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Chapter 14 
 

 

1. Let the volume of the expanded air sacs be Va and that of the fish with its air sacs 

collapsed be V. Then 

3 3fish fish
fish 1.08 g/cm     and     1.00 g/cmw

a

m m

V V V
    


 

 

where w is the density of the water. This implies  

 

fishV = w(V + Va) or (V + Va)/V = 1.08/1.00, 

 

which gives Va/(V + Va) = 0.074 = 7.4%. 

 

2. The magnitude F of the force required to pull the lid off is F = (po – pi)A, where po is 

the pressure outside the box, pi is the pressure inside, and A is the area of the lid. 

Recalling that 1N/m
2
 = 1 Pa, we obtain 

 

5 4

4 2

480 N
1.0 10  Pa 3.8 10  Pa.

77 10  m
i o

F
p p

A 
      


 

 

3. THINK The increase in pressure is equal to the applied force divided by the area.  

 

EXPRESS The change in pressure is given by p = F/A = F/r
2
, where r is the radius of 

the piston.  

 

ANALYZE substituting the values given, we obtain  

 

p = (42 N)/(0.011 m)
2
 = 1.1  10

5
 Pa. 

 

This is equivalent to 1.1 atm. 

 

LEARN The increase in pressure is proportional to the force applied. In addition, since 

1/p A , the smaller the cross-sectional area of the syringe, the greater the pressure 

increase under the same applied force. 

 

4. We note that the container is cylindrical, the important aspect of this being that it has a 

uniform cross-section (as viewed from above); this allows us to relate the pressure at the 

bottom simply to the total weight of the liquids. Using the fact that 1L = 1000 cm
3
, we 

find the weight of the first liquid to be 
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3 3 2 6 2

1 1 1 1 (2.6 g / cm )(0.50 L)(1000 cm / L)(980 cm/s ) 1.27 10 g cm/s

12.7 N.

W m g V g     


 

 

In the last step, we have converted grams to kilograms and centimeters to meters. 

Similarly, for the second and the third liquids, we have 

 
3 3 2

2 2 2 2 (1.0 g/cm )(0.25 L)(1000 cm L)(980 cm s ) 2.5 NW m g V g     

and 
3 3 2

3 3 3 3 (0.80 g/cm )(0.40 L)(1000 cm / L)(980 cm/s ) 3.1 N.W m g V g     

 

The total force on the bottom of the container is therefore F = W1 + W2 + W3 = 18 N. 

 

5. THINK The pressure difference between two sides of the window results in a net force 

acting on the window. 

 

EXPRESS The air inside pushes outward with a force given by piA, where pi is the 

pressure inside the room and A is the area of the window. Similarly, the air on the outside 

pushes inward with a force given by poA, where po is the pressure outside. The magnitude 

of the net force is F = (pi – po)A.  

 

ANALYZE Since 1 atm = 1.013  10
5
 Pa, the net force is 

 
5

4

( ) (1.0 atm 0.96 atm)(1.013 10  Pa/atm)(3.4 m)(2.1 m)

2.9 10  N.

i oF p p A    

 
 

 

LEARN The net force on the window vanishes when the pressure inside the office is 

equal to the pressure outside. 

  

6. Knowing the standard air pressure value in several units allows us to set up a variety of 

conversion factors: 

 

(a)  
5

2

2

1.01 10  Pa
28 lb/in. 190 kPa

14.7 lb/in
P

 
  

 
. 

 

(b) 
5 51.01 10 Pa 1.01 10  Pa

 (120 mmHg) 15.9 kPa,     (80 mmHg) 10.6 kPa.
760 mmHg 760 mmHg

    
    

   
 

 

7. (a) The pressure difference results in forces applied as shown in the figure. We 

consider a team of horses pulling to the right. To pull the sphere apart, the team must 

exert a force at least as great as the horizontal component of the total force determined by 

“summing” (actually, integrating) these force vectors. 
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We consider a force vector at angle . Its leftward component is p cos dA, where dA is 

the area element for where the force is applied. We make use of the symmetry of the 

problem and let dA be that of a ring of constant  on the surface. The radius of the ring is 

r = R sin , where R is the radius of the sphere. If the angular width of the ring is d, in 

radians, then its width is R d and its area is dA = 2R
2
 sin  d. Thus the net horizontal 

component of the force of the air is given by 

 
/ 2

0

2
2 2 2 2

0
2  sin  cos  sin .hF R p d R p R p



      


       

 

(b) We use 1 atm = 1.01  10
5
 Pa to show that p = 0.90 atm = 9.09  10

4
 Pa. The sphere 

radius is R = 0.30 m, so  

 

Fh = (0.30 m)
2
(9.09  10

4
 Pa) = 2.6  10

4
 N. 

 

(c) One team of horses could be used if one half of the sphere is attached to a sturdy wall. 

The force of the wall on the sphere would balance the force of the horses. 

 

8. Using Eq. 14-7, we find the gauge pressure to be gaugep gh , where   is the density 

of the fluid medium, and h is the vertical distance to the point where the pressure is equal 

to the atmospheric pressure.  

 

The gauge pressure at a depth of 20 m in seawater is  

 

 3 2 5

1 sw (1024 kg/m )(9.8 m/s )(20 m) 2.00 10  Pap gd    . 

 

On the other hand, the gauge pressure at an altitude of 7.6 km is  

 

 3 2 4

2 air (0.87 kg/m )(9.8 m/s )(7600 m) 6.48 10  Pap gh    . 

 

Therefore, the change in pressure is  

 
5 4 5

1 2 2.00 10  Pa 6.48 10  Pa 1.4 10  Pap p p         . 

 

9. The hydrostatic blood pressure is the gauge pressure in the column of blood between 

feet and brain. We calculate the gauge pressure using Eq. 14-7. 

 

(a) The gauge pressure at the heart of the Argentinosaurus is  

 

 

3 3 2

heart brain

3

1 torr
80 torr (1.06 10 kg/m )(9.8 m/s )(21 m 9.0 m)

133.33 Pa

1.0 10 torr.

p p gh
 

       
 

 

 

 

(b) The gauge pressure at the feet of the Argentinosaurus is  
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3 3 2

feet brain

3

1 torr
80 torr (1.06 10 kg/m )(9.8 m/s )(21 m)

133.33 Pa

80 torr 1642 torr 1722 torr 1.7 10 torr.

p p gh
 

      
 

    

 

 

10. With A = 0.000500 m
2
 and F = pA (with p given by Eq. 14-9), then we have ghA = 

9.80 N. This gives h  2.0 m, which means d + h = 2.80 m. 

 

11. The hydrostatic blood pressure is the gauge pressure in the column of blood between 

feet and brain. We calculate the gauge pressure using Eq. 14-7. 

 

(a) The gauge pressure at the brain of the giraffe is  

 

 

3 3 2

brain heart

1 torr
250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m)

133.33 Pa

94 torr.

p p gh
 

      
 



 

 

(b) The gauge pressure at the feet of the giraffe is  

 

3 3 2

feet heart

2

1 torr
250 torr (1.06 10 kg/m )(9.8 m/s )(2.0 m) 406 torr

133.33 Pa

4.1 10 torr.

p p gh
 

      
 

 

 

(c) The increase in the blood pressure at the brain as the giraffe lowers its head to the 

level of its feet is 
2

feet brain 406 torr 94 torr 312 torr 3.1 10 torr.p p p         

 

12. Note that 0.05 atm equals 5065 Pa.  Application of Eq. 14-7 with the notation in this 

problem leads to 

 max

liquid liquid liquid

0.05 atm 5065 Pap
d

g g g  
   . 

 

Thus the difference of this quantity between fresh water (998 kg/m
3
) and Dead Sea water 

(1500 kg/m
3
) is 

 

max 2 3 3

fw sw

5065 Pa 1 1 5065 Pa 1 1
0.17 m.

9.8 m/s 998 kg/m 1500 kg/m
d

g  

   
        

  
 

 

13. Recalling that 1 atm = 1.01  10
5
 Pa, Eq. 14-8 leads to 
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3 2 3 3

5

1 atm
(1024 kg/m ) (9.80 m/s ) (10.9 10 m) 1.08 10 atm.

1.01 10 Pa
gh

 
     

 

 

14. We estimate the pressure difference (specifically due to hydrostatic effects) as 

follows: 
3 3 2 4(1.06 10  kg/m )(9.8 m/s )(1.83 m) = 1.90 10 Pa.p gh      

 

15. In this case, Bernoulli’s equation reduces to Eq. 14-10. Thus, 

 
3 2 4( ) (1800kg/m )(9.8 m/s )(1.5 m) 2.6 10 Pa .gp g h        

 

16. At a depth h without the snorkel tube, the external pressure on the diver is  

0p p gh  , where 0p  is the atmospheric pressure. Thus, with a snorkel tube of length 

h, the pressure difference between the internal air pressure and the water pressure against 

the body is  

0p p p gh    . 

(a) If 0.20 m,h   then 

3 2

5

1atm
(998 kg/m )(9.8 m/s )(0.20 m) 0.019 atm

1.01 10  Pa
p gh   


. 

 

(b) Similarly, if 4.0 m,h   then 

3 2

5

1atm
(998 kg/m )(9.8 m/s )(4.0 m) 0.39 atm

1.01 10  Pa
p gh   


. 

 

17. THINK The minimum force that must be applied to open the hatch is equal to the 

gauge pressure times the area of the hatch. 

 

EXPRESS The pressure p at the depth d of the hatch cover is p0 + gd, where  is the 

density of ocean water and p0 is atmospheric pressure. Thus, the gauge pressure is 

gaugep gd , and the minimum force that must be applied by the crew to open the hatch 

has magnitude gauge ( )F p A gd A  , where A is the area of the hatch. 

 

Substituting the values given, we find the force to be 

 

 
3 2

gauge

5

( ) (1024 kg/m )(9.8 m/s )(100 m)(1.2 m)(0.60 m)

7.2 10 N.

F p A gd A  

 
 

 

LEARN The downward force of the water on the hatch cover is (p0 + gd)A, and the air 

in the submarine exerts an upward force of p0A. The greater the depth of the submarine, 

the greater the force required to open the hatch.  
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18. Since the pressure (caused by liquid) at the bottom of the barrel is doubled due to the 

presence of the narrow tube, so is the hydrostatic force. The ratio is therefore equal to 2.0. 

The difference between the hydrostatic force and the weight is accounted for by the 

additional upward force exerted by water on the top of the barrel due to the increased 

pressure introduced by the water in the tube. 

 

19. We can integrate the pressure (which varies linearly with depth according to Eq. 14-7) 

over the area of the wall to find out the net force on it, and the result turns out fairly 

intuitive (because of that linear dependence): the force is the “average” water pressure 

multiplied by the area of the wall (or at least the part of the wall that is exposed to the 

water), where “average” pressure is taken to mean 
1

2
 (pressure at surface + pressure at 

bottom).  Assuming the pressure at the surface can be taken to be zero (in the gauge 

pressure sense explained in section 14-4), then this means the force on the wall is 
1

2
 gh  

multiplied by the appropriate area.  In this problem the area is hw (where w is the 8.00 m 

width), so the force is 
1

2
 gh

2
w, and the change in force (as h is changed) is 

 
1

2
 gw ( hf 

2
 – hi 

2 
)  =  

1

2
 (998 kg/m

3
)(9.80 m/s

2
)(8.00 m)(4.00

2
 – 2.00

2
)m

2
  = 4.69  10

5
 N. 

 

20. (a) The force on face A of area AA due to the water pressure alone is 

 

   
32 3 3 2

6

(2 ) 2 1.0 10 kg m 9.8m s 5.0m

2.5 10 N.

A A A w A A wF p A gh A g d d     

 
 

 

Adding the contribution from the atmospheric pressure,  

 

F0 = (1.0  10
5
 Pa)(5.0 m)

2
 = 2.5  10

6
 N, 

we have 
6 6 6

0 2.5 10 N  2.5 10 N 5.0 10 N.A AF F F          

 

(b) The force on face B due to water pressure alone is 

 

   
32 3 3 3 2

avg

6

5 5 5
1.0 10 kg m 9.8m s 5.0m

2 2 2

3.1 10 N.

B B B w

d
F p A g d gd 

 
     

 

 

 

 

Adding the contribution from the atmospheric pressure,  

 

F0 = (1.0  10
5
 Pa)(5.0 m)

2
 = 2.5  10

6
 N, 

we obtain 
6 6 6

0 2.5 10 N  3.1 10 N 5.6 10 N.B BF F F          
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21. THINK Work is done to remove liquid from one vessel to another.  

 

EXPRESS When the levels are the same, the height of the liquid is h = (h1 + h2)/2, where 

h1 and h2 are the original heights. Suppose h1 is greater than h2. The final situation can 

then be achieved by taking liquid from the first vessel with volume V = A(h1 – h) and 

mass m = V = A(h1 – h), and lowering it a distance y = h – h2. The work done by the 

force of gravity is  

Wg = mg y =A(h1 – h)g(h – h2). 

 

ANALYZE We substitute h = (h1 + h2)/2 to obtain  

 

 
2 3 3 2 4 2 2

1 2

1 1
(1.30 10 kg/m )(9.80 m/s )(4.00 10 m )(1.56 m 0.854 m)

4 4

0.635 J

gW gA h h      



 

 

LEARN Since gravitational force is conservative, the work done only depends on the 

initial and final heights of the vessels, and not on how the liquid is transferred. 

 

22. To find the pressure at the brain of the pilot, we note that the inward acceleration can 

be treated from the pilot’s reference frame as though it is an outward gravitational 

acceleration against which the heart must push the blood. Thus, with 4a g , we have 

 

3 3 2

brain heart

1 torr
120 torr (1.06 10 kg/m )(4 9.8 m/s )(0.30 m)

133 Pa

120 torr 94 torr 26 torr.

p p ar
 

       
 

  

 

 

23. Letting pa = pb, we find  

 

cg(6.0 km + 32 km + D) + m(y – D) = cg(32 km) + my 

and obtain 

    3

3 3

6.0km 2.9g cm6.0km
44km.

3.3g cm 2.9g cm

c

m c

D


 
  

 
 

 

24. (a) At depth y the gauge pressure of the water is p = gy, where  is the density of the 

water. We consider a horizontal strip of width W at depth y, with (vertical) thickness dy, 

across the dam. Its area is dA = W dy and the force it exerts on the dam is dF = p dA = 

gyW dy. The total force of the water on the dam is 

 

    
22 3 3 2

0

9

1 1
1.00 10 kg m 9.80m s 314m 35.0m

2 2

1.88 10 N.

D

F gyW dy gWD    

 

  
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(b) Again we consider the strip of water at depth y. Its moment arm for the torque it 

exerts about O is D – y so the torque it exerts is  

 

d = dF(D – y) = gyW (D – y)dy 

 

and the total torque of the water is 

 

 

    

3 3 3

0

33 3 2 10

1 1 1

2 3 6

1
1.00 10 kg m 9.80m s 314m 35.0m 2.20 10 N m.

6

D

gyW D y dy gW D D gWD   
 

     
 

    


 

 

(c) We write  = rF, where r is the effective moment arm. Then, 

 
31

6

21
2

35.0 m
11.7 m.

3 3

gWD D
r

F gWD




      

 

25. As shown in Eq. 14-9, the atmospheric pressure 0p  bearing down on the barometer’s 

mercury pool is equal to the pressure gh  at the base of the mercury column: 
0p gh . 

Substituting the values given in the problem statement, we find the atmospheric pressure 

to be  

4 3 2

0

1 torr
(1.3608 10 kg/m )(9.7835 m/s )(0.74035 m)

133.33 Pa

739.26 torr.

p gh
 

    
 



 

 

26. The gauge pressure you can produce is 

 

   3 2 2

3

5

1000kg m 9.8m s 4.0 10 m
3.9 10 atm

1.01 10 Pa atm
p gh






      


 

 

where the minus sign indicates that the pressure inside your lung is less than the outside 

pressure. 

 

27. THINK The atmospheric pressure at a given height depends on the density 

distribution of air.   

 

EXPRESS If the air density were uniform,  =const., then the variation of pressure with 

height may be written as: p2 = p1 – g(y2 – y1). We take y1 to be at the surface of Earth, 

where the pressure is p1 = 1.01  10
5
 Pa, and y2 to be at the top of the atmosphere, where 

the pressure is p2 = 0. On the other hand, if the density varies with altitude, then 

 

2 1
0

.
h

p p g dy    
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For the case where the density decreases linearly with height,  = 0 (1  y/h), where 0 is 

the density at Earth’s surface and g = 9.8 m/s
2
 for 0  y  h, the integral becomes 

 

2 1 0 1 0
0

1
1 .

2

h y
p p g dy p gh

h
 

 
     

   

 

ANALYZE (a) For uniform density with  = 1.3 kg/m
3
, we find the height of the 

atmosphere to be 
5

31
2 1 3 2

1.01 10 Pa
7.9 10 m = 7.9 km.

(1.3 kg/m ) (9.8m/s )

p
y y

g


      

 

(b) With density decreasing linearly with height, 2 1 0 / 2p p gh  . The condition p2 = 0 

implies 
5

31

3 2

0

2 2(1.01 10 Pa)
16 10 m = 16 km.

(1.3 kg/m ) (9.8 m/s )

p
h

g


     

 

LEARN Actually the decrease in air density is approximately exponential, with pressure 

halved at a height of about 5.6 km.  

 

28. (a) According to Pascal’s principle, F/A = f/a  F = (A/a)f. 

 

(b) We obtain 
2

3

2

(3.80 cm)
(20.0 10 N) = 103 N.

(53.0 cm)

a
f F

A
    

 

The ratio of the squares of diameters is equivalent to the ratio of the areas. We also note 

that the area units cancel. 

 

29. Equation 14-13 combined with Eq. 5-8 and Eq. 7-21 (in absolute value) gives 

 

mg = kx 
A1

 A2

 . 

 

With A2 = 18A1 (and the other values given in the problem) we find m = 8.50 kg. 

 

30. Taking “down” as the positive direction, then using Eq. 14-16 in Newton’s second 

law, we have  (5.00 kg)g – (3.00 kg)g = 5a. This gives a = 
2

5
 g = 3.92 m/s

2
, where g = 9.8 

m/s
2
. Then (see Eq. 2-15)  

1

2
 at

2
 = 0.0784 m (in the downward direction). 

 

31. THINK The block floats in both water and oil. We apply Archimedes’ principle to 

analyze the problem. 
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EXPRESS Let V be the volume of the block. Then, the submerged volume in water is 

2 / 3sV V . Since the block is floating, by Archimedes’ principle the weight of the 

displaced water is equal to the weight of the block, i.e., w Vs = b V, where w is the 

density of water, and b is the density of the block.  

 

ANALYZE (a) We substitute Vs = 2V/3 to obtain the density of the block:  

 

b = 2w/3 = 2(1000 kg/m
3
)/3  6.7 10

2
 kg/m

3
. 

 

(b) Now, if o is the density of the oil, then Archimedes’ principle yields 
o s bV V   . 

Since the volume submerged in oil is 0.90sV V  , the density of the oil is  

 

2 3 2 3(6.7 10 kg/m ) 7.4 10 kg/m
0.90

o b

V V

V V
 

 
     

 
. 

 

LEARN Another way to calculate the density of the oil is to note that the mass of the 

block can be written as   

b o s w sm V V V     . 

Therefore,  

3 2 32 / 3
(1000 kg/m ) 7.4 10 kg/m

0.90

s
o w

s

V V

V V
 

 
    

 
. 

 

That is, by comparing the fraction submerged with that in water (or another liquid with 

known density), the density of the oil can be deduced.    

 

32. (a) The pressure (including the contribution from the atmosphere) at a depth of htop = 

L/2 (corresponding to the top of the block) is 

 
5 3 2 5

top atm top 1.01 10  Pa (1030 kg/m )(9.8 m/s )(0.300 m) 1.04 10 Pap p gh        

 

where the unit Pa (pascal) is equivalent to N/m
2
. The force on the top surface (of area A = 

L
2
 = 0.36 m

2
) is  

Ftop = ptop A = 3.75  10
4
 N. 

 

(b) The pressure at a depth of hbot = 3L/2 (that of the bottom of the block) is 

 
5 3 2

bot atm bot

5

1.01 10  Pa (1030 kg/m )(9.8 m/s ) (0.900 m)

1.10 10 Pa

p p gh    

 
 

 

where we recall that the unit Pa (pascal) is equivalent to N/m
2
. The force on the bottom 

surface is  

Fbot = pbot A = 3.96  10
4
 N. 
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(c) Taking the difference Fbot – Ftop cancels the contribution from the atmosphere 

(including any numerical uncertainties associated with that value) and leads to 

 
3 3

bot top bot top( ) 2.18 10 NF F g h h A gL        

 

which is to be expected on the basis of Archimedes’ principle. Two other forces act on 

the block: an upward tension T and a downward pull of gravity mg. To remain stationary, 

the tension must be 

 
2 3 3

bot top( ) (450 kg)(9.80 m/s ) 2.18 10  N 2.23 10 N.T mg F F         

 

(d) This has already been noted in the previous part: 32.18 10 NbF   , and T + Fb = mg. 

 

33. THINK The iron anchor is submerged in water, so we apply Archimedes’ principle 

to calculate its volume and weight in air. 

 

EXPRESS The anchor is completely submerged in water of density w. Its apparent 

weight is Wapp = W – Fb, where W= mg is its actual weight and Fb =w gV is the buoyant 

force. 

 

ANALYZE (a) Substituting the values given, we find the volume of the anchor to be 

 

   
app 2 3

3 2

200 N
2.04 10 m .

1000 kg/m 9.8 m/s

b

w w

W W F
V

g g 




      

 

(b) The mass of the anchor is Fem g , where Fe is the density of iron (found in Table  

14-1). Therefore, its weight in air is 

 
3 2 3 2 3

Fe (7870 kg/m )(2.04 10 m )(9.80 m/s ) 1.57 10 N .W mg Vg        

 

LEARN In general, the apparent weight of an object of density that is completely 

submerged in a fluid of density f  can be written as app ( )fW Vg   . 

 

34. (a) Archimedes’ principle makes it clear that a body, in order to float, displaces an 

amount of the liquid that corresponds to the weight of the body. The problem (indirectly) 

tells us that the weight of the boat is W = 35.6 kN. In salt water of density  

' = 1100 kg/m
3
, it must displace an amount of liquid having weight equal to 35.6 kN. 

 

(b) The displaced volume of salt water is equal to 

 
3

3

3 3 2

3.56 10 N
3.30 m .

(1.10 10  kg/m )(9.80 m/s )

W
V

g


   

 
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In freshwater, it displaces a volume of V = W/g = 3.63 m
3
, where  = 1000 kg/m

3
. The 

difference is V – V ' = 0.330 m
3
. 

 

35. The problem intends for the children to be completely above water. The total 

downward pull of gravity on the system is 

 

  wood3 356 N N gV  

 

where N is the (minimum) number of logs needed to keep them afloat and V is the 

volume of each log:  

V = (0.15 m)
2
 (1.80 m) = 0.13 m

3
. 

 

The buoyant force is Fb = watergVsubmerged, where we require Vsubmerged  NV. The density 

of water is 1000 kg/m
3
. To obtain the minimum value of N, we set Vsubmerged = NV and 

then round our “answer” for N up to the nearest integer: 

 
 

 
wood water

water wood

3 356 N
3 356 N N gV gNV N

gV
 

 
   


 

which yields N = 4.28  5 logs. 

 

36. From the “kink” in the graph it is clear that d = 1.5 cm. Also, the h = 0 point makes it 

clear that the (true) weight is 0.25 N.  We now use Eq. 14-19 at h = d = 1.5 cm to obtain  

 

Fb = (0.25 N – 0.10 N ) = 0.15 N. 

 

Thus, liquid g V = 0.15, where  

 

V = (1.5 cm)(5.67 cm
2
) = 8.5  10

6
 m

3
. 

 

Thus, liquid = 1800 kg/m
3
 = 1.8 g/cm

3
. 

 

37. For our estimate of Vsubmerged we interpret “almost completely submerged” to mean 

 

3

submerged

4
where 60 cm .

3
o oV r r   

 

Thus, equilibrium of forces (on the iron sphere) leads to 

3 3

iron water submerged iron

4 4

3 3
b o iF m g gV g r r   

 
    

 
 

 

where ri is the inner radius (half the inner diameter). Plugging in our estimate for 

Vsubmerged as well as the densities of water (1.0 g/cm
3
) and iron (7.87 g/cm

3
), we obtain the 

inner diameter: 
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1/3
3

o 3

1.0 g/cm
2 2 1 57.3 cm.

7.87 g/cm
ir r

 
   

 
 

 

38. (a) An object of the same density as the surrounding liquid (in which case the 

“object” could just be a packet of the liquid itself) is not going to accelerate up or down 

(and thus won’t gain any kinetic energy).  Thus, the point corresponding to zero K in the 

graph must correspond to the case where the density of the object equals liquid.  

Therefore, ball = 1.5 g/cm
3
 (or 1500 kg/m

3
). 

 

(b) Consider the liquid = 0 point (where Kgained = 1.6 J).  In this case, the ball is falling 

through perfect vacuum, so that v
2
 = 2gh (see Eq. 2-16) which means that K = 

1

2
 mv

2
 = 1.6 

J can be used to solve for the mass.  We obtain mball = 4.082 kg.  The volume of the ball 

is then given by  

mball/ball = 2.72  10
3

 m
3
. 

 

39. THINK The hollow sphere is half submerged in a fluid. We apply Archimedes’ 

principle to calculate its mass and density. 

 

EXPRESS The downward force of gravity mg is balanced by the upward buoyant force 

of the liquid: mg = g Vs. Here m is the mass of the sphere,  is the density of the liquid, 

and Vs is the submerged volume. Thus m = Vs. The submerged volume is half the total 

volume of the sphere, so   31
2

4 3s oV r  , where ro is the outer radius.  

 

ANALYZE (a) Substituting the values given, we find the mass of the sphere to be  

 

3 3 3 31 4 2 2
(800 kg/m )(0.090 m) 1.22 kg.

2 3 3 3
s o om V r r

  
  

   
       

  
 

 

(b) The density m of the material, assumed to be uniform, is given by m = m/V, where m 

is the mass of the sphere and V is its volume. If ri is the inner radius, the volume is 

 

    3 33 3 4 34 4
( ) 0.090 m 0.080 m 9.09 10 m .

3 3
o iV r r

         

The density is 

3 3

4 3

1.22 kg
1.3 10 kg/m .

9.09 10 m
m 
  


 

 

LEARN Note that m > , i.e., the density of the material is greater that of the fluid. 

However, the sphere floats (and displaces its own weight of fluid) because it’s hollow.     

 

40. If the alligator floats, by Archimedes’ principle the buoyancy force is equal to the 

alligator’s weight (see Eq. 14-17). Therefore,  
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2 2H O H O( )b gF F m g Ah g   . 

 

If the mass is to increase by a small amount m m m m   , then 

 

2H O ( )b bF F A h h g   . 

 

With 0.010b b bF F F mg    , the alligator sinks by  

 

2 2

3

3 2

H O H O

0.01 0.010(130 kg)
6.5 10  m 6.5 mm

(998 kg/m )(0.20 m )

bF mg
h

Ag Ag 


       . 

 

41. Let 
iV  be the total volume of the iceberg. The non-visible portion is below water, and 

thus the volume of this portion is equal to the volume fV  of the fluid displaced by the 

iceberg. The fraction of the iceberg that is visible is  

 

 frac 1
i f f

i i

V V V

V V


   . 

Since iceberg is floating, Eq. 14-18 applies:  

 

.g i f i fF m g m g m m     

 

Since m V , the above equation implies  

 
f i

i i f f

i f

V
V V

V


 


   . 

Thus, the visible fraction is  

frac 1 1
f i

i f

V

V




     . 

 

(a) If the iceberg ( 3917 kg/mi  ) floats in salt water with 31024 kg/mf  , then the 

fraction would be  
3

3

917 kg/m
frac 1 1 0.10 10%

1024 kg/m

i

f




      . 

 

(b) On the other hand, if the iceberg floats in fresh water ( 31000 kg/mf  ), then the 

fraction would be  
3

3

917 kg/m
frac 1 1 0.083 8.3%

1000 kg/m

i

f




      . 
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42. Work is the integral of the force over distance (see Eq. 7-32). Referring to the 

equation immediately preceding Eq. 14-7, we see the work can be written as 

 

W =
water gA(–y) dy 

 

where we are using y = 0 to refer to the water surface (and the +y direction is upward).  

Let h = 0.500 m.  Then, the integral has a lower limit of –h and an upper limit of yf , with 

 

yf /h = cylinder /water = – 0.400. 

The integral leads to 

W = 
1

2
  watergAh

2
(1 – 0.4

2
)  =  4.11 kJ . 

 

43. (a) When the model is suspended (in air) the reading is Fg (its true weight, neglecting 

any buoyant effects caused by the air). When the model is submerged in water, the 

reading is lessened because of the buoyant force: Fg – Fb. We denote the difference in 

readings as m. Thus, 

( )g g bF F F mg     

 

which leads to Fb = mg. Since Fb = wgVm (the weight of water displaced by the model) 

we obtain 

4 30.63776kg
6.378 10 m .

1000 kg/m
m

w

m
V




     

 

(b) The 1
20

 scaling factor is discussed in the problem (and for purposes of significant 

figures is treated as exact). The actual volume of the dinosaur is 

 
3 3

dino 20 5.102 m .mV V   

 

(c) Using 3dino

dino

1000 kg/mw

m

V
    , we find the mass of the T. rex to be 

 
3 3 3

dino dino (1000kg/m ) (5.102 m ) 5.102 10 kgwm V    . 

 

44. (a) Since the lead is not displacing any water (of density w), the lead’s volume is not 

contributing to the buoyant force Fb. If the immersed volume of wood is Vi, then 

 

wood
wood

wood

0.900 0.900 ,b w i w w

m
F V g V g g  



 
    

 
 

 

which, when floating, equals the weights of the wood and lead: 
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wood
wood lead

wood

0.900 ( ) .b w

m
F g m m g



 
   

 
 

Thus, 
3

wood
lead wood 3

wood

(0.900) (1000kg/m )(3.67 kg)
0.900 3.67 kg

600 kg/m

1.84 kg.

w

m
m m



 
    

 



 

 

(b) In this case, the volume Vlead = mlead/lead also contributes to Fb. Consequently, 

 

wood
lead wood lead

wood lead

0.900 ( ) ,w
b w

m
F g m g m m g




 

   
      

   
 

which leads to 

 

wood wood wood

lead 3 3 4 3

lead

0.900( / ) 1.84 kg

1 / 1 (1.00 10 kg/m /1.13 10 kg/m )

2.01 kg.

w

w

m m
m

 

 


 

   



 

 

45. The volume Vcav of the cavities is the difference between the volume Vcast of the 

casting as a whole and the volume Viron contained: Vcav = Vcast – Viron. The volume of the 

iron is given by Viron = W/giron, where W is the weight of the casting and iron is the 

density of iron. The effective weight in water (of density w) is Weff = W – gw Vcast. Thus, 

Vcast = (W – Weff)/gw and 

 

eff
cav 2 3 2 3 3

iron

3

6000 N 4000 N 6000 N

(9.8 m/s ) (1000kg/m ) (9.8 m/s ) (7.87 10 kg/m )

0.126 m .

w

W W W
V

g g 

 
   





 

 

46. Due to the buoyant force, the ball accelerates upward (while in the water) at rate a 

given by Newton’s second law: waterVg – ballVg = ballVa, which yields 

 

 water ball(1 / )a g   . 

With ball = 0.300 water, we find that  

 

2 2water

ball

1
1 (9.80 m/s ) 1 22.9 m/s

0.300
a g





   
       

  
. 

 

Using Eq. 2-16 with y = 0.600 m, the speed of the ball as it emerges from the water is 

 

 22 2(22.9 m/s )(0.600 m) 5.24 m/sv a y    . 
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This causes the ball to reach a maximum height hmax (measured above the water surface) 

given by hmax = v
2
/2g (see Eq. 2-16 again).  Thus,  

 

 
2 2

max 2

(5.24 m/s)
1.40 m

2 2(9.80 m/s )

v
h

g
   . 

 

47. (a) If the volume of the car below water is V1 then Fb = wV1g = Wcar, which leads to 

 

  
  

2

3car
1 3 2

1800kg 9.8m s
1.80 m .

1000kg m 9.8m sw

W
V

g
    

 

(b) We denote the total volume of the car as V and that of the water in it as V2. Then 

 

car 2b w wF Vg W V g     

which gives 

 

 3 3 3 3car
2 3

1800kg
0.750m 5.00m 0.800m 4.75 m .

1000kg mw

W
V V

g
        

 

48. Let  be the density of the cylinder (0.30 g/cm
3
 or 300 kg/m

3
) and Fe be the density 

of the iron (7.9 g/cm
3
 or 7900 kg/m

3
).  The volume of the cylinder is  

 

Vc = (612) cm
3
 = 72 cm

3
 = 0.000072 m

3
, 

 

and that of the ball is denoted Vb . The part of the cylinder that is submerged has volume 

 

Vs = (4  12) cm
3
 = 48 cm

3
 = 0.000048 m

3
. 

 

Using the ideas of section 14-7, we write the equilibrium of forces as 

 

gVc  +  Fe gVb  =  w gVs   +  w gVb         Vb = 3.8 cm
3
 

 

where we have used w = 998 kg/m
3
  (for water, see Table 14-1). Using Vb = 

4

3
 r

3
 we 

find r = 9.7 mm. 

 

49. This problem involves use of continuity equation (Eq. 14-23): 1 1 2 2Av A v . 

 

(a) Initially the flow speed is 1.5 m/siv   and the cross-sectional area is iA HD . At 

point a, as can be seen from the figure, the cross-sectional area is 

 

 ( ) ( )aA H h D b h d    . 
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Thus, by continuity equation, the speed at point a is  

 

(14 m)(55 m)(1.5 m/s)

( ) ( ) (14 m 0.80 m)(55 m) (12 m 0.80 m)(30 m)

2.96 m/s 3.0 m/s.

i i i
a

a

Av HDv
v

A H h D b h d
  

     

 

 

 

(b) Similarly, at point b, the cross-sectional area is bA HD bd  , and therefore, by 

continuity equation, the speed at point b is  

 

(14 m)(55 m)(1.5 m/s)
2.8 m/s.

(14 m)(55 m) (12 m)(30 m)

i i i
b

b

Av HDv
v

A HD bd
   

 
 

 

50. The left and right sections have a total length of 60.0 m, so (with a speed of 2.50 m/s) 

it takes 60.0/2.50  = 24.0 seconds to travel through those sections.  Thus it takes (88.8 – 

24.0) s = 64.8 s to travel through the middle section.  This implies that the speed in the 

middle section is  

vmid = (50 m)/(64.8 s) = 0.772 m/s. 

 

Now Eq. 14-23 (plus that fact that A = r
2
) implies rmid = rA (2.5 m/s)/(0.772 m/s)  where 

rA = 2.00 cm.  Therefore, mid 3.60 cmr  . 

 

51. THINK We use the equation of continuity to solve for the speed of water as it leaves 

the sprinkler hole.  

 

EXPRESS Let v1 be the speed of the water in the hose and v2 be its speed as it leaves one 

of the holes. The cross-sectional area of the hose is A1 = R
2
. If there are N holes and A2 

is the area of a single hole, then the equation of continuity becomes 

 

 
2

1
1 1 2 2 2 1 12

2

A R
v A v NA v v v

NA Nr
     

 

where R is the radius of the hose and r is the radius of a hole.  

 

ANALYZE Noting that R/r = D/d (the ratio of diameters) we find the speed to be 

 

 

 
 

22

2 1 22

1.9cm
0.91 m/s 8.1 m/s.

24 0.13cm

D
v v

Nd
    

 

LEARN The equation of continuity implies that the smaller the cross-sectional area of 

the sprinkler hole, the greater the speed of water as it emerges from the hole.  

 

52. We use the equation of continuity and denote the depth of the river as h. Then, 
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          8.2m 3.4m 2.3m s 6.8m 3.2m 2.6m s 10.5m 2.9m sh   

 

which leads to h = 4.0 m. 

 

53. THINK The power of the pump is the rate of work done in lifting the water. 

 

EXPRESS Suppose that a mass m of water is pumped in time t. The pump increases 

the potential energy of the water by U =(m)gh, where h is the vertical distance through 

which it is lifted, and increases its kinetic energy by K = 21
2
( )m v , where v is its final 

speed. The work it does is  

21
( ) ( )

2
W U K m gh m v         

and its power is 

21
.

2

W m
P gh v

t t

   
   

   
 

 

The rate of mass flow is m/ t = wAv, where w is the density of water and A is the area 

of the hose.  

 

ANALYZE The area of the hose is A = r
2
 = (0.010 m)

2
 = 3.14  10

–4
 m

2
 and  

 

wAv = (1000 kg/m
3
) (3.14  10

–4
 m

2
) (5.00 m/s) = 1.57 kg/s. 

 

Thus, the power of the pump is 

 

    
 

2

2 2
5.0m s1

1.57 kg s 9.8m s 3.0m 66 W.
2 2

P Av gh v
  
           

 

 

LEARN The work done by the pump is converted into both the potential energy and 

kinetic energy of the water.   

 

54. (a) The equation of continuity provides (26 + 19 + 11) L/min = 56 L/min for the flow 

rate in the main (1.9 cm diameter) pipe. 

 

(b) Using v = R/A and A = d 
2
/4, we set up ratios: 

 
2

56

2

26

56 / (1.9) / 4
1.0.

26 / (1.3) / 4

v

v




   

 

55. We rewrite the formula for work W (when the force is constant in a direction parallel 

to the displacement d) in terms of pressure: 
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( )
F

W Fd Ad pV
A

 
   

 
 

 

where V is the volume of the water being forced through, and p is to be interpreted as the 

pressure difference between the two ends of the pipe. Thus, 

 
5 3 5(1.0 10 Pa) (1.4 m ) 1.4 10 J.W      

 

56. (a) The speed v of the fluid flowing out of the hole satisfies 21
2

 or 2v gh v gh   . 

Thus, 1v1A1 = 2v2A2, which leads to 

 

1 2
1 1 2 2

2 1

2 2 2.
A

ghA ghA
A


 


     

(b) The ratio of volume flow is 

1 1 1 1

2 2 2 2

1

2

R v A A

R v A A
   . 

 

(c) Letting R1/R2 = 1, we obtain 1 2 2 1 1 22v v A A h h   . Thus, 

 

2 1 4 (12.0 cm)/4 3.00 cmh h   . 

 

57. THINK We use the Bernoulli equation to solve for the flow rate, and the continuity 

equation to relate cross-sectional area to the vertical distance from the hole.   

 

EXPRESS According to the Bernoulli equation:  

 
2 21 1

1 1 1 2 2 22 2
p v gh p v gh        , 

 

where  is the density of water, h1 is the height of the water in the tank, p1 is the pressure 

there, and v1 is the speed of the water there; h2 is the altitude of the hole, p2 is the pressure 

there, and v2 is the speed of the water there. The pressure at the top of the tank and at the 

hole is atmospheric, so p1 = p2. Since the tank is large we may neglect the water speed at 

the top; it is much smaller than the speed at the hole. The Bernoulli equation then 

simplifies to 21
1 2 22

gh v gh    .  

 

ANALYZE (a) With 1 2 0.30 mD h h   , the speed of water as it emerges from the 

hole is 

    2

2 1 22 2 9.8m s 0.30m 2.42m s.v g h h     

 

Thus, the flow rate is  
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A2v2 = (6.5  10
–4

 m
2
)(2.42 m/s) = 1.6  10

–3
 m

3
/s. 

 

(b) We use the equation of continuity: A2v2 = A3v3, where 1
3 22

A A  and v3 is the water 

speed where the area of the stream is half its area at the hole (see diagram below).  

 

 
Thus,  

v3 = (A2/A3)v2 = 2v2 = 4.84 m/s. 

 

The water is in free fall and we wish to know how far it has fallen when its speed is 

doubled to 4.84 m/s. Since the pressure is the same throughout the fall, 
2 21 1
2 2 3 32 2

v gh v gh      . Thus, 

 

   

 

2 22 2

3 2
2 3 2

4.84m s 2.42m s
0.90 m.

2 2 9.8m s

v v
h h

g


     

 

LEARN By combing the two expressions obtained from Bernoulli’s equation and 

equation of continuity, the cross-sectional area of the stream may be related to the 

vertical height fallen as  
2 2

2 2 22

3 2 3 32 2
2 3

3 2

1 1 .
2 2 2

v v v Av A
h h

g g A g A

      
           
        

 

 

58. We use Bernoulli’s equation: 

 2 2

2 1 2

1

2
ip p gD v v      

 

where  = 1000 kg/m
3
, D = 180 m, v1 = 0.40 m/s, and v2 = 9.5 m/s. Therefore, we find p 

= 1.7  10
6
 Pa, or 1.7 MPa. The SI unit for pressure is the pascal (Pa) and is equivalent to 

N/m
2
. 

 

59. THINK The elevation and cross-sectional area of the pipe are changing, so we apply 

the Bernoulli equation and continuity equation to analyze the flow of water through the 

pipe. 
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EXPRESS To calculate the flow speed at the lower level, we use the equation of 

continuity: A1v1 = A2v2. Here A1 is the area of the pipe at the top and v1 is the speed of the 

water there; A2 is the area of the pipe at the bottom and v2 is the speed of the water there. 

As for the pressure at the lower level, we use the Bernoulli equation:  

 
2 21 1

1 1 1 2 2 22 2
p v gh p v gh        , 

 

where  is the density of water, h1 is its initial altitude, and h2 is its final altitude. 

 

ANALYZE (a) From the continuity equation, we find the speed at the lower level to be  

 

v2 = (A1/A2)v1 = [(4.0 cm
2
)/(8.0 cm

2
)] (5.0 m/s) = 2.5m/s. 

 

(b) Similarly, from the Bernoulli equation, the pressure at the lower level is  

 

   2 2

2 1 1 2 1 2

5 3 2 2 3 2

5

1

2

1
1.5 10 Pa (1000kg m ) (5.0m s) (2.5m s) (1000kg m )(9.8m/s )(10 m)

2

2.6 10 Pa.

p p v v g h h     

      

 

 

LEARN The water at the lower level has a smaller speed ( 2 1v v ) but higher pressure 

( 2 1p p ).  

 

60. (a) We use Av = const. The speed of water is 

 

   

 
 

2 2

2

25.0cm 5.00cm
2.50m s 2.40m s.

25.0cm
v


   

 

(b) Since 21
2

const.,p v   the pressure difference is 

 

     
2 22 31 1

1000kg m 2.50m s 2.40m s 245Pa.
2 2

p v       
 

 

 

61. (a) The equation of continuity leads to 
2

1
2 2 1 1 2 1 2

2

r
v A v A v v

r

 
    

 
 

which gives v2 = 3.9 m/s. 

 

(b) With h = 7.6 m and p1 = 1.7  10
5
 Pa, Bernoulli’s equation reduces to 
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 2 2 4

2 1 1 2

1
8.8 10 Pa.

2
p p gh v v        

 

62. (a) Bernoulli’s equation gives 21
air2A Bp p v    However, A Bp p p gh    in 

order to balance the pressure in the two arms of the U-tube. Thus 21
air2

gh v  , or  

 

air

2
.

gh
v




  

(b) The plane’s speed relative to the air is  

 

 3 2

3

air

2 810kg/m (9.8m/s ) (0.260m)2
63.3m/s.

1.03kg/m

gh
v




    

 

63. We use the formula for v obtained in the previous problem: 

 

2

3

air

2 2(180Pa)
1.1 10 m/s.

0.031kg/m

p
v




     

 

64. (a) The volume of water (during 10 minutes) is 

 

       
2 3

1 1 15m s 10min 60s min 0.03m 6.4m .
4

V v t A
 

   
 

 

 

(b) The speed in the left section of pipe is 

 

 
2 2

1 1
2 1 1

2 2

3.0cm
15m s 5.4m s.

5.0cm

A d
v v v

A d

     
        

    
 

(c) Since  
2 21 1

1 1 1 2 2 22 2
p v gh p v gh         

 

and 1 2 1 0,h h p p  , which is the atmospheric pressure, 

 

       
2 22 2 5 3 3

2 0 1 2

5

1 1
1.01 10 Pa 1.0 10 kg m 15m s 5.4m s

2 2

1.99 10 Pa 1.97atm.

p p v v         
 

  

 

 

Thus, the gauge pressure is (1.97 atm – 1.00 atm) = 0.97 atm = 9.8  10
4
 Pa. 

 

65. THINK The design principles of the Venturi meter, a device that measures the flow 

speed of a fluid in a pipe, involve both the continuity equation and Bernoulli’s equation. 
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EXPRESS The continuity equation yields AV = av, and Bernoulli’s equation yields 
2 21 1

2 2
V p v    , where p = p2 – p1 with p2 equal to the pressure in the throat and p1 

the pressure in the pipe.  The first equation gives v = (A/a)V. We use this to substitute for 

v in the second equation and obtain  

 

 
22 21 1

2 2
/V p A a V    . 

 

The equation can be used to solve for V.  

 

ANALYZE (a) The above equation gives the following expression for V:  

 

   

2

2 2 2

2 2
.

1 ( / )

p a p
V

A a a A 

 
 

 
 

 

(b) We substitute the values given to obtain  

 

   

2 4 2 2 3 3

2 2 3 4 2 2 4 2 2

2 2(32 10 m ) (41 10 Pa 55 10 Pa)
3.06m/s.

(1000kg / m ) (32 10 m ) (64 10 m )

a p
V

a A



 

    
  

   
 

 

Consequently, the flow rate is  

 
4 2 2 3(64 10 m )(3.06 m/s) 2.0 10 m /s.R AV        

 

LEARN The pressure difference p between points 1 and 2 is what causes the height 

difference of the fluid in the two arms of the manometer. Note that p = p2 – p1 < 0 

(pressure in throat less than that in the pipe), but a A , so the expression inside the 

square root is positive.  

 

66. We use the result of part (a) in the previous problem. 

 

(a) In this case, we have p = p1 = 2.0 atm. Consequently,  

 
5

2 3 2

2 4(1.01 10 Pa)
4.1m/s.

(( / ) 1) (1000 kg/m ) [(5 / ) 1]

p
v

A a a a

 
  

 
 

 

(b) And the equation of continuity yields V = (A/a)v = (5a/a)v = 5v = 21 m/s. 

 

(c) The flow rate is given by  

4 2 3 3(5.0 10 m ) (4.1 m/s) 8.0 10 m / s.
4

Av  
     
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67. (a) The friction force is  

3 3 2 2(1.0 10  kg/m ) (9.8 m/s ) (6.0m) (0.040 m) 74 N.
4

f A p gdA
 

      
 

 

 

(b) The speed of water flowing out of the hole is v = 2 .gd  Thus, the volume of water 

flowing out of the pipe in t = 3.0 h is 

 
2

2 2 2 3(0.040 m) 2(9.8 m/s ) (6.0 m)  (3.0 h) (3600 s/h) 1.5 10 m .
4

V Avt


     

 

68. (a) We note (from the graph) that the pressures are equal when the value of inverse-

area-squared is 16 (in SI units).  This is the point at which the areas of the two pipe 

sections are equal.  Thus, if A1 = 1/ 16  when the pressure difference is zero, then A2 is 

0.25 m
2
. 

 

(b) Using Bernoulli’s equation (in the form Eq. 14-30) we find the pressure difference 

may be written in the form of a straight line: mx + b where x is inverse-area-squared (the 

horizontal axis in the graph), m is the slope, and b is the intercept (seen to be –300 

kN/m
2
).  Specifically, Eq. 14-30 predicts that b should be  – 

1

2
 v2

2
.  Thus, with  = 1000 

kg/m
3
 we obtain v2 = 600  m/s.  Then the volume flow rate (see Eq. 14-24) is  

 

R = A2 v2 = (0.25 m
2
)( 600  m/s) = 6.12 m

3
/s. 

 

If the more accurate value (see Table 14-1) = 998 kg/m
3 

is used, then the answer is 6.13 

m
3
/s. 

 

69. (a) Combining Eq. 14-35 and Eq. 14-36 in a manner very similar to that shown in the 

textbook, we find 

 
1 2 2 2

1 2

2 p
R A A

A A





 

 

for the flow rate expressed in terms of the pressure difference and the cross-sectional 

areas. Note that p = p1 – p2 = –7.2  10
3
 Pa and 2 2 3 4

1 2 8.66 10 mA A     , so that the 

square root is well defined. Therefore, we obtain R = 0.0776 m
3
/s. 

 

(b) The mass rate of flow is 3 3(900 kg/m )(0.0776 m /s) 69.8 kg/sR   . 

 

70. By Eq. 14-23, the speeds in the left and right sections are 
1

4
 vmid and 

1

9
 vmid, respectively, 

where vmid = 0.500 m/s.  We also note that 0.400 m
3
 of water has a mass of 399 kg (see 

Table 14-1). Then Eq. 14-31 (and the equation below it) gives 
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 2 2

mid 2 2 2 2

1 1 1 1 1 1
(399 kg)(0.50 m/s) 2.50 J.

2 9 4 2 9 4
W mv

   
        

   
 

 

71. (a) The stream of water emerges horizontally (0 = 0° in the notation of Chapter 4) 

with 0 2v gh . Setting y – y0 = –(H – h) in Eq. 4-22, we obtain the “time-of-flight”  

 

2( ) 2
( ).

H h
t H h

g g

 
  


 

 

Using this in Eq. 4-21, where x0 = 0 by choice of coordinate origin, we find  

 

 0

2( )
2 2 ( ) 2 (10 cm)(40 cm 10 cm) 35 cm.

H h
x v t gh h H h

g


        

 

(b) The result of part (a) (which, when squared, reads x
2
 = 4h(H – h)) is a quadratic 

equation for h once x and H are specified. Two solutions for h are therefore 

mathematically possible, but are they both physically possible? For instance, are both 

solutions positive and less than H? We employ the quadratic formula: 

 
2 2 2

2 0
4 2

x H H x
h Hh h

 
      

 

which permits us to see that both roots are physically possible, so long as x  H. Labeling 

the larger root h1 (where the plus sign is chosen) and the smaller root as h2 (where the 

minus sign is chosen), then we note that their sum is simply  

 
2 2 2 2

1 2 .
2 2

H H x H H x
h h H

   
     

 

Thus, one root is related to the other (generically labeled h' and h) by h' = H – h. Its 

numerical value is 40cm  10 cm 30 cm.h    

 

(c) We wish to maximize the function f = x
2
 = 4h(H – h). We differentiate with respect to 

h and set equal to zero to obtain  

 

4 8 0
2

df H
H h h

dh
      

 

or h = (40 cm)/2 = 20 cm, as the depth from which an emerging stream of water will 

travel the maximum horizontal distance. 

 

72. We use Bernoulli’s equation: 
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2 21 1
1 1 1 2 2 22 2

p v gh p v gh        . 

 

When the water level rises to height h2, just on the verge of flooding, 
2v , the speed of 

water in pipe M is given by 

 

 2

1 2 2 2 1 2

1
( )    2 ( ) 13.86 m/s.

2
g h h v v g h h        

 

By the continuity equation, the corresponding rainfall rate is  

 
2

52
1 2

1

(0.030 m)
(13.86 m/s) 2.177 10  m/s 7.8 cm/h.

(30 m)(60 m)

A
v v

A

  
     
 

 

 

73. Equilibrium of forces (on the floating body) is expressed as 

 

body liqui d submerged body totalbF m g gV gV     

which leads to 

submerged body

total liquid

.
V

V




  

 

We are told (indirectly) that two-thirds of the body is below the surface, so the fraction 

above is 2/3. Thus, with body = 0.98 g/cm
3
, we find liquid  1.5 g/cm

3
 — certainly much 

more dense than normal seawater (the Dead Sea is about seven times saltier than the 

ocean due to the high evaporation rate and low rainfall in that region). 

 

74. If the mercury level in one arm of the tube is lowered by an amount x, it will rise by x 

in the other arm. Thus, the net difference in mercury level between the two arms is 2x, 

causing a pressure difference of p = 2Hggx, which should be compensated for by the 

water pressure pw = wgh, where h = 11.2 cm. In these units, w = 1.00 g/cm
3
 and Hg =  

13.6 g/cm
3
 (see Table 14-1). We obtain 

 
3

3

Hg

(1.00 g/cm ) (11.2 cm)
0.412 cm.

2 2(13.6 g/cm )

wgh
x

g




    

 

75. Using m = V, Newton’s second law becomes  

 

waterVg – bubbleVg = bubbleVa, 

or 

 water bubble (1 / )a g    

       

With water = 998 kg/m
3
 (see Table 14-1), we find  
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3
3water

bubble 2 2

998 kg/m
975.6 kg/m

1 / 1 (0.225 m/s ) /(9.80 m/s )a g


   

 
. 

 

Using volume V = 
4

3
 r

3
 with 45.00 10 mr    for the bubble, we then find its mass: 

mbubble = 5.11  10
7

 kg. 

 

76. To be as general as possible, we denote the ratio of body density to water density as f 

(so that f = /w = 0.95 in this problem). Floating involves equilibrium of vertical forces 

acting on the body (Earth’s gravity pulls down and the buoyant force pushes up). Thus, 

 

b g w wF F gV gV     

 

where V is the total volume of the body and Vw is the portion of it that is submerged.  

 

(a) We rearrange the above equation to yield  

w

w

V
f

V




   

 

which means that 95% of the body is submerged and therefore 5.0% is above the water 

surface.  

 

(b) We replace w with 1.6w in the above equilibrium of forces relationship, and find  

 

1.6 1.6

w

w

V f

V




   

 

which means that 59% of the body is submerged and thus 41% is above the quicksand 

surface. 

 

(c) The answer to part (b) suggests that a person in that situation is able to breathe. 

 

77. The normal force NF  exerted (upward) on the glass ball of mass m has magnitude 

0.0948 N.  The buoyant force exerted by the milk (upward) on the ball has magnitude  

 

Fb = milk g V 

 

where V = 
4

3
   r

3
  is the volume of the ball.  Its radius is r = 0.0200 m. The milk density is 

milk = 1030 kg/m
3
.  The (actual) weight of the ball is, of course, downward, and has 

magnitude  Fg = mglass g.  Application of Newton's second law (in the case of zero 

acceleration) yields 

                                                  FN + milk g V  mglass g = 0 

 

which leads to mglass = 0.0442 kg.   
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78. Since Fg  = mg =  skier g V and the buoyant force is Fb = snow g V, then their ratio is 

 

Fb

Fg
 =  

snow g V

skier g V
  =  

snow

skier
  = 

96

1020
 = 0.094  (or 9.4%). 

 

79. Neglecting the buoyant force caused by air, then the 30 N value is interpreted as the 

true weight W of the object. The buoyant force of the water on the object is therefore  

(30 – 20) N = 10 N, which means 

 

3 3

3 2

10 N
1.02 10 m

(1000 kg/m )(9.8m/s )
b wF Vg V       

 

is the volume of the object. When the object is in the second liquid, the buoyant force is 

(30 – 24) N = 6.0 N, which implies 

 

2 3

2 2 3 3

6.0 N
6.0 10 kg/m .

(9.8 m/s ) (1.02 10 m )



  


 

 

80. An object of mass m = V floating in a liquid of density liquid is able to float if the 

downward pull of gravity mg is equal to the upward buoyant force Fb = liquidgVsub where 

Vsub is the portion of the object that is submerged. This readily leads to the relation: 

 

sub

iquidl

V

V




  

 

for the fraction of volume submerged of a floating object. When the liquid is water, as 

described in this problem, this relation leads to 

1
w




  

 

since the object “floats fully submerged” in water (thus, the object has the same density 

as water). We assume the block maintains an “upright” orientation in each case (which is 

not necessarily realistic). 

 

(a) For liquid A, 
1

2A




 , so that, in view of the fact that  = w, we obtain A/w = 2. 

 

(b) For liquid B, noting that two-thirds above means one-third below, 
1

3B




 , so that 

B/w = 3. 
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(c) For liquid C, noting that one-fourth above means three-fourths below, 
3

4C




 , so 

that C/w = 4/3. 

 

81. THINK The U-tube contains two types of liquid in static equilibrium. The pressures 

at the interface level on both sides of the tube must be the same.  

 

EXPRESS If we examine both sides of the U-tube at the level where the low-density 

liquid (with  = 0.800 g/cm
3
 = 800 kg/m

3
) meets the water (with w = 0.998 g/cm

3
 = 998 

kg/m
3
), then the pressures there on either side of the tube must agree: 

 

gh = wghw 

 

where h = 8.00 cm = 0.0800 m, and Eq. 14-9 has been used.  Thus, the height of the 

water column (as measured from that level) is hw = (800/998)(8.00 cm) = 6.41 cm.   

 

ANALYZE The volume of water in that column is  

 

V = r
2
hw = (1.50 cm)

2
(6.41 cm) = 45.3 cm

3
. 

 

This is the amount of water that flows out of the right arm.  

 

 

LEARN As discussed in the Sample Problem 14.3 – 

Balancing of pressure in a U-tube, the relationship 

between the densities of the two liquids can be written as  

 X w

l

l d
 


 

The liquid in the left arm is higher than the water in the 

right because the liquid is less dense than water X w  . 

 

 

 
 

82. The downward force on the balloon is mg and the upward force is Fb = outVg. 

Newton’s second law (with m = inV) leads to 

 

out
out in in

in

1 .Vg Vg Va g a


  


 
     

 
 

 

The problem specifies out / in = 1.39 (the outside air is cooler and thus more dense than 

the hot air inside the balloon). Thus, the upward acceleration is  

 

a = (1.39 – 1.00)(9.80 m/s
2
) = 3.82 m/s

2
. 
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83. (a) We consider a point D on the surface of the liquid in the container, in the same 

tube of flow with points A, B, and C. Applying Bernoulli’s equation to points D and C, 

we obtain 

2 21 1

2 2
D D D C C Cp v gh p v gh         

which leads to 

  

2

2

2( )
2 ( ) 2 ( )D C

C D C D

p p
v g h h v g d h




       

 

where in the last step we set pD = pC =  pair and vD/vC  0. Plugging in the values, we 

obtain 
22(9.8 m/s )(0.40 m  0.12 m) 3.2 m/s.Cv     

 

(b) We now consider points B and C: 

 

2 21 1
.

2 2
B B B C C Cp v gh p v gh         

 

Since vB = vC by equation of continuity, and pC = pair, Bernoulli’s equation becomes 

 

air 1 2

5 3 3 2

4

( ) ( )

1.0 10  Pa (1.0 10 kg/m )(9.8 m/s )(0.25 m  0.40 m  0.12 m)

9.2 10  Pa.

B C C Bp p g h h p g h h d       

     

 

 

 

(c) Since pB  0, we must let  

pair – g(h1 + d + h2)  0, 

which yields 

air air
1 1,max 2 10.3 m.

p p
h h d h

 
       

 

84. The volume rate of flow is R = vA where A = r
2
 and r = d/2. Solving for speed, we 

obtain  

2 2

4
.

( / 2)

R R R
v

A d d 
    

 

(a) With R = 7.0  10
–3

 m
3
/s and d = 14  10

–3
 m, our formula yields v = 45 m/s, which is 

about 13% of the speed of sound (which we establish by setting up a ratio: v/vs where vs = 

343 m/s).  

 

(b) With the contracted trachea (d = 5.2  10
–3

 m) we obtain v = 330 m/s, or 96% of the 

speed of sound.  
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85. We consider the can with nearly its total volume submerged, and just the rim above 

water. For calculation purposes, we take its submerged volume to be V = 1200 cm
3
. To 

float, the total downward force of gravity (acting on the tin mass mt and the lead mass 

m ) must be equal to the buoyant force upward: 

 
3 3( ) (1g/cm ) (1200 cm ) 130 gt wm m g Vg m      

 

which yields 1.0710
3
 g for the (maximum) mass of the lead (for which the can still 

floats). The given density of lead is not used in the solution. 

 

86. Before undergoing acceleration, the net force exerted on the block is zero, and 

Newton’s second law gives 

 0 00b bF mg T T F mg       

 

where bF Vg  is the buoyant force from the fluid of density. When the container is 

given an upward acceleration a, the apparent weight of the block becomes ( ),m g a  and 

the corresponding buoyant force is ( )bF V g a   . In this case, Newton’s second-law 

equation is 

( ) 0bF m g a T     

which gives 

 

0( ) ( ) ( ) ( ) (1 / ) (1 / )bT F m g a V g a m g a V m g a g T a g             . 

 

With 0.25 ,a g  we have 0/ 1 / 1.25.T T a g     

 

87. We assume that the top surface of the slab is at the surface of the water and that the 

automobile is at the center of the ice surface. Let M be the mass of the automobile, i be 

the density of ice, and w be the density of water. Suppose the ice slab has area A and 

thickness h. Since the volume of ice is Ah, the downward force of gravity on the 

automobile and ice is (M + iAh)g. The buoyant force of the water is wAhg, so the 

condition of equilibrium is (M + iAh)g – wAhg = 0 and 

 

    
2

3 3

938kg
26.3 m .

998kg m 917kg m 0.441mw i

M
A

h 
  

 
 

 

88. (a) Using Eq. 14-10, we have 

 
3 2 3 7(1025 kg/m )(9.8 m/s )(2.22 10 m) 2.23 10 Pagp gh     . 

  

(b) By definition, the total pressure is 

 
5 7 7

0 1.01 10 Pa 2.23 10 Pa 2.24 10 Pagp p p        . 
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(c) The net force compressing the sphere’s surface is 

 
2 7 2 2 6(4 ) (2.24 10 Pa)4 (6.22 10 m) 1.09 10 N.F pA p R          

 

(d) The upward buoyant force exerted on the sphere by the seawater is 

 

3 3 2 2 34 4
(1025 kg/m )(9.8 m/s ) (6.22 10 m) 10.1 N.

3 3
bF gV g R

 
   

     
 

 

 

(e) Newton’s second law applied to the sphere of mass m = 6.80 kg yields 

 

2 210.1 N
9.8 m/s 8.62 m/s .

8.60 kg

b
b

F
F mg ma a g

m
          

 

The acceleration vector has a magnitude of 8.62 m/s
2
 and the direction is downward. 

 

89. (a) The total weight is 

 
3 2 2 9(1030 kg/m )(9.8 m/s )(255m)(2200m ) 5.66 10 N.W gV ghA       

 

(b) The gauge pressure at this depth is 

3 2

5

1atm
(1030 kg/m )(9.8 m/s )(255m) 25.5atm

1.01 10 Pa
gp gh

 
   

 
. 

90. Using Bernoulli’s equation,  

2 2

1 1 1 2 2 2

1 1

2 2
p v gy p v gy        , 

 

we find the minimum pressure to be (setting 1 2v v )  

 
3 2 4

2 1 1 2( ) (1000 kg/m )(9.8 m/s )(6.59 m 2.16 m) 4.34 10  Pa.p p p g y y          


