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Chapter 39 
 

 

1. According to Eq. 39-4, En  L
– 2

. As a consequence, the new energy level E'n satisfies 

 




F
HG
I
KJ 


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
E

E

L

L

L

L

n

n

2 2
1

2
,  

 

which gives  L L2 .  Thus, the ratio is / 2 1.41.L L    

 

2. (a) The ground-state energy is 
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(b) With mp = 1.67  10
– 27 

kg, we obtain 
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3. Since En  L
– 2

 in Eq. 39-4, we see that if L is doubled, then E1 becomes (2.6 eV)(2)
– 2

 

= 0.65 eV. 

 

4. We first note that since h = 6.626  10
–34

 J·s and c = 2.998  10
8
 m/s,  

 

hc 
  


 



 

6 626 10 2 998 10

1602 10 10
1240

34 8
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. .

.

J s m / s

J / eV m / nm
eV nm.

c hc h
c hc h  

 

Using the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV), Eq. 39-4 can be 

rewritten as 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

The energy to be absorbed is therefore 
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5. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-4 as 

 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

 

For n = 3, we set this expression equal to 4.7 eV and solve for L: 

 

L
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6. With m = mp = 1.67  10
– 27

 kg, we obtain 
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Alternatively, we can use the mc
2
 value for a proton from Table 37-3 (938  10

6
 eV) and 

hc = 1240 eV · nm by writing Eq. 39-4 as 

 

E
n h
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n hc

m c L
n

p

 
2 2

2

2 2

2 28 8

b g
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This alternative approach is perhaps easier to plug into, but it is recommended that both 

approaches be tried to find which is most convenient. 

 

7. To estimate the energy, we use Eq. 39-4, with n = 1, L equal to the atomic diameter, 

and m equal to the mass of an electron: 
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8. The frequency of the light that will excite the electron from the state with quantum 

number ni to the state with quantum number nf is  

 

 2 2

28
f i

E h
f n n

h mL


    
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and the wavelength of the light is 

  


c

f

mL c

h n nf i

8 2

2 2d i .  

The width of the well is  

 

2 2

2

( )

8

f ihc n n
L

mc

 
 . 

 

The longest wavelength shown in Figure 39-27 is 80.78 nm,  which corresponds to a 

jump from 2in   to 3fn  . Thus, the width of the well is  
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9. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by rewriting Eq. 39-4 as 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

 

(a) The first excited state is characterized by n = 2, and the third by n' = 4. Thus, 
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Now that the electron is in the n' = 4 level, it can “drop” to a lower level (n'') in a variety 

of ways. Each of these drops is presumed to cause a photon to be emitted of wavelength 

 

 
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2 2
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8
.

n n

mc Lhc

E E hc n n

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For example, for the transition n' = 4 to n'' = 3, the photon emitted would have 

wavelength 

  

  

23

2 2

8 511 10 eV 0.250nm
29.4nm,

1240eV nm 4 3



 

 
 

 

and once it is then in level n'' = 3 it might fall to level n''' = 2 emitting another photon. 

Calculating in this way all the possible photons emitted during the de-excitation of this 

system, we obtain the following results: 
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(b) The shortest wavelength that can be emitted is 4 1 13.7nm. l  

 

(c) The second shortest wavelength that can be emitted is 4 2 17.2nm. l  

 

(d) The longest wavelength that can be emitted is 2 1 68.7nm. l  

 

(e) The second longest wavelength that can be emitted is 3 2 41.2nm. l  

 

(f) The possible transitions are shown next. The energy levels are not drawn to scale. 

 

 
 

(g) A wavelength of 29.4 nm corresponds to 4 3  transition. Thus, it could make either 

the 3 1  transition or the pair of transitions: 3 2  and 2 1 . The longest wavelength 

that can be emitted is 2 1 68.7nm. l  

 

(h) The shortest wavelength that can next be emitted is 3 1 25.8nm. l  

 

10. Let the quantum numbers of the pair in question be n and n + 1, respectively. Then 

 

En+1 – En = E1 (n + 1)
2
 – E1n

2
 = (2n + 1)E1. 

Letting 

 

E E n E E E E E En n        1 1 4 3

2

1

2

1 12 1 3 3 4 3 21b g b g c h ,  

 

we get 2n + 1 = 21, or n = 10. Thus, 

 

(a) the higher quantum number is n + 1 = 10 + 1 = 11, and 

 

(b) the lower quantum number is n = 10. 

 

(c) Now letting 
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we get 2n + 1 = 14, which does not have an integer-valued solution. So it is impossible to 

find the pair of energy levels that fits the requirement. 

 

11. Let the quantum numbers of the pair in question be n and n + 1, respectively. We note 

that  

E E
n h

mL

n h

mL

n h

mL
n n  


 


1

2 2

2

2 2

2

2

2

1

8 8

2 1

8

b g b g
 

 

Therefore, En+1 – En = (2n + 1)E1. Now 

 

E E E E E n En n      1 5

2

1 1 15 25 2 1b g ,  

 

which leads to 2n + 1 = 25, or n = 12. Thus, 

 

(a) The higher quantum number is n + 1 = 12 + 1 = 13. 

 

(b) The lower quantum number is n = 12.  

 

(c) Now let 

E E E E E n En n      1 6

2

1 1 16 36 2 1b g ,  

 

which gives 2n + 1 = 36, or n = 17.5. This is not an integer, so it is impossible to find the 

pair that fits the requirement. 

 

12. The energy levels are given by En = n
2
h

2
/8mL

2
, where h is the Planck constant, m is 

the mass of an electron, and L is the width of the well. The frequency of the light that will 

excite the electron from the state with quantum number ni to the state with quantum 

number nf is  

 2 2

28
f i

E h
f n n

h mL


    

and the wavelength of the light is 

 

2

2 2

8
.

f i

c mL c

f h n n
  


 

 

We evaluate this expression for ni = 1 and nf = 2, 3, 4, and 5, in turn. We use h = 6.626  

10
– 34

 J · s, m = 9.109  10
– 31

kg, and L = 250  10
– 12

 m, and obtain the following results: 

 

(a) 6.87  10
– 8

 m for nf = 2, (the longest wavelength).  

 

(b) 2.58  10
– 8

 m for nf = 3, (the second longest wavelength).  

 

(c) 1.37  10
– 8

 m for nf = 4, (the third longest wavelength).  
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13. The position of maximum probability density corresponds to the center of the well:  

/ 2 (200 pm) / 2 100 pm.x L    

 

(a) The probability of detection at x is given by Eq. 39-11: 

 

 

2

2 22 2
( ) ( ) sin sinn

n n
p x x dx x dx x dx

L L L L

 


    
      

    
 

 

For 3,n  200 pm,L   and 2.00 pmdx  (width of the probe), the probability of 

detection at / 2 100 pmx L   is 

 

 2 22 3 2 3 2 2
( / 2) sin sin 2.00 pm 0.020

2 2 200 pm

L
p x L dx dx dx

L L L L

    
         

   
. 

 

(b) With 1000N   independent insertions, the number of times we expect the electron to 

be detected is (1000)(0.020) 20n Np   . 

 

14. From Eq. 39-11, the condition of zero probability density is given by 

 

 sin 0
n n

x x m
L L

 


 
   

 
 

 

where m is an integer. The fact that 0.300x L  and 0.400x L  have zero probability 

density implies 

   sin 0.300 sin 0.400 0n n    

 

which can be satisfied for 10n m , where 1,2,...m   However, since the probability 

density is nonzero between 0.300x L  and 0.400x L , we conclude that the electron is 

in the 10n   state. The change of energy after making a transition to 9n   is then equal 

to 

 
 

   
 

2
342

2 2 2 2 17

22
31 10

6.63 10  J s
| | 10 9 2.86 10  J

8 8 9.11 10 kg 2.00 10 m

h
E n n

mL





 

 
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 
. 

 

15. THINK The probability that the electron is found in any interval is given by 

P dx z  2
,  where the integral is over the interval.  

 

EXPRESS If the interval width x is small, the probability can be approximated by P = 

||
2
 x, where the wave function is evaluated for the center of the interval, say. For an 

electron trapped in an infinite well of width L, the ground state probability density is 
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
2 22


F
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sin ,


 

so 

P
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x
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
F
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I
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F
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2 2
sin .


 

 

ANALYZE (a) We take L = 100 pm, x = 25 pm, and x = 5.0 pm. Then, 
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L
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O
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(b) We take L = 100 pm, x = 50 pm, and x = 5.0 pm. Then, 

 

P 
L
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O
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L
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O
QP


2 50

100

50

100
0102

.
sin . .

pm

pm

pm

pm

b g b g
 

 

(c) We take L = 100 pm, x = 90 pm, and x = 5.0 pm. Then, 

 

P 
L
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O
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L
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O
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

2 50

100

90

100
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pm

b g b g
 

 

LEARN The probability as a function of x is plotted next. As expected, the probability of 

detecting the electron is highest near the center of the well at x = L/2 = 50 pm. 

 

 
 

16. We follow Sample Problem — “Detection potential in a 1D infinite potential well” in 

the presentation of this solution. The integration result quoted below is discussed in a 

little more detail in that Sample Problem. We note that the arguments of the sine 

functions used below are in radians. 

 

(a) The probability of detecting the particle in the region 0 / 4x L   is 
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(b) As expected from symmetry, 
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(c) For the region / 4 3 / 4L x L  , we obtain 
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which we could also have gotten by subtracting the results of part (a) and (b) from 1; that 

is, 1 – 2(0.091) = 0.82. 

 

17. According to Fig. 39-9, the electron’s initial energy is 106 eV. After the additional 

energy is absorbed, the total energy of the electron is 106 eV + 400 eV = 506 eV. Since it 

is in the region x > L, its potential energy is 450 eV, so its kinetic energy must be 506 

eV – 450 eV = 56 eV. 

 

18. From Fig. 39-9, we see that the sum of the kinetic and potential energies in that 

particular finite well is 233 eV. The potential energy is zero in the region 0 < x < L. If the 

kinetic energy of the electron is detected while it is in that region (which is the only 

region where this is likely to happen), we should find K = 233 eV. 

 

19. Using / (1240eV nm)/E hc     , the energies associated with a , b  and c  are  
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The ground-state energy is  

 

 1 4 450.0 eV 426.0 eV 24.0 eVcE E E     . 

 

Since 2 1aE E E  , the energy of the first excited state is 

 

 2 1 24.0 eV 85.0 eV 109 eVaE E E     . 
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20. The smallest energy a photon can have corresponds to a transition from the non-

quantized region to 3.E Since the energy difference between 3E  and 4E  is 

 

4 3 9.0 eV 4.0 eV 5.0 eVE E E      , 

 

the energy of the photon is photon 2.00 eV 5.00 eV 7.00 eVE K E     . 

 

21. Schrödinger’s equation for the region x > L is 
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This is zero provided 

k
h

m U E 


2 0b g.  
 

The proposed function satisfies Schrödinger’s equation provided k has this value. Since 

U0 is greater than E in the region x > L, the quantity under the radical is positive. This 

means k is real. If k is positive, however, the proposed function is physically unrealistic. 

It increases exponentially with x and becomes large without bound. The integral of the 

probability density over the entire x-axis must be unity. This is impossible if  is the 

proposed function. 

 

22. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-20 as 
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For nx = ny = 1, we obtain 

 

 
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23. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-21 as 
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For nx = ny = nz = 1, we obtain 
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24. The statement that there are three probability density maxima along / 2xx L  implies 

that 3yn   (see for example, Figure 39-6). Since the maxima are separated by 2.00 nm, 

the width of 
yL is (2.00 nm) 6.00 nm.y yL n  Similarly, from the information given 

along / 2yy L , we find 5xn   and (3.00 nm) 15.0 nm.x xL n   Thus, using Eq. 39-20, 

the energy of the electron is 
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25. The discussion on the probability of detection for the one-dimensional case can be 

readily extended to two dimensions. In analogy to Eq. 39-10, the normalized wave 

function in two dimensions can be written as  

 

 

,

2 2
( , ) ( ) ( ) sin sin

4
sin sin .

x y x y

yx
n n n n

x x y y

yx

x y x y

nn
x y x y x y

L L L L

nn
x y

L L L L


  



  
       

   

  
     

   

 

 

The probability of detection by a probe of dimension x y   placed at ( , )x y  is 

 

2
2 2

,

4( )
( , ) ( , ) sin sin .

x y

yx
n n

x y x y

nnx y
p x y x y x y x y

L L L L




   
        

   

 

 

With 150 pmx yL L L   and 5.00 pmx y    , the probability of detecting an 

electron in ( , ) (1,3)x yn n   state by placing a probe at (0.200 , 0.800 )L L  is 
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   

2
2 2 2 2

2

2

2 2 3

4( ) 4(5.00 pm) 3
sin sin sin 0.200 sin 0.800

(150 pm)

5.00 pm
4 sin 0.200 sin 2.40 1.4 10 .

150 pm

yx

x y x y

nnx y
p x y L L

L L L L L L

  

  

       
                

 
   

 

 

 

26. We are looking for the values of the ratio 

 

E

h mL
L

n

L

n

L
n n

nx ny x

x

y

y

x y

,

2 2

2
2

2

2

2

2 2

8

1

4
 
F
HG

I
KJ  
F
HG

I
KJ  

 

and the corresponding differences. 

 

(a) For nx = ny = 1, the ratio becomes 1 1251
4

  . .  

 

(b) For nx = 1 and ny = 2, the ratio becomes 1 4 2 001
4

 b g . .  One can check (by computing 

other (nx, ny) values) that this is the next to lowest energy in the system. 

 

(c) The lowest set of states that are degenerate are (nx, ny) = (1, 4) and (2, 2). Both of 

these states have that ratio equal to 1 16 5001
4

 b g . .  

 

(d) For nx = 1 and ny = 3, the ratio becomes 1 9 3251
4

 b g . .  One can check (by computing 

other (nx, ny) values) that this is the lowest energy greater than that computed in part (b). 

The next higher energy comes from (nx, ny) = (2, 1) for which the ratio is 4 1 4 251
4

 b g . .  

The difference between these two values is 4.25 – 3.25 = 1.00. 

 

27. THINK The energy levels of an electron trapped in a regular corral with widths Lx 

and Ly are given by Eq. 39-20: 
222

, 2 28x y

yx
n n

x y

nnh
E

m L L

 
  

  

. 

 

EXPRESS With Lx = L and Ly = 2L, we have   

 

E
h

m

n

L

n

L

h

mL
n

n
n n

x

x

y

y

x

y

x y,  
L
NMM

O
QPP
 
L
NMM

O
QPP

2 2

2

2

2

2

2

2

2

8 8 4
. 

 

Thus, in units of h
2
/8mL

2
, the energy levels are given by 

2 2 / 4.x yn n  The lowest five 

levels are E1,1 = 1.25, E1,2 = 2.00, E1,3 = 3.25, E2,1 = 4.25, and E2,2 = E1,4 = 5.00. It is clear 

that there are no other possible values for the energy less than 5.  
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The frequency of the light emitted or absorbed when the electron goes from an initial 

state i to a final state f is f = (Ef – Ei)/h, and in units of h/8mL
2
 is simply the difference in 

the values of 2 2 / 4x yn n  for the two states. The possible frequencies are as follows:  

 

     0.75 1,2 1,1 ,2.00 1,3 1,1 ,3.00 2,1 1,1 ,    

         3.75 2,2 1,1 ,1.25 1,3 1,2 ,2.25 2,1 1,2 ,3.00 2,2 1,2 ,1.00 2,1 1,3 ,    

   1.75 2,2 1,3 ,0.75 2,2 2,1 ,    

 

all in units of h/8mL
2
. 

 

ANALYZE (a) From the above, we see that there are 8 different frequencies. 

 

(b) The lowest frequency is, in units of h/8mL
2
, 0.75 (2, 22,1). 

 

(c) The second lowest frequency is, in units of h/8mL
2
, 1.00 (2, 11,3). 

 

(d) The third lowest frequency is, in units of h/8mL
2
, 1.25 (1, 31,2). 

 

(e) The highest frequency is, in units of h/8mL
2
, 3.75 (2, 21,1). 

 

(f) The second highest frequency is, in units of h/8mL
2
, 3.00 (2, 21,2) or (2, 11,1). 

 

(g) The third highest frequency is, in units of h/8mL
2
, 2.25 (2, 11,2). 

 

LEARN In general, when the electron makes a transition from (nx, ny) to a higher level 

( , ),x yn n   the frequency of photon it emits or absorbs is given by   

 

   

2 2
, , 2 2

2 2

2 2 2 2

2

8 4 8 4

1
.

8 4

x y x yn n n n y y

x x

x x y y

E E n nE h h
f n n

h h mL mL

h
n n n n

mL

      
           

   

 
     

 

 

 

28. We are looking for the values of the ratio 

 

E

h mL
L

n

L

n

L

n

L
n n n

n n n x

x

y

y

z

z

x y z

x y z, ,

2 2

2
2

2

2

2

2

2

2 2 2

8
  
F
HG

I
KJ   d i  

 

and the corresponding differences. 

 

(a) For nx = ny = nz = 1, the ratio becomes 1 + 1 + 1 = 3.00. 
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(b) For nx = ny = 2 and nz = 1, the ratio becomes 4 + 4 + 1 = 9.00. One can check (by 

computing other (nx, ny, nz) values) that this is the third lowest energy in the system. One 

can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 2) and (1, 2, 2). 

 

(c) For nx = ny = 1 and nz = 3, the ratio becomes 1 + 1 + 9 = 11.00. One can check (by 

computing other (nx, ny, nz) values) that this is three “steps” up from the lowest energy in 

the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 1) 

and (3, 1, 1). If we take the difference between this and the result of part (b), we obtain 

11.0 – 9.00 = 2.00. 

 

(d) For nx = ny = 1 and nz = 2, the ratio becomes 1 + 1 + 4 = 6.00. One can check (by 

computing other (nx, ny, nz) values) that this is the next to the lowest energy in the system. 

One can also check that this same ratio is obtained for (nx, ny, nz) = (2, 1, 1) and (1, 2, 1). 

Thus, three states (three arrangements of (nx, ny, nz) values) have this energy. 

 

(e) For nx = 1, ny = 2 and nz = 3, the ratio becomes 1 + 4 + 9 = 14.0. One can check (by 

computing other (nx, ny, nz) values) that this is five “steps” up from the lowest energy in 

the system. One can also check that this same ratio is obtained for (nx, ny, nz) = (1, 3, 2), 

(2, 3, 1), (2, 1, 3), (3, 1, 2) and (3, 2, 1). Thus, six states (six arrangements of (nx, ny, nz) 

values) have this energy. 

 

29. The ratios computed in Problem 39-28 can be related to the frequencies emitted using 

f = E/h, where each level E is equal to one of those ratios multiplied by h
2
/8mL

2
. This 

effectively involves no more than a cancellation of one of the factors of h. Thus, for a 

transition from the second excited state (see part (b) of Problem 39-28) to the ground 

state (treated in part (a) of that problem), we find 

 

f
h

mL

h

mL
 

F
HG
I
KJ 

F
HG
I
KJ9 00 300

8
6 00

82 2
. . . .b g b g  

 

In the following, we omit the h/8mL
2
 factors. For a transition between the fourth excited 

state and the ground state, we have f = 12.00 – 3.00 = 9.00. For a transition between the 

third excited state and the ground state, we have f = 11.00 – 3.00 = 8.00. For a transition 

between the third excited state and the first excited state, we have f = 11.00 – 6.00 = 5.00. 

For a transition between the fourth excited state and the third excited state, we have f = 

12.00 – 11.00 = 1.00. For a transition between the third excited state and the second 

excited state, we have f = 11.00 – 9.00 = 2.00. For a transition between the second excited 

state and the first excited state, we have f = 9.00 – 6.00 = 3.00, which also results from 

some other transitions. 

 

(a) From the above, we see that there are 7 frequencies. 

 

(b) The lowest frequency is, in units of h/8mL
2
, 1.00. 

 

(c) The second lowest frequency is, in units of h/8mL
2
, 2.00. 
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(d) The third lowest frequency is, in units of h/8mL
2
, 3.00. 

 

(e) The highest frequency is, in units of h/8mL
2
, 9.00. 

 

(f) The second highest frequency is, in units of h/8mL
2
, 8.00. 

 

(g) The third highest frequency is, in units of h/8mL
2
, 6.00. 

 

30. In analogy to Eq. 39-10, the normalized wave function in two dimensions can be 

written as  

 

,

2 2
( , ) ( ) ( ) sin sin

4
sin sin .

x y x y

yx
n n n n

x x y y

yx

x y x y

nn
x y x y x y

L L L L

nn
x y

L L L L


  



  
       

   

  
     

   

 

 

The probability of detection by a probe of dimension x y   placed at ( , )x y  is 

 

2
2 2

,

4( )
( , ) ( , ) sin sin .

x y

yx
n n

x y x y

nnx y
p x y x y x y x y

L L L L




   
        

   

 

 

A detection probability of 0.0450 of a ground-state electron ( 1x yn n  ) by a probe of 

area 2400 pmx y   placed at ( , ) ( /8, /8)x y L L  implies 

 
22

2 2 4

2

4(400 pm ) 20 pm
0.0450 sin sin 4 sin

8 8 8

L L

L L L L

         
          

       
. 

 

Solving for L, we get 27.6 pmL  . 

 

31. THINK The Lyman series is associated with transitions to or from the n = 1 level of 

the hydrogen atom, while the Balmer series is for transitions to or from the n = 2 level. 

 

EXPRESS The energy E of the photon emitted when a hydrogen atom jumps from a state 

with principal quantum number n  to a state with principal quantum number n n  is 

given by 

2 2

1 1
E A

n n

 
  

 
 

 

where A = 13.6 eV. The frequency f of the electromagnetic wave is given by f = E/h and 

the wavelength is given by  = c/f. Thus, 
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2 2

1 1 1
.

f E A

c hc hc n n

 
    

  
 

 

ANALYZE The shortest wavelength occurs at the series limit, for which n = . For the 

Balmer series, 2n   and the shortest wavelength is B = 4hc/A. For the Lyman series, 

1n   and the shortest wavelength is L = hc/A. The ratio is B/L = 4.0. 

 

LEARN The energy of the photon emitted associated with the transition of an electron 

from 2n n     (to become bound) is 

 

2 2

13.6 eV
3.4 eV

2
E   . 

 

Similarly, the energy associated with the transition of an electron from 1n n     (to 

become bound) is 

1 2

13.6 eV
13.6 eV

1
E    . 

 

32. The difference between the energy absorbed and the energy emitted is 

 

E E
hc hc

photon absorbed photon emitted

absorbed emitted

  
 

.  

 

Thus, using hc = 1240 eV · nm, the net energy absorbed is 

 

 
1 1 1

1240eV nm 1.17eV .
375nm 580nm

hc


  
      
   

 

 

33. (a) Since energy is conserved, the energy E of the photon is given by E = Ei – Ef, 

where Ei is the initial energy of the hydrogen atom and Ef is the final energy. The electron 

energy is given by (– 13.6 eV)/n
2
, where n is the principal quantum number. Thus, 

 

   
3 1 2 2

13.6eV 13.6eV
12.1eV .

3 1
E E E

 
      

(b) The photon momentum is given by 

 

p
E

c
 




  




121 160 10

300 10
6 45 10

19

8

27
. .

.
. .

eV J eV

m s
kg m s

b gc h
 

 

(c) Using hc = 1240 eV · nm, the wavelength is 
1240eV nm

102nm.
12.1eV

hc

E



    
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34. (a) We use Eq. 39-44. At r = 0, P(r)  r
2
 = 0. 

 

(b) At r = a,  
2 2

2 2 1

3 2

4 4 4
10.2nm .

5.29 10 nm

a a e e
P r a e

a a

 
 


   


 

 

(c) At r = 2a,    
4 4

2 4 1

3 2

4 16 16
2 5.54nm .

5.29 10 nm

a a e e
P r a e

a a

 
 


   


 

 

35. (a) We use Eq. 39-39. At r = a, 

 

 
 

2

2 2 2 3

333 2 2

1 1 1
291nm .

5.29 10 nm

a ar e e e
aa

    



 
    

   
 

 

(b) We use Eq. 39-44. At r = a, 

 

 
2 2

2 2 1

3 2

4 4 4
10.2nm .

5.29 10 nm

a a e e
P r a e

a a

 
 


   


 

 

36. (a) The energy level corresponding to the probability density distribution shown in 

Fig. 39-21 is the n = 2 level. Its energy is given by 

 

2 2

13.6eV
3.4eV.

2
E      

 

(b) As the electron is removed from the hydrogen atom the final energy of the proton-

electron system is zero. Therefore, one needs to supply at least 3.4 eV of energy to the 

system in order to bring its energy up from E2 = – 3.4 eV to zero. (If more energy is 

supplied, then the electron will retain some kinetic energy after it is removed from the 

atom.) 

 

37. THINK The energy of the hydrogen atom is quantized. 

 

EXPRESS If kinetic energy is not conserved, some of the neutron’s initial kinetic energy 

could be used to excite the hydrogen atom. The least energy that the hydrogen atom can 

accept is the difference between the first excited state (n = 2) and the ground state (n = 1). 

Since the energy of a state with principal quantum number n is –(13.6 eV)/n
2
, the smallest 

excitation energy is  

   
2 1 2 2

13.6eV 13.6eV
10.2eV .

2 1
E E E

 
       

 

ANALYZE The neutron, with a kinetic energy of 6.0 eV, does not have sufficient kinetic 

energy to excite the hydrogen atom, so the hydrogen atom is left in its ground state and 
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all the initial kinetic energy of the neutron ends up as the final kinetic energies of the 

neutron and atom. The collision must be elastic. 

 

LEARN The minimum kinetic energy the neutron must have in order to excite the 

hydrogen atom is 10.2 eV.  

 

38. From Eq. 39-6, E hf     414 10 6 2 10 2 615 14. . . .eV s Hz eVc hc h  

 

39. THINK The radial probability function for the ground state of hydrogen is  

 

P(r) = (4r
2
/a

3
)e

– 2r/a
, 

where a is the Bohr radius.  

 

EXPRESS We want to evaluate the integral 
0

z P r dr( ) .  Equation 15 in the integral table 

of Appendix E is an integral of this form: 

 

10

!n ax

n

n
x e dx

a





 . 

 

ANALYZE We set n = 2 and replace a in the given formula with 2/a and x with r. Then 

 

0 3 0

2 2

3 3

4 4 2

2
1

 
z z  P r dr

a
r e dr

a a

r a( )
( )

./  

 

LEARN The integral over the radial probability function P(r) must be equal to 1. This 

means that in a hydrogen atom, the electron must be somewhere in the space surrounding 

the nucleus. 

 

40. (a) The calculation is shown in Sample Problem — “Light emission from a hydrogen 

atom.” The difference in the values obtained in parts (a) and (b) of that Sample Problem 

is 122 nm – 91.4 nm  31 nm. 

 

(b) We use Eq. 39-1. For the Lyman series, 

 

f 








 

 

2 998 10

914 10

2 998 10

122 10
8 2 10

8

9

8

9

14.

.

.
.

m s

m

m s

m
Hz . 

 

(c) Figure 39-18 shows that the width of the Balmer series is 656.3 nm – 364.6 nm   

292 nm 0.29 m .  

 

(d) The series limit can be obtained from the  2  transition: 
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8 8
14 14

9 9

2.998 10 m s 2.998 10 m s
3.65 10 Hz 3.7 10 Hz.

364.6 10 m 656.3 10 m
f

 

 
      

 
 

 

41. Since r is small, we may calculate the probability using p = P(r) r, where P(r) is 

the radial probability density. The radial probability density for the ground state of 

hydrogen is given by Eq. 39-44: 

P r
r

a
e r a( ) /

F
HG
I
KJ

4 2

3

2  

where a is the Bohr radius. 

 

(a) Here, r = 0.500a and r = 0.010a. Then, 

 
2

2 / 2 1 3 3

3

4
4(0.500) (0.010) 3.68 10 3.7 10 .r ar r

P e e
a

    
      
 

 

 

(b) We set r = 1.00a and r = 0.010a. Then, 

 
2

2 / 2 2 3 3

3

4
4(1.00) (0.010) 5.41 10 5.4 10 .r ar r

P e e
a

    
      
 

 

 

42. Conservation of linear momentum of the atom-photon system requires that 

 

recoil photon recoilp

hf
p p m v

c
    

 

where we use Eq. 39-7 for the photon and use the classical momentum formula for the 

atom (since we expect its speed to be much less than c). Thus, from Eq. 39-6 and Table 

37-3, 

 
  

   

2 2

4 1
recoil 2 6 8

13.6eV 4 1
4.1 m s .

938 10 eV 2.998 10 m sp p

E EE
v

m c m c c

  
   

 
 

 

43. (a) and (b) Letting a = 5.292  10
– 11

 m be the Bohr radius, the potential energy 

becomes 

U
e

a
=  

  


    






2 9 2 19

2

11

18

4

8 99 10 1602 10

5292 10
4 36 10 27 2



. .

.
. . .

N m C C

m
J eV

2c hc h
 

 

The kinetic energy is K = E – U = (– 13.6 eV) – (– 27.2 eV) = 13.6 eV. 

 

44. (a) Since E2 = – 0.85 eV and E1 = – 13.6 eV + 10.2 eV = – 3.4 eV, the photon energy 

is   

Ephoton = E2 – E1 = – 0.85 eV – (– 3.4 eV) = 2.6 eV. 
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(b) From 

E E
n n

2 1

2

2

1

2
136

1 1
2 6   

F
HG

I
KJ ( . ) .eV  eV  

we obtain 

1 1 2 6

136

3

16

1

4

1

22

2

1

2 2 2n n
     

.

.
.

 eV

eV
 

 

Thus, n2 = 4 and n1 = 2. So the transition is from the n = 4 state to the n = 2 state. One can 

easily verify this by inspecting the energy level diagram of Fig. 39-18. Thus, the higher 

quantum number is n2 = 4. 

 

(c) The lower quantum number is n1 = 2. 

 

45. THINK The probability density is given by 2| ( , ) | ,n m r   where ( , )n m r  is the 

wave function.  

 

EXPRESS To calculate 2| | * ,n m n m n m    we multiply the wave function by its 

complex conjugate. If the function is real, then * .n m n m   Note that ie  and ie  are 

complex conjugates of each other, and e
i

 e
– i

 = e
0
 = 1. 

 

ANALYZE (a) 210 is real. Squaring it gives the probability density: 

 
2

2 / 2

210 5
| | cos .

32

r ar
e

a
 


 

 

(b) Similarly, 

| | sin/ 21 1

2
2

5

2

64



r

a
e r a


 

and 
2

2 / 2

21 1 5
| | sin .

64

r ar
e

a
 

 


 

 

The last two functions lead to the same probability density. 

 

(c) For 0,m   the probability density 2

210| |  decreases with radial distance from the 

nucleus. With the 2cos   factor, 2

210| |  is greatest along the z axis where  = 0. This is 

consistent with the dot plot of Fig. 39-23(a). 
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Similarly, for 1,m    the probability density 2

21 1| | 
 decreases with radial distance 

from the nucleus. With the 2sin   factor, 2

21 1| | 
 is greatest in the xy-plane where  = 

90°. This is consistent with the dot plot of Fig. 39-23(b). 

 

(d) The total probability density for the three states is the sum: 

 
2 2

2 2 2 / 2 2 2 /

210 21 1 21 1 5 5

1 1
| | | | | | cos sin sin .

2 2

r a r ar r
e e

a a
     

 

 

 

 
        

 

 

The trigonometric identity cos
2
  + sin

2
  = 1 is used. We note that the total probability 

density does not depend on  or ; it is spherically symmetric. 

 

LEARN The wave functions discussed above are for the hydrogen states with n = 2 and 

1.  Since the angular momentum is nonzero, the probability densities are not 

spherically symmetric, but depend on both r and .  

 

46. From Sample Problem — “ Probability of detection of the electron in a hydrogen 

atom,” we know that the probability of finding the electron in the ground state of the 

hydrogen atom inside a sphere of radius r is given by 

 

p r e x xx( )    1 1 2 22 2c h  
 

where x = r/a. Thus the probability of finding the electron between the two shells 

indicated in this problem is given by 

 

   2 2 2 2

2 1
( 2 ) (2 ) ( ) 1 1 2 2 1 1 2 2

                     0.439.

x x

x x
p a r a p a p a e x x e x x 

 

              
   



 

 

47. As illustrated in Fig. 39-24, the quantum number n in question satisfies r = n
2
a. 

Letting r = 1.0 mm, we solve for n: 

n
r

a
 




 





10 10

529 10
4 3 10

3

11

3.

.
. .

m

m
 

 

48. Using Eq. 39-6 and hc = 1240 eV · nm, we find 

 

E E
hc

  


photon

eV nm

nm
eV



1240

1216
10 2

.
. .  

 

Therefore, nlow = 1, but what precisely is nhigh? 

 

lowhigh 2 2

13.6eV 13.6eV
     10.2eV

1
E E E

n
        
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which yields n = 2 (this is confirmed by the calculation found from Sample Problem — 

“Light emission from a hydrogen atom). Thus, the transition is from the n = 2 to the n = 1 

state. 

 

(a) The higher quantum number is n = 2. 

 

(b) The lower quantum number is n = 1. 

 

(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 

 

49. (a) We take the electrostatic potential energy to be zero when the electron and proton 

are far removed from each other. Then, the final energy of the atom is zero and the work 

done in pulling it apart is W = – Ei, where Ei is the energy of the initial state. The energy 

of the initial state is given by Ei = (–13.6 eV)/n
2
, where n is the principal quantum 

number of the state. For the ground state, n = 1 and W = 13.6 eV. 

 

(b) For the state with n = 2, W = (13.6 eV)/(2)
2
 = 3.40 eV. 

 

50. Using Eq. 39-6 and hc = 1240 eV · nm, we find 

 

photon

1240 eV nm
12.09 eV.

106.6 nm

hc
E E




      

 

Therefore, nlow = 1, but what precisely is nhigh? 

 

high low 2 2

13.6 eV 13.6 eV
     12.09 eV

1
E E E

n
        

 

which yields n = 3. Thus, the transition is from the n = 3 to the n = 1 state. 

 

(a) The higher quantum number is n = 3. 

 

(b) The lower quantum number is n = 1. 

 

(c) Referring to Fig. 39-18, we see that this must be one of the Lyman series transitions. 

 

51. According to Sample Problem — “ Probability of detection of the electron in a 

hydrogen atom,” the probability the electron in the ground state of a hydrogen atom can 

be found inside a sphere of radius r is given by 

 

p r e x xx( )    1 1 2 22 2c h  
 

where x = r/a and a is the Bohr radius. We want r = a, so x = 1 and 
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p a e e( ) ( ) . .       1 1 2 2 1 5 03232 2  

 

The probability that the electron can be found outside this sphere is 1 – 0.323 = 0.677. It 

can be found outside about 68% of the time. 

 

52. (a) E = – (13.6 eV)(4
– 2

 – 1
– 2

) = 12.8 eV. 

 

(b) There are 6 possible energies associated with the transitions 4   3, 4   2, 4   1, 3 

  2, 3   1 and 2 1.  

 

(c) The greatest energy is 
4 1 12.8 eV.E    

 

(d) The second greatest energy is   2 2

3 1 13.6eV 3 1 12.1 eVE  

     . 

 

(e) The third greatest energy is   2 2

2 1 13.6eV 2 1 10.2 eVE  

     . 

 

(f) The smallest energy is   2 2

4 3 13.6eV 4 3 0.661 eVE  

     . 

 

(g) The second smallest energy is   2 2

3 2 13.6eV 3 2 1.89 eVE  

     . 

 

(h) The third smallest energy is   2 2

4 2 13.6eV 4 2 2.55 eV.E  

      

 

53. THINK The ground state of the hydrogen atom corresponds to n = 1, 0,  and 

0.m    

 

EXPRESS The proposed wave function is 

  1
3 2a

e r a  

 

where a is the Bohr radius. Substituting this into the right side of Schrödinger’s equation, 

our goal is to show that the result is zero.  

 

ANALYZE The derivative is 

d

dr a
e r a

  1
5 2

 

so 

r
d

dr

r

a
e r a2

2

5 2


  


 

and 

1 1 2 1 1 2 1
2

2

5 2r

d

dr
r

d

dr a r a
e

a r a

r a


F
HG
I
KJ   

L
NM

O
QP   

L
NM

O
QP




.  
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The energy of the ground state is given by E me h  4

0

2 28  and the Bohr radius is given 

by a h me E e a  2

0

2 2 8  , . so  The potential energy is given by  

 

U e r  2 4 , 

so 

8 8

8 4

8

8

1 2

1 2 1 1 2

2 2

2 2

2

2

2

2

 

 









 

 







m

h
E U

m

h

e

a

e

r

m

h

e

a r

me

h a r a a r

   
L
NM

O
QP   

L
NM

O
QP

  
L
NM

O
QP   

L
NM

O
QP

  

  .

 

 

The two terms in Schrödinger’s equation cancel, and the proposed function  satisfies 

that equation. 

 

LEARN The radial probability density of the ground state of hydrogen atom is given by 

Eq. 39-44: 

2 2 2 2 2 2

3 3

1 4
( ) | | (4 ) (4 )r a r aP r r e r r e

a a
  



    . 

 

A plot of P(r) is shown in Fig. 39-20. 

 

54. (a) The plot shown below for |200(r)|
2
 is to be compared with the dot plot of Fig.  

39-21. We note that the horizontal axis of our graph is labeled “r,” but it is actually r/a 

(that is, it is in units of the parameter a). Now, in the plot below there is a high central 

peak between r = 0 and r  2a, corresponding to the densely dotted region around the 

center of the dot plot of Fig. 39-21. Outside this peak is a region of near-zero values 

centered at r = 2a, where 200 = 0. This is represented in the dot plot by the empty ring 

surrounding the central peak. Further outside is a broader, flatter, low peak that reaches 

its maximum value at r = 4a. This corresponds to the outer ring with near-uniform dot 

density, which is lower than that of the central peak. 
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(b) The extrema of 2
(r) for 0 < r <  may be found by squaring the given function, 

differentiating with respect to r, and setting the result equal to zero: 

 


 

1

32

2 4
0

6

( ) ( ) /r a r a

a
e r a


 

 

which has roots at r = 2a and r = 4a. We can verify directly from the plot above that r = 

4a is indeed a local maximum of  200

2 ( ).r  As discussed in part (a), the other root (r = 2a) 

is a local minimum. 

 

(c) Using Eq. 39-43 and Eq. 39-41, the radial probability is 

 

P r r r
r

a

r

a
e r a

200

2

200

2
2

3

2

4
8

2( ) ( ) ./  
F
HG
I
KJ

   

(d) Let x = r/a. Then 

 
22

/ 2 2 4 3 2

200 30 0 0 0

1
( ) 2 (2 ) ( 4 4 )

8 8

1
[4! 4(3!) 4(2!)] 1

8

r a x xr r
P r dr e dr x x e dx x x x e dx

a a

   
   

       
 

   

   
 

 

where we have used the integral formula 
0


z x e dx nn x ! . 

 

55. The radial probability function for the ground state of hydrogen is  

 

P(r) = (4r
2
/a

3
)e

– 2r/a
, 

 

where a is the Bohr radius. (See Eq. 39-44.) The integral table of Appendix E may be 

used to evaluate the integral r rP r dravg 
z0 ( ) .  Setting n = 3 and replacing a in the given 

formula with 2/a (and x with r), we obtain 

 

 
3 2 /

avg 43 30 0

4 4 6
( ) 1.5 .

2

r ar rP r dr r e dr a
a a a

 
      

 

56. (a) The allowed energy values are given by En = n
2
h

2
/8mL

2
. The difference in energy 

between the state n and the state n + 1 is 

 

E E E n n
h

mL

n h

mL
n nadj      


1

2 2
2

2

2

2
1

8

2 1

8
b g b g

 

and 
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E

E

n h

mL

mL

n h

n

n

adj


L
NM

O
QP
F
HG
I
KJ 

2 1

8

8 2 1
2

2

2

2 2 2

b g
.  

 

As n becomes large, 2 1 2n n   and 2 1 2 22 2n n n n n  b g . 

 

(b) No. As adj,n E   and E do not approach 0, but Eadj/E does. 

 

(c) No. See part (b). 

 

(d) Yes. See part (b). 

 

(e) Eadj/E is a better measure than either Eadj or E alone of the extent to which the 

quantum result is approximated by the classical result. 

 

57. From Eq. 39-4, 

E E
h

mL
n

h

mL
n

h

mL
nn n  

F
HG
I
KJ  

F
HG
I
KJ 
F
HG
I
KJ 2

2

2

2
2

2

2
2

28
2

8 2
1b g b g.  

 

58. (a) and (b) In the region 0 < x < L, U0 = 0, so Schrödinger’s equation for the region is 

 

d

dx

m

h
E

2

2

2

2

8
0


 


 

 

where E > 0. If 2
 (x) = B sin

2
 kx, then  (x) = B' sin kx, where B' is another constant 

satisfying B' 
2
 = B. Thus, 

2
2 2

2
sin ( )

d
k B kx k x

dx


     

 and  

d

dx

m

h
E k

m

h
E

2

2

2

2

2
2

2

8 8
     

 
.  

 

This is zero provided that k
mE

h

2
2

2

8



.  The quantity on the right-hand side is positive, 

so k is real and the proposed function satisfies Schrödinger’s equation. In this case, there 

exists no physical restriction as to the sign of k. It can assume either positive or negative 

values. Thus, k
h

mE 
2

2


.  

 

59. THINK For a finite well, the electron matter wave can penetrate the walls of the well. 

Thus, the wave function outside the well is not zero, but decreases exponentially with 

distance.  
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EXPRESS Schrödinger’s equation for the region x > L is 

 

d

dx

m

h
E U

2

2

2

2 0

8
0


  


,  

 

where E – U0 < 0. If 2
 (x) = Ce

– 2kx
, then (x) = C e

– kx
. 

 

ANALYZE (a) and (b) Thus, 
2

2 2

2
4 4kxd

k Ce k
dx


   

 and 

d

dx

m

h
E U k

m

h
E U

2

2

2

2 0

2
2

2 0

8 8
      

 
.  

 

This is zero provided that k
m

h
U E2

2

2 0

8
 


.  Choosing the positive root, we have 

  

 0

2
2 .k m U E

h


   

 

LEARN Note that the quantity 0U E  is positive, so k is real and the proposed function 

satisfies Schrödinger’s equation. If k is negative, however, the proposed function would 

be physically unrealistic. It would increase exponentially with x. Since the integral of the 

probability density over the entire x axis must be finite,  diverging as x  would be 

unacceptable.  

 

60. We can use the mc
2
 value for an electron from Table 37-3 (511  10

3
 eV) and hc = 

1240 eV · nm by writing Eq. 39-4 as 

E
n h

mL

n hc

mc L
n  

2 2

2

2 2

2 28 8

b g
c h .  

 

(a) With L = 3.0  10
9
 nm, the energy difference is 

 

E E2 1

2

3 9
2

2 2 191240

8 511 10 30 10
2 1 13 10 

 
   

c hc h c h
.

. eV.  

 

(b) Since (n + 1)
2
 – n

2
 = 2n + 1, we have 

 

E E E
h

mL
n

hc

mc L
nn n     1

2

2

2

2 28
2 1

8
2 1b g b gc h b g.  
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Setting this equal to 1.0 eV, we solve for n: 

 

 
 

     

 

2
2 2 3 9

19

2 2

4 4 511 10 eV 3.0 10 nm 1.0eV1 1
1.2 10 .

2 21240eV nm

mc L E
n

hc

  
     


 

 

(c) At this value of n, the energy is 

 

En 
 

  
1240

8 511 10 30 10
6 10 6 10

2

3 9
2

18
2

18

c hc h c h
.

eV.  

Thus, 
18

13

2 3

6 10 eV
1.2 10 .

511 10 eV

nE

mc


  


 

 

(d) Since 2/ 1nE mc , the energy is indeed in the relativistic range. 

 

61. (a) We recall that a derivative with respect to a dimensional quantity carries the 

(reciprocal) units of that quantity. Thus, the first term in Eq. 39-18 has dimensions of  

multiplied by dimensions of x
– 2

. The second term contains no derivatives, does contain , 

and involves several other factors that turn out to have dimensions of x
– 2

: 

 

 
 

 
2

22

8 kg
J

J s

m
E U x

h


   


 

 

assuming SI units. Recalling from Eq. 7-9 that J = kg·m
2
/s

2
, then we see the above is 

indeed in units of m
– 2

 (which means dimensions of x
– 2

). 

 

(b) In one-dimensional quantum physics, the wave function has units of m
– ½

, as shown in 

Eq. 39-17. Thus, since each term in Eq. 39-18 has units of  multiplied by units of x
– 2

, 

then those units are m
– 1/2

· m
– 2

 = m
– 2.5

. 

 

62. (a) The “home-base” energy level for the Balmer series is n = 2. Thus the transition 

with the least energetic photon is the one from the n = 3 level to the n = 2 level. The 

energy difference for this transition is 

 

E E E    
F
HG

I
KJ 3 2 2 2

136
1

3

1

2
1889. . .eV eVb g  

 

Using hc = 1240 eV · nm, the corresponding wavelength is 

 

1240eV nm
658nm .

1.889eV

hc

E



  

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(b) For the series limit, the energy difference is 

 

E E E   



F
HG

I
KJ  2 2 2

136
1 1

2
340. . .eV eVb g  

 

The corresponding wavelength is then 
1240eV nm

366nm .
3.40eV

hc

E



  


 

 

63. (a) The allowed values of  for a given n are 0, 1, 2, ..., n – 1. Thus there are n 

different values of . 

 

(b) The allowed values of m  for a given  are – , –  + 1, ..., . Thus there are 2  + 1 

different values of m . 

 

(c) According to part (a) above, for a given n there are n different values of . Also, each 

of these ’s can have 2  + 1 different values of m  [see part (b) above]. Thus, the total 

number of m ’s is 

1
2

0

(2 1) .
n

n




   

64. For n = 1 

  

     

4
31 194

1 2 22 2 12 34 19
0

9.11 10 kg 1.6 10 C
13.6eV .

8 8 8.85 10 F m 6.63 10 J s 1.60 10 J eV

em e
E

h

 

  

 
     

   
 

 

65. (a) The angular momentum of the diatomic gas is 

 

 2 21
2 ( / 2)

2
L I m d md      . 

 

If its angular momentum is quantized, i.e., restricted to ,L n  n = 1, 2, … then 

 

2

2

1

2 2

nh nh
md n

md
 

 
     

 

(b) The quantized rotational energies are 

 

 

22 2 2
2

2 2 2

1 1

2 2 2 4
n

md nh n h
E I

md md


 

  
    

  
 

 

66. The expression for the probability of detecting an electron in the ground state of 

hydrogen atom inside a sphere of radius r is given in Sample Problem 39.07:  
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 2 2( ) 1 (1 2 2 )xp x e x x     

 

where 0/ ,x r a  with 11

0 5.292 10 m.a    Given that 151.1 10 m,r     

 
15 11 5(1.1 10 m)/(5.292 10 m) 2.079 10x        . 

 

For small x, p(x) can be simplified as  

 

   

 

2 2 2 3 2 3

3
5 14

4 4
( ) 1 1 2 2 1 1 2 2 1 2 2

3 3

4
2.079 10 1.2 10 .

3

xp x e x x x x x x x x

 

 
             

 

   

 

 

67. (a) For a particle of mass m trapped inside a container of length L, he allowed energy 

values are given by En = n
2
h

2
/8mL

2
. With an argon atom and L = 0.20 m, the energy 

difference between the lowest two levels is 

 

 
2 2 34 2

2 2

2 1 2 2 23 2

41 22

3 3( J s)
2 1

8 8 8(0.0399 kg/6.02 10 )(0.20 m)

6.21 10 J 3.88 10 eV.

h h
E E E

mL mL



 

 
      



   

 

 

(b) The thermal energy at T = 300 K is its average kinetic energy: 

 

 23 21 23
(1.38 10 J/K)(300 K) 6.21 10 J 3.88 10 eV

2
K kT          . 

 

Thus, the ratio is  
2

20

22

3.88 10 eV
10 .

3.9 10 eV

K

E






 

 
 

 

(c) The temperature at which 3
2

K kT E    is 

 
41

18

23

2( ) 2(6.21 10 J)
3.0 10 K

3 3(1.38 10 J/K)

E
T

k






 
   


. 

 

68. The muon orbits the He
+
 nucleus at a speed given by ( 01/ 4k  ) 

 
2 2 2

2

mv Zke Zke
v

r r mr
    

 

With quantization condition ,L mvr n   the allowed values of the radius is 
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2 2

2n

n
r

Zke m
  

Its total energy is  
2 2

21

2 2

Zke Zke
E K U mv

r r
       

 

The energy of the muon ground state is given by  

 
2 2 2

2 2 2

0

( ) 1

2 8
n

n

Zke m Ze
E

r h n
     

Evaluating the constants gives 

 
2 2 31 2 19 4

2 2 2 12 2 2 2 34 2 2

0

15

2 2

( ) 1 (207 9.11 10 kg)(2) (1.6 10 C) 1

8 8(8.85 10 C /N m ) ( J s)

1.8 10 J 11.3 keV
.

n

m Ze
E

h n n

n n



 

 



  
   

   


   

 

  

69. The Ritz combination principle can be readily understood by noting that the transition 

from in n  to f in n n   can be done in two steps, with an intermediate state n : 

 

2 2 2 2 2 2

1 1 1 1 1 1
( 13.6eV) ( 13.6eV) ( 13.6eV)

f in n

f i f i

E E E
n n n n n n

     
                        

 

 

The transition 3 1i fn n   associated with the second Lyman-series line can be 

thought of as 3 2in n    (first Balmer) followed by 2 1fn n     (first Lyman).  

Another example would be 4 2i fn n   (second Balmer), which can be thought of as 

4 3in n    (first Paschen) followed by 3 2fn n     (first Balmer).   

 

70. (a) We use e0 to denote the electric charge. The constant A can be calculated by 

integrating the charge density distribution: 

 

02 / 2 3 2 2 3

0 0 0
0 0

( ) ( )4 4
r a xe r dV Ae r dr Aa x e dx Aa   

 
         

 

which gives 3

0 0/ .A e a   

 

(b) We apply Gauss’s to calculate the electric field at a distance r from the center of the 

atom. The charge enclosed by a Gaussian sphere of radius 0r a , including the proton 

charge +e0 at the center, is   
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0
0

1
2 / 2 3 2 2

enc 0 0 0 0
0 0

3 2

0 0 0 0 02 2

( ) ( )4 4

5 5
1 ( ) 1 (5 )

a
r a xq e r dV e Ae r dr e Aa x e dx

e Aa e e e e
e e

  



 



     

   
          

   

  
 

 

Using Gauss’s law, 
enc 0/ ,E da q    we obtain 

 

 
2 2

2 0 0
0 2

0 0 0

(5 ) (5 )
(4 )

4

e e e e
E a E

a


 

 

    

 

(c) The net charge enclosed is positive, so the direction is radially outward. 

 

71. (a) The charge enclosed by a sphere of radius r due to the uniform positive charge 

distribution is proportional to the volume: 3

enc 0( / ) .q e r a  Using Gauss’s law, 

enc 0/ ,E da q    the electric field at a radial distance r from the center of the atom is 

 
3

2

3

0 0 0 0

(4 )
4

e r e
E r E r

a a


 

 
   

 
 

and the force on the electron is 
2

3

0 04

e
F eE r

a


   . The negative sign means that the 

force points toward the center.  

 

(b) Since 2 2/ ,F ma md r dt   
2 2 2

2

2 3 2

0 0

0
4

d r e d r
m r r

dt a dt





     

 

and the angular frequency is 
2

3 3
0 0 0 0

4 4

e e

ma ma


 
  . 

 

72. (a) The electric potential is  

 

 
9 2 2

11

0

8.99 10 N m / C
27.22 V

5.29 10 m

kq ke
V

r a 

 
   


 

 

(b) The electric potential energy of the atom is  

 

(27.22 V) 27.22 eVU qV eV e        

 

(c) The electron moves in a circular orbit with  
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2 2 2

2

mv ke ke
v

r r mr
    

 

Its kinetic energy at 
0r a is  

2
2

0

1 1
(27.22 eV) 13.6 eV

2 2 2

ke
K mv

a
    . 

 

(d) The total energy of the system is  

 
2 2

2

0 0

1
13.6 eV

2 2

ke ke
E K U mv

a a
        . 

 

Therefore, the energy required to ionize the atom is +13.6 eV. 

 

73. The energy is, after evaluating the constants, 

 

   

 

1 2 3

2 34 2
2 2 2 2 2 2

, , 1 2 3 1 2 32 31 6 2

2 2 2

1 2 3

( J s)

8 8(9.11 10 kg)(0.25 10 m)

(6.024 eV)

n n n

h
E n n n n n n

mL

n n n



 

 
     

 

  

 

 

The lowest five states correspond to 1 2 3( , , )n n n  (1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 3, 1) and 

(2, 2, 2),  and the energies are  

 

 

 

 

 

 

2
2 2 2

111 2

2
2 2 2

121 2

2
2 2 2

122 2

2
2 2 2

131 2

2
2 2 2

222 2

1 1 1 3(6.024 eV) 18.1 eV
8

1 2 1 6(6.024 eV) 36.2 eV
8

1 2 2 9(6.024 eV) 54.3 eV
8

1 3 1 11(6.024 eV) 66.3 eV
8

2 2 2 12(6.024 eV) 7
8

h
E

mL

h
E

mL

h
E

mL

h
E

mL

h
E

mL

 

 

 

 



    

    

    

    

     2.4 eV

 


