. 28-7), the expression becomes

_E/IB_E

Br BBT

a
m

77. THINK Since both electric and magnetic fields are present, the net force on the
electron is the vector sum of the electric force and the magnetic force.

EXPRESS The force on the electron is given by F =—e(E+VxB), where E is the

electric field, B is the magnetic field, and V is the velocity of the electron. The fact that
the fields are uniform with the feature that the charge moves in a straight line, implies
that the speed is constant. Thus, the net force must vanish.

ANALYZE The condition F =0 implies that

E =VvB =500V/m.

Its direction (so that F= 0) is downward, or —] , In the “page” coordinates. In unit-vector
notation, E =(—500 \/m)j

LEARN Electron moves in a straight line only when the condition E =vB is met. In
many experiments, a velocity selector can be set up so that only electrons with a speed
given by v=E/B can pass through.
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78. (a) In Chapter 27, the electric field (called Ec in this problem) that “drives” the
current through the resistive material is given by Eqg. 27-11, which (in magnitude) reads
Ec = pJ. Combining this with Eq. 27-7, we obtain

E. = pnev,.

Now, regarding the Hall effect, we use Eq. 28-10 to write E = v4B. Dividing one equation
by the other, we get E/E; = B/nep.

(b) Using the value of copper’s resistivity given in Chapter 26, we obtain

E_B_ 0.65T ) ;
E. nep (847x10%/m*)(1.60x10°C)(1.69x10°Q-m) 2:84x10~

79. THINK We have charged particles that are accelerated through an electric potential
difference, and then moved through a region of uniform magnetic field. Energy is
conserved in the process.

EXPRESS The kinetic energy of a particle is given by K = qV, where q is the particle’s
charge and V is the potential difference. With K =mv? /2, the speed of the particle is

_ /& _ / 2qV
m m
In the region with uniform magnetic field, the magnetic force on a particle of charge q is
qvB, which according to Newton’s second law, is equal to mv?/r, where r is the radius

of the orhit. Thus, we have
2K \/ZmK

qB qB
ANALYZE (a) Since K = qV we have K, =1K_ (as q, =2K,), or K, /K, =0.50.
(b) Similarly, q, =2K,, K, /K, =0.50.

(c) Since r oc\/mK/q , We have

2.00u)K
= MKy & [ROOWK, | 5 omota om
m,K, d, (LOO U)K,

(d) Similarly, for the alpha particle, we have
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m, K, G (400u)K, e
— | e e AP LY u |
r, Mqa o \/(1,00u) (Ka/z) e r \/_CFn cm

LEARN The radius of the particle’s path, given by r =+/2mK /gB, depends on its mass.
Kinetic energy, and charge, in addition to the field strength.

80. (a) The largest value of force occurs if the velocity vector is perpendicular to the field.
Using Eq. 28-3,

F.max = |q] VB sin (90°) = ev B = (1.60 x 10 *° C) (7.20 x 10° m/s) (83.0 x 10 *T)
=9.56 x 10" N.

(b) The smallest value occurs if they are parallel: Fg min = |g| vB sin (0) = 0.

(c) By Newton’s second law, a = Fg/me = |g| VB sin 8/me, so the angle & between v and
B is

911x107%*kg)(4.90 x 10* m/s’
9=sin‘1(meaj:s' l[( (91110 *kg) (490 10" ms') — 0.267°.

qvB 160x107°C)(7.20x10° m/s)(830x10°°T)

81. The contribution to the force by the magnetic field(|§ =B,
by Eq. 28-2:

(~0.020 T)i) is given

Fa =V B = q((17000ix B,{) +(~11000]x B,i) + 7000k B,i))

- q(—220f< —140])

in SI units. And the contribution to the force by the electric field (E = Ey] = 300] V/m) is

given by Eq. 23-1: F. = qu]. Using q = 5.0 x 10°° C, the net force on the particle is

F =(0.00080j—0.0011K) N.

82. (a) We use Eq. 28-10: vq = E/B = (10 x 10 °V/1.0 x 102 m)/(1.5 T) = 6.7 x 10 * m/s.
(b) We rewrite Eq. 28-12 in terms of the electric field:

Bi  Bi _ Bi

Vie (Ed)le Ehe
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where we use A= /d . In this experiment, A = (0.010 m)(10 x 10°® m) = 1.0 x 10" m% By
Eq. 28-10, vq4 equals the ratio of the fields (as noted in part (a)), so we are led to

Bi i 3.0A

— — _ _ 29 3
"“Ehe V,Ae  (6.7x107 m/s)(1.0x10"m?)(16x107°C) 28x10%/m".

(c) Since a drawing of an inherently 3-D situation can be misleading, we describe it in
terms of horizontal north, south, east, west and vertical up and down directions. We

assume B points up and the conductor’s width of 0.010 m is along an east-west line. We
take the current going northward. The conduction electrons experience a westward
magnetic force (by the right-hand rule), which results in the west side of the conductor
being negative and the east side being positive (with reference to the Hall voltage that
becomes established).

83. THINK The force on the charged particle is given by F= qv x B, where q isthe
charge, B is the magnetic field, and V is the velocity of the electron.

EXPRESS We write B =Bi and take the velocity of the particle to be V =vxi+vy] .Thus,
F =qVxB =q(v,i +V,])x(Bi) =—qv,Bk.
For the force to point along +k , we must have q<0.

ANALYZE The charge of the particle is

q=-— F 3 0.48 N _
v.B  (4.0x10° m/s)(sin 37°)(0.0050 T)

y

-4.0x107° C.

LEARN The component of the velocity, vy, being parallel to the magnetic field, does not
contribute to the magnetic force F; only vy, the component of V that is perpendicular to

B , contributes to F.

84. The current is in the +i direction. Thus, the i component of B has no effect, and
(with x in meters) we evaluate

3

F =(3.00A)j01 (—0.600T/m2)xzdx(ixj){—l.so%A.T.mJR=(—o.600N)f<.

85. (a) We use Eq. 28-2 and Eq. 3-30:
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T
II

( v,B,-V,B, )i+(v,B, vXBZ)]+(vXBy—vyBX)R)

( 60x10™) (((4)(0.008)—(~6) (-0.004))i+
((-6)(0.002)—(~2) (0.008))j+((~2)(~0.004)— (4)(0.002))12)
=(1.28x107)i+(6.41x10)]

with Sl units understood.

(b) By definition of the cross product, Vv L F . This is easily verified by taking the dot

(scalar) product of v with the result of part (a), yielding zero, provided care is taken not
to introduce any round-off error.

(c) There are several ways to proceed. It may be worthwhile to note, first, that if B, were
6.00 mT instead of 8.00 mT then the two vectors would be exactly antiparallel. Hence,

the angle Obetween B and V is presumably “close” to 180°. Here, we use Eq. 3-20:

0=cos™ —\7 B )_ cos™ (—_68 j =173°

VI8l \/56+/84
86. (a) We are given B =B,i =(6x10"°T)i , so that V x B = v, B,k where v, = 4x10* m/s.
We note that the magnetic force on the electron is (—e)(—vy Bxk) and therefore points in

the +k direction, at the instant the electron enters the field-filled region. In these terms,
Eq. 28-16 becomes

r= =0.0038m.

eB

X

(b) One revolution takes T = 2ar/vy = 0.60 us, and during that time the “drift” of the
electron in the x direction (which is the pitch of the helix) is Ax = v,T = 0.019 m where vy
=32 x 10° m/s.

(c) Returning to our observation of force direction made in part (a), we consider how this
IS perceived by an observer at some point on the —x axis. As the electron moves away
from him, he sees it enter the region with positive vy (which he might call “upward’’) but
“pushed” in the +z direction (to his right). Hence, he describes the electron’s spiral as
clockwise.

87. (a) The magnetic force on the electrons is given by F =qv xB. Since the field B
points to the left, and an electron (with g =—e) is forced to rotate clockwise (out of the

page at the top of the rotor), using the right-hand-rule, the direction of the magnetic force
is up the figure.
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(b) The magnitude of the magnetic force can be written as F =evB =ewrB, where o is
the angular velocity and r is the distance from the axis. Since F ~ r, the force is greater
near the rim.

(c) The work per unit charge done by the force in moving the charge along the radial line
from the center to the rim, or the voltage, is

:VlzljRea)Brdr :Ea)BR2 :E(Zyrf)BR2 = 7 fBR?
e g9 2 2

= (4000 /s)(60x107°T)(0.250 m)* = 47.1 V.

Vv

(d) The emf of the device is simply equal to the voltage calculated in part (c): £ =47.1V.
(e) The power produced is P =iV =(50.0 A)(47.1V) = 2.36x10° W.

88. The magnetic force exerted on the U-shaped wire is given by F =iLB. Using the
impulse-momentum theorem, we have

Ap = MAV :det =IiLBdt = LBjidt = LBq,

where q is the charge in the pulse. Since the wire is initially at rest, the speed at which the
wire jumps is v =LBq/m. On the other hand, energy conservation gives +mv? =mgh.
Combining the above expressions leads to
oV L(@f
20 2g\l m
Solving for g, we find

~my2gh _ (0.0100 kg),/2(9.80 m/s?)(3.00 m)
LB (0.200 m)(0.100 T)

=3.83C.

89. Just before striking the plate, the electric force on the electron is F. =eE =eV /d, in
the upward direction. Since the kinetic energy of the electron is K =imv’ =gV,
v =+/2eV /m. On the other hand, the magnetic force is

F, =evB=eB }_Zev
m

in the downward direction. To prevent the electron from striking the plate, we require
F>F, or
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2eV eV V m mV
eB,|—>— = B>—,|—=,——
\f m d d \/2ev \}2ed2

90. The average current in the loop is izgz 9 __ % andits magnetic dipole

2rzrlv  2xr

moment is

. qv o 1
p (zﬁr](n )-2o

With 7 = zix B, we find the maximum torque exerted on the loop by a uniform magnetic
field to be

Toax = MB = 1quB.
2
91. When the electric and magnetic forces are in balance, eE =ev,B, where vq is the drift

speed of the electrons. In addition, since the current density is J =nev,, we solve for n

and find
J J JB

nN=——= = —
ev, e(E/B) eE

92. With F, =v, =B, =0, Eq. 28-2 (and Eq. 3-30) gives

where q = —e for the electron. The last term immediately implies B, = 0, and either of the
other two terms (along with the values stated in the problem, bearing in mind that “fN”
means femto-newtons or 10> N) can be used to solve for B, :

_ -15
5 __F 4.2x10°N 075 T

'~ Zev. —(L6x10 " C)(35,000m/s)

y

We therefore find that the magnetic field is given by B =(0.75 T)R.




