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Chapter 43 
 

 

1. (a) Using Eq. 42-20 and adapting Eq. 42-21 to this sample, the number of fission-

events per second is 

 

R
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T

M N

M T

A
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(b) Since 1/ 21/R T  (see Eq. 42-20), the ratio of rates is 
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2. When a neutron is captured by 
237

Np it gains 5.0 MeV, more than enough to offset the 

4.2 MeV required for 
238

Np to fission. Consequently, 
237

Np is fissionable by thermal 

neutrons. 

 

3. The energy transferred is 

 
2

U238 U239( )

(238.050782 u 1.008664 u 239.054287 u)(931.5 MeV/u)

4.8 MeV.

nQ m m m c  

  



 

 

4. Adapting Eq. 42-21, there are 

 

N
M

M
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sam
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g
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F
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I
KJ   

1000
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plutonium nuclei in the sample. If they all fission (each releasing 180 MeV), then the 

total energy release is 4.54  10
26

 MeV. 

 

5. The yield of one warhead is 2.0 megatons of TNT, or 

 
28 28yield 2(2.6 10  MeV) 5.2 10  MeV    . 

 

Since each fission event releases about 200 MeV of energy, the number of fissions is 
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28
265.2 10  MeV

2.6 10
200 MeV

N


   . 

 

However, this only pertains to the 8.0% of Pu that undergoes fission, so the total number 

of Pu is 
26

27 3

0

2.6 10
3.25 10 5.4 10  mol

0.080 0.080

N
N


      . 

 

With 0.239 kg/mol,M   the mass of the warhead is 

 
3 3(5.4 10  mol)(0.239 kg/mol) 1.3 10  kgm     . 

 

6. We note that the sum of superscripts (mass numbers A) must balance, as well as the 

sum of Z values (where reference to Appendix F or G is helpful). A neutron has Z = 0 and 

A = 1. Uranium has Z = 92. 

 

(a) Since xenon has Z = 54, then “Y” must have Z = 92 – 54 = 38, which indicates the 

element strontium. The mass number of “Y” is 235 + 1 – 140 – 1 = 95, so “Y” is 
95

Sr. 

 

(b) Iodine has Z = 53, so “Y” has Z = 92 – 53 = 39, corresponding to the element yttrium 

(the symbol for which, coincidentally, is Y). Since 235 + 1 – 139 – 2 = 95, then the 

unknown isotope is 
95

Y. 

 

(c) The atomic number of zirconium is Z = 40. Thus, 92 – 40 – 2 = 52, which means that 

“X” has Z = 52 (tellurium). The mass number of “X” is 235 + 1 – 100 – 2 = 134, so we 

obtain 
134

Te. 

 

(d) Examining the mass numbers, we find b = 235 + 1 – 141 – 92 = 3. 

 

7. If R is the fission rate, then the power output is P = RQ, where Q is the energy released 

in each fission event. Hence,  

 

R = P/Q = (1.0 W)/(200  10
6
 eV)(1.60  10

– 19
 J/eV) = 3.1  10

10
 fissions/s. 

 

8. (a) We consider the process 98 49Mo Sc Sc.  49  The disintegration energy is  

 

Q = (mMo –  2mSc)c
2
 = [97.90541 u –  2(48.95002 u)](931.5 MeV/u) = +5.00 MeV. 

 

(b) The fact that it is positive does not necessarily mean we should expect to find a great 

deal of molybdenum nuclei spontaneously fissioning; the energy barrier (see Fig. 43-3) is 

presumably higher and/or broader for molybdenum than for uranium. 

 

9. (a) The mass of a single atom of 
235

U is  

 

 0m  (235 u)(1.661  10
– 27

 kg/u) = 3.90  10
– 25

 kg,  
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so the number of atoms in m = 1.0 kg is 

 

N = m/m0 = (1.0 kg)/(3.90  10
– 25

 kg) = 2.56  10
24
2.6  10

24
. 

 

An alternate approach (but essentially the same once the connection between the “u” unit 

and NA is made) would be to adapt Eq. 42-21. 

 

(b) The energy released by N fission events is given by E = NQ, where Q is the energy 

released in each event. For 1.0 kg of 
235

U,  

 

E = (2.56  10
24

)(200  10
6
 eV)(1.60  10

– 19
 J/eV) = 8.19  10

13
 J 8.2  10

13
 J. 

 

(c) If P is the power requirement of the lamp, then  

 

t = E/P = (8.19  10
13

 J)/(100 W) = 8.19  10
11

 s = 2.6  10
4
 y. 

 

The conversion factor 3.156  10
7
 s/y is used to obtain the last result. 

 

10. The energy released is 

 

Q m m m m m cn n    

   



(

( . . . .

U Cs Rb )

u u u u)(931.5 MeV / u)

MeV.

2

23504392 100867 140 91963 92 92157

181

2

 

 

11. If MCr is the mass of a 
52

Cr nucleus and MMg is the mass of a 
26

Mg nucleus, then the 

disintegration energy is  

 

Q = (MCr – 2MMg)c
2
 = [51.94051 u – 2(25.98259 u)](931.5 MeV/u) = – 23.0 MeV. 

 

12. (a) Consider the process 239 99U n Ce Ru Ne.140     We have  

 

Zf –  Zi = ZCe + ZRu –  ZU = 58 + 44 –  92 = 10. 

 

Thus the number of beta-decay events is 10. 

 

(b) Using Table 37-3, the energy released in this fission process is 

 

Q m m m m m cn e    

    



( )

( . . . . ( .

U Ce Ru

u u u u)(931.5 MeV / u) MeV)

MeV.

10

238 05079 100867 139 90543 98 90594 10 0511

226

2

 

13. (a) The electrostatic potential energy is given by 
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U
Z Z e

r r




1

4

2

 
Xe Sr

Xe Sr

 

 

where ZXe is the atomic number of xenon, ZSr is the atomic number of strontium, rXe is 

the radius of a xenon nucleus, and rSr is the radius of a strontium nucleus. Atomic 

numbers can be found either in Appendix F or Appendix G. The radii are given by r = 

(1.2 fm)A
1/3

, where A is the mass number, also found in Appendix F. Thus,  

 

rXe = (1.2 fm)(140)
1/3

 = 6.23 fm = 6.23  10
– 15

 m 

 

and  

rSr = (1.2 fm)(96)
1/3

 = 5.49 fm = 5.49  10
– 15

 m. 

 

Hence, the potential energy is 

 
19 2

9 11

15 15

(54)(38)(1.60 10 C)
(8.99 10 V m/C) 4.08 10 J

6.23 10 m 5.49 10 m

251 MeV.

U




 


    

  



 

 

(b) The energy released in a typical fission event is about 200 MeV, roughly the same as 

the electrostatic potential energy when the fragments are touching. The energy appears as 

kinetic energy of the fragments and neutrons produced by fission. 

 

14. (a) The surface area a of a nucleus is given by  

 

 
2

2 1/3 2/3

04 4 .a R R A A    

 

Thus, the fractional change in surface area is 
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(b) Since V  R
3
  (A

1/3
)
3
 = A, we have 

 

V

V

V

V

f

i

  


 1
140 96

236
1 0. 

 

(c) The fractional change in potential energy is 

 
2 2 2 1/3 2 1/3
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2 2 1/3
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15. THINK One megaton of TNT releases 2.6  10
28

 MeV of energy. The energy 

released in each fission event is about 200 MeV. 

 

EXPRESS The energy yield of the bomb is  

 

E = (66  10
– 3

 megaton)(2.6  10
28

 MeV/ megaton) = 1.72  10
27

 MeV. 

 

At 200 MeV per fission event, the total number of fission events taking place is  

 

(1.72  10
27

 MeV)/(200 MeV) = 8.58  10
24

. 

 

Now, since only 4.0% of the 
235

U nuclei originally present undergo fission, there must 

have been (8.58  10
24

)/(0.040) = 2.14  10
26

 nuclei originally present.  

 

ANALYZE (a) The mass of 
235

U originally present was  

 

(2.14  10
26

)(235 u)(1.661  10
– 27

 kg/u) = 83.7 kg   84 kg. 

 

(b) Two fragments are produced in each fission event, so the total number of fragments is  

 

2(8.58  10
24

) = 1.72  10
25 
1.7  10

25
. 

 

(c) One neutron produced in a fission event is used to trigger the next fission event, so the 

average number of neutrons released to the environment in each event is 1.5. The total 

number released is  

(8.58  10
24

)(1.5) = 1.29  10
25

 1.3  10
25

. 

 

LEARN When one 
235

U nucleus undergoes fission, the neutrons it produces (an average 

number of 2.5 neutrons per fission) can trigger other 
235

U nuclei to fission, thereby setting 

up a chain reaction that allows an enormous amount of energy to be released.  

 

16. (a) Using the result of Problem 43-4, the TNT equivalent is 

 

( .

.
.

2 50

2 6 10
4 4 10 44

28

4kg)(4.54 10 MeV / kg)

MeV /10 ton
ton kton.

26

6




    

 

(b) Assuming that this is a fairly inefficiently designed bomb, then much of the remaining 

92.5 kg is probably “wasted” and was included perhaps to make sure the bomb did not 

“fizzle.” There is also an argument for having more than just the critical mass based on 

the short assembly time of the material during the implosion, but this so-called “super-

critical mass,” as generally quoted, is much less than 92.5 kg, and does not necessarily 

have to be purely plutonium. 
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17. THINK We represent the unknown fragment as Z

A X , where A and Z are its mass 

number and atomic number, respectively. Charge and mass number are conserved in the 

neutron-capture process. 

 

EXPRESS The reaction can be written as 

 

92

235U n Ge  0

1

32

82

Z

AX . 

 

Conservation of charge yields 92 + 0 = 32 + Z, so Z = 60. Conservation of mass number 

yields 235 + 1 = 83 + A, so A = 153.  

 

ANALYZE (a) Looking in Appendix F or G for nuclides with Z = 60, we find that the 

unknown fragment is 60

153 Nd.  

 

(b) We neglect the small kinetic energy and momentum carried by the neutron that 

triggers the fission event. Then,  

Q = KGe + KNd, 

 

where KGe is the kinetic energy of the germanium nucleus and KNd is the kinetic energy of 

the neodymium nucleus. Conservation of momentum yields 
 
p pGe Nd  0.  Now, we can 

write the classical formula for kinetic energy in terms of the magnitude of the momentum 

vector: 

K mv
p

m
 

1

2 2

2
2

 

which implies that 
2 2 2

Nd Ge Ge Ge Ge
Nd Ge

Nd Nd Nd Ge Nd2 2 2

p p M p M
K K

M M M M M
    . 

 

Thus, the energy equation becomes 

 

Ge Nd Ge
Ge Ge Ge

Nd Nd

M M M
Q K K K

M M


    

and 

K
M

M M
QGe

Nd

Nd Ge

u

153 u u
MeV) MeV.







153

83
170 110(  

(c) Similarly, 

K
M

M M
QNd

Ge

Nd Ge

u

153 u u
MeV) MeV.







83

83
170 60(  

 

(d) The initial speed of the germanium nucleus is 

 



 

  

1819 

6 19
7Ge

Ge 27

Ge

2 2(110 10 eV)(1.60 10 J/eV)
1.60 10 m/s.

(83 u)(1.661 10 kg/u)

K
v

M





 
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
 

 

(e) The initial speed of the neodymium nucleus is 

 

v
K

M
Nd

Nd

ND

eV)(1.60 10 J / eV)

u)(1.661 10 kg / u)
m / s. 

 


 





2 2 60 10

153
8 69 10

6 19

27

6(

(
.  

 

LEARN By momentum conservation, the two fragments fly apart in opposite directions.   

 

18. If P is the power output, then the energy E produced in the time interval t (= 3 y) is 

 

E = P t = (200  10
6
 W)(3 y)(3.156  10

7
 s/y) = 1.89  10

16
 J 

= (1.89  10
16

 J)/(1.60  10
– 19

 J/eV) = 1.18  10
35

 eV  

= 1.18  10
29

 MeV.  

 

At 200 MeV per event, this means (1.18  10
29

)/200 = 5.90  10
26

 fission events occurred. 

This must be half the number of fissionable nuclei originally available. Thus, there were 

2(5.90  10
26

) = 1.18  10
27

 nuclei. The mass of a 
235

U nucleus is  

 

(235 u)(1.661  10
– 27

 kg/u) = 3.90  10
– 25

 kg, 

 

so the total mass of 
235

U originally present was (1.18  10
27

)(3.90  10
– 25

 kg) = 462 kg. 

 

19. After each time interval tgen the number of nuclides in the chain reaction gets 

multiplied by k. The number of such time intervals that has gone by at time t is t/tgen. For 

example, if the multiplication factor is 5 and there were 12 nuclei involved in the reaction 

to start with, then after one interval 60 nuclei are involved. And after another interval 300 

nuclei are involved. Thus, the number of nuclides engaged in the chain reaction at time t 

is N t N k
t t

( ) .
/

 0
gen  Since P  N we have 

 

P t P k
t t

( ) .
/

 0
gen  

 

20. We use the formula from Problem 43-19: 

 
gen/ (5.00 min)(60 s/min)/(0.00300s) 3

0( ) (400MW)(1.0003) 8.03 10 MW.
t t

P t P k     

 

21. If R is the decay rate then the power output is P = RQ, where Q is the energy 

produced by each alpha decay. Now  

 

R = N = N ln 2/T1/2, 
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where  is the disintegration constant and T1/2 is the half-life. The relationship 

1/ 2(ln 2) /T  is used. If M is the total mass of material and m is the mass of a single 
238

Pu nucleus, then 

 

N
M

m
 


 



100
2 53 1024.
. .

kg

(238 u)(1.661 10 kg / u)27
 

Thus, 
24 6 19

7

1/ 2

ln 2 (2.53 10 )(5.50 10 eV)(1.60 10 J/eV)(ln2)
557W.

(87.7y)(3.156 10 s/y)

NQ
P

T

  
  


 

 

22. We recall Eq. 43-6:  

Q  200 MeV = 3.2  10
– 11

 J. 

 

It is important to bear in mind that watts multiplied by seconds give joules. From E = 

Ptgen = NQ we get the number of free neutrons: 

 

N
Pt

Q
 

 


 





gen W s)

J

( )( .

.
. .

500 10 10 10

32 10
16 10

6 3

11

16  

 

23. THINK The neutron generation time tgen in a reactor is the average time needed for a 

fast neutron emitted in a fission event to be slowed to thermal energies by the moderator 

and then initiate another fission event.   

 

EXPRESS Let P0 be the initial power output, P be the final power output, k be the 

multiplication factor, t be the time for the power reduction, and tgen be the neutron 

generation time. Then, according to the result of Problem 43-19, 

 

P P k
t t

 0

/
.gen  

 

ANALYZE We divide by P0, take the natural logarithm of both sides of the equation and 

solve for ln k: 
3

gen

0

1.3 10 s 350 MW
ln ln ln 0.0006161.

2.6 s 1200 MW

t P
k

t P

   
      

  
 

 

Hence, k = e
– 0.0006161

 = 0.99938. 

 

 

LEARN The power output as a function of 

time is shown to the right. Since the 

multiplication factor k is smaller than 1, the 

output decreases with time. 
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24. (a) We solve Qeff from P = RQeff: 

 

Q
P

R

P

N

mPT

M
eff

27u)(1.66 10 kg / u)(0.93 W)(29 y)(3.15 s / y)

kg)(ln 2)(1.60 10 J / MeV)

MeV.

  


 

 





 



1 2

7

3 13

2

90 0 10

100 10

12

/

ln

( .

( .

.

 

 

(b) The amount of 
90

Sr needed is 

 

M  
150

32
W

(0.050)(0.93 W / g)
kg..  

 

25. THINK Momentum is conserved in the collision process. In addition, energy is also 

conserved since the collision is elastic.  

 

EXPRESS Let vni be the initial velocity of the neutron, vnf be its final velocity, and vf be 

the final velocity of the target nucleus. Then, since the target nucleus is initially at rest, 

conservation of momentum yields  

mnvni = mnvnf + mvf 

 

and conservation of energy yields  

2 2 21 1 1
.

2 2 2
n ni n nf fm v m v mv   

 

We solve these two equations simultaneously for vf. This can be done, for example, by 

using the conservation of momentum equation to obtain an expression for vnf in terms of 

vf and substituting the expression into the conservation of energy equation. We solve the 

resulting equation for vf. We obtain vf = 2mnvni/(m + mn).  

 

ANALYZE (a) The energy lost by the neutron is the same as the energy gained by the 

target nucleus, so 

K mv
m m

m m
vf

n

n

ni 


1

2

1

2

42
2

2

2

( )
.  

 

The initial kinetic energy of the neutron is K m vn ni 1
2

2 ,  so 

 

2

4
.

( )

n

n

m mK

K m m





 

 

(b) The mass of a neutron is 1.0 u and the mass of a hydrogen atom is also 1.0 u. (Atomic 

masses can be found in Appendix G.) Thus, 
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K

K





4 10

10 10
10

( .

( . .
. .

u)(1.0 u)

u u)2
 

 

(c) Similarly, the mass of a deuterium atom is 2.0 u, so  

 

(K)/K = 4(1.0 u)(2.0 u)/(2.0 u + 1.0 u)
2
 = 0.89. 

 

(d) The mass of a carbon atom is 12 u, so  

 

(K)/K = 4(1.0 u)(12 u)/(12 u + 1.0 u)
2
 = 0.28. 

 

(e) The mass of a lead atom is 207 u, so  

 

(K)/K = 4(1.0 u)(207 u)/(207 u + 1.0 u)
2
 = 0.019. 

 

(f) During each collision, the energy of the neutron is reduced by the factor 1 – 0.89 = 

0.11. If Ei is the initial energy, then the energy after n collisions is given by E = (0.11)
n
Ei. 

We take the natural logarithm of both sides and solve for n. The result is 

 

ln( / ) ln(0.025 eV/1.00 eV)
7.9 8.

ln 0.11 ln 0.11

iE E
n      

 

The energy first falls below 0.025 eV on the eighth collision. 

 

LEARN The fractional kinetic energy loss as a function of the mass of the stationary 

atom (in units of / nm m ) is plotted below. 

 

 
 

From the plot, it is clear that the energy loss is greatest (K/K = 1) when the atom has the 

same as the neutron.   

 

26. The ratio is given by 
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( )5 5

8 8

( ) (0)
,

( ) (0)

tN t N
e

N t N

   
  

or 

 

15 8

10 1

8 8 5

9

( ) (0)1 1
ln ln[(0.0072)(0.15) ]

( ) (0) (1.55 9.85)10 y

3.6 10 y.

N t N
t

N t N 



 



   
    

     

 

 

 

27. (a) Pavg = (15  10
9
 W·y)/(200,000 y) = 7.5  10

4
 W = 75 kW. 

 

(b) Using the result of Eq. 43-6, we obtain 

 
27 9 7

3U total

13

(235u)(1.66 10 kg/u)(15 10 W y)(3.15 10 s/y)
5.8 10 kg

(200MeV)(1.6 10 J/MeV)

m E
M

Q





   
   


. 

 

28. The nuclei of 
238

U can capture neutrons and beta-decay. With a large amount of 

neutrons available due to the fission of 
235

U, the probability for this process is 

substantially increased, resulting in a much higher decay rate for 
238

U and causing the 

depletion of 
238

U (and relative enrichment of 
235

U). 

 

29. THINK With a shorter half-life, 
235

U has a greater decay rate than 
238

U. Thus, if the 

ore contains only 0.72% of 
235

U today, then the concentration must be higher in the far 

distant past.  

 

EXPRESS Let t be the present time and t = 0 be the time when the ratio of 
235

U to 
238

U 

was 3.0%. Let N235 be the number of 
235

U nuclei present in a sample now and N235,0 be 

the number present at t = 0. Let N238 be the number of 
238

U nuclei present in the sample 

now and N238,0 be the number present at t = 0. The law of radioactive decay holds for 

each species, so 
235

235 235,0

t
N N e


  

and 

N N e t

238 238 0 

, .238  

 

Dividing the first equation by the second, we obtain 

 

r r e t  

0

( )    

 

where r = N235/N238 (= 0.0072) and r0 = N235,0/N238,0 (= 0.030). We solve for t: 

 

235 238 0

1
ln .

r
t

r 

 
   

  
 

 

ANALYZE Now we use 235 1 22
235

 (ln ) / /T  and 238 1 22
238

 (ln ) / /T  to obtain 
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235 238

238 235

8 9
1/ 2 1/ 2

9 8

1/ 2 1/ 2 0

9

(7.0 10 y)(4.5 10 y) 0.0072
ln ln

( ) ln 2 (4.5 10 y 7.0 10 y) ln 2 0.030

1.7 10 y.

T T r
t

T T r

     
     

      

 

 

 

LEARN How the ratio r = N235/N238 changes with time is plotted below. In the plot, we 

take the ratio to be 0.03 at t = 0. At t = 91.7 10  y  or 
1/ 2,238/ 0.378,t T  r is reduced to 

0.072. 

 
 

30. We are given the energy release per fusion (Q = 3.27 MeV = 5.24  10
– 13

 J) and that 

a pair of deuterium atoms is consumed in each fusion event. To find how many pairs of 

deuterium atoms are in the sample, we adapt Eq. 42-21: 

 

N
M

M
Nd

d

pairs
sam

A
2

g

2(2.0 g / mol)
mol) 

F
HG

I
KJ   

1000
6 02 10 15 1023 26( . / . .  

 

Multiplying this by Q gives the total energy released: 7.9  10
13

 J. Keeping in mind that a 

watt is a joule per second, we have 

 

t 


   
7 9 10

100
7 9 10 2 5 10

13
11 4.

. .
J

W
s y.  

 

31. THINK Coulomb repulsion acts to prevent two charged particles from coming close 

enough to be within the range of their attractive nuclear force.  

 

EXPRESS We take the height of the Coulomb barrier to be the value of the kinetic 

energy K each deuteron must initially have if they are to come to rest when their surfaces 

touch. If r is the radius of a deuteron, conservation of energy yields 
2

0

1
2 .

4 2

e
K

r



 

ANALYZE With r = 2.1 fm, we have 
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2 19 2

9 14

15

0

1 (1.60 10 C)
(8.99 10 V m/C) 2.74 10 J 170 keV.

4 4 4(2.1 10 m)

e
K

r







      

 
 

 

LEARN The height of the Coulomb barrier depends on the charges and radii of the two 

interacting nuclei. Increasing the charge raises the barrier. 

 

32. (a) Our calculation is identical to that in Sample Problem — “Fusion in a gas of 

protons and required temperature” except that we are now using R appropriate to two 

deuterons coming into “contact,” as opposed to the R = 1.0 fm value used in the Sample 

Problem. If we use R = 2.1 fm for the deuterons, then our K is simply the K calculated in 

the Sample Problem, divided by 2.1: 

 

K
K

d d

p p




  

21

360

21
170

. .

keV
keV.  

 

Consequently, the voltage needed to accelerate each deuteron from rest to that value of K 

is 170 kV. 

 

(b) Not all deuterons that are accelerated toward each other will come into “contact” and 

not all of those that do so will undergo nuclear fusion. Thus, a great many deuterons must 

be repeatedly encountering other deuterons in order to produce a macroscopic energy 

release. An accelerator needs a fairly good vacuum in its beam pipe, and a very large 

number flux is either impractical and/or very expensive. Regarding expense, there are 

other factors that have dissuaded researchers from using accelerators to build a controlled 

fusion “reactor,” but those factors may become less important in the future — making the 

feasibility of accelerator “add-ons” to magnetic and inertial confinement schemes more 

cost-effective. 

 

33. Our calculation is very similar to that in Sample Problem – “Fusion in a gas of 

protons and required temperature” except that we are now using R appropriate to two 

lithium-7 nuclei coming into “contact,” as opposed to the R = 1.0 fm value used in the 

Sample Problem. If we use 

 

R r r A   0

1 3 12 7 2 3/ ( . .fm) fm3  

 

and q = Ze = 3e, then our K is given by (see the Sample Problem) 

 
2 2 2 19 2

12 15

0

3 (1.6 10 C)

16 16 (8.85 10 F/m)(2.3 10 m)

Z e
K

r 






 

 
 

 

which yields 2.25  10
–13

 J = 1.41 MeV. We interpret this as the answer to the problem, 

though the term “Coulomb barrier height” as used here may be open to other 

interpretations. 
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34. From the expression for n(K) given we may write n(K)  K
1/2

e
– K/kT

. Thus, with  

 

k = 8.62  10
– 5

 eV/K = 8.62  10
– 8

 keV/K, 

we have 

 

avg

1/ 2 1/ 2

( ) /

8 7

avg avg

( ) 5.00keV 5.00keV 1.94keV
exp

( ) 1.94keV (8.62 10 keV)(1.50 10 K)

0.151.

K K kTn K K
e

n K K

 



     
              



 

 

35. The kinetic energy of each proton is  

 

 23 7 16(1.38 10  J/K)(1.0 10  K) 1.38 10  JBK k T        . 

 

At the closest separation, rmin, all the kinetic energy is converted to potential energy:  

 
2

tot

0 min

1
2

4

q
K K U

r
    . 

Solving for rmin, we obtain 

 
2 9 2 2 19 2

13

min 16

0

1 (8.99 10 N m C )(1.60 10 C)
8.33 10 m 1 pm.

4 2 2(1.38 10 J)

q
r

K






  
    


 

 

36. The energy released is  

 
2 2

He H2 H1( )

(3.016029 u 2.014102 u 1.007825 u)(931.5 MeV/u)

5.49 MeV.

Q mc m m m c     

   



 

 

37. (a) Let M be the mass of the Sun at time t and E be the energy radiated to that time. 

Then, the power output is  

P = dE/dt = (dM/dt)c
2
, 

 

where E = Mc
2
 is used. At the present time, 

 

26
9

22
8

3.9 10 W
4.3 10 kg s .

2.998 10 m s

dM P

dt c


   


 

 

(b) We assume the rate of mass loss remained constant. Then, the total mass loss is  

 

M = (dM/dt) t = (4.33  10
9
 kg/s) (4.5  10

9
 y) (3.156  10

7
 s/y)  

                         = 6.15  10
26

 kg. 
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The fraction lost is 
26

4

30 26

6.15 10 kg
3.1 10 .

2.0 10 kg 6.15 10 kg

M

M M

 
  

   
 

 

38. In Fig. 43-10, let Q1 = 0.42 MeV, Q2 = 1.02 MeV, Q3 = 5.49 MeV, and Q4 =  

12.86 MeV. For the overall proton-proton cycle 

 

Q Q Q Q Q   

    

2 2 2

2 0 42 102 549 12 86 26 7

1 2 3 4

( . . . . .MeV MeV MeV) MeV MeV.
 

 

39. If MHe is the mass of an atom of helium and MC is the mass of an atom of carbon, then 

the energy released in a single fusion event is  

 

  2

He C3 [3(4.0026 u) (12.0000 u)](931.5 MeV/u) 7.27 MeV.Q M M c      

 

Note that 3MHe contains the mass of six electrons and so does MC. The electron masses 

cancel and the mass difference calculated is the same as the mass difference of the nuclei. 

 

40. (a) We are given the energy release per fusion (Q = 26.7 MeV = 4.28  10
– 12

 J) and 

that four protons are consumed in each fusion event. To find how many sets of four 

protons are in the sample, we adapt Eq. 42-21: 

 

 
 23 26sam

4 A

H

1000g
6.02 10 mol 1.5 10 .

4 4 1.0g mol
p

M
N N

M

 
      

 
 

 

Multiplying this by Q gives the total energy released: 6.4  10
14

 J. It is not required that 

the answer be in SI units; we could have used MeV throughout (in which case the answer 

is 4.0  10
27

 MeV). 

 

(b) The number of 
235

U nuclei is 

 

N235

23 241000

235
6 02 10 2 56 10

F
HG

I
KJ   

g

g mol
mol. . .c h  

 

If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is 

 

N Q235

22 26 132 56 10 200 51 10 8 2 10fission MeV MeV J     . . . .c hb g  

 

We see that the fusion process (with regard to a unit mass of fuel) produces a larger 

amount of energy (despite the fact that the Q value per event is smaller). 

 

41. Since the mass of a helium atom is  
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(4.00 u)(1.661  10
– 27

 kg/u) = 6.64  10
– 27

 kg, 

 

the number of helium nuclei originally in the star is  

 

(4.6  10
32

 kg)/(6.64  10
– 27

 kg) = 6.92  10
58

. 

 

Since each fusion event requires three helium nuclei, the number of fusion events that can 

take place is  

N = 6.92  10
58

/3 = 2.31  10
58

. 

 

If Q is the energy released in each event and t is the conversion time, then the power 

output is P = NQ/t and 

 

   58 6 19

15

30

8

2.31 10 7.27 10 eV 1.60 10 J eV
5.07 10 s

5.3 10 W

1.6 10 y .

NQ
t

P

  
   



 

 

 

42. We assume the neutrino has negligible mass. The photons, of course, are also taken to 

have zero mass. 

 

Q m m m c m m m m m c

Q m m m c m m m c

Q m m m c m m m c

p e e e e

p p

p p

1 2

2

1 2

2

2 2 3

2

2 3

2

3 3 4

2

3 4

2

2 2

2 1007825 2 014102 2 0 0005486 9315

0 42

2 014102 1007825 3016029 9315

549

2 2 2 2

2 3016029 4 002603 2

       

  



     

  



     

  

d i b g b g
b g b g b g

d i d i
b g b g

d i d i
b g

. . . .

.

. . . ) .

.

. .

u u u MeV u

MeV

u u u MeV u

MeV

u u 1007825 9315

12 86

. .

. .

u MeV u

MeV

b g b g


 

 

43. (a) The energy released is 

 

 

     

2 3 4 1

2

H He He H
5 2

5 2.014102u 3.016029u 4.002603u 1.007825u 2 1.008665u 931.5MeV u

24.9MeV.

nQ m m m m m c    

      



 

(b) Assuming 30.0% of the deuterium undergoes fusion, the total energy released is 
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E NQ
M

m
Q 

F
HG

I
KJ

0 300

5

.
.

2 H

 

Thus, the rating is 

 

R
E





 





2 6 10

0 300 500 24 9

5 2 0 166 10 2 6 10

8 65

28

27 28

.

. .

. . .

. .

MeV megatonTNT

kg MeV

u kg u MeV megatonTNT

megatonTNT

b gb gb g
b gc hc h  

 

44. The mass of the hydrogen in the Sun’s core is m MH Sun 0 35 1
8

. b g . The time it takes 

for the hydrogen to be entirely consumed is 

 

t
M

dm dt
 



 
 H

kg

kg s s y
y

0 35 2 0 10

6 2 10 315 10
5 10

1
8

30

11 7

9
. .

. .
.

b gb gc h
c hc h  

 

45. (a) Since two neutrinos are produced per proton-proton cycle (see Eq. 43-10 or Fig. 

43-10), the rate of neutrino production R satisfies 

 

R
P

Q
v  




 



2 2 39 10

26 7 16 10
18 10

26

13

38 1
.

. .
. .

W

MeV J MeV
s

c h
b gc h  

 

(b) Let des be the Earth to Sun distance, and R be the radius of Earth (see Appendix C). 

Earth represents a small cross section in the “sky” as viewed by a fictitious observer on 

the Sun. The rate of neutrinos intercepted by that area (very small, relative to the area of 

the full “sky”) is 

 

R R
R

d
v v

e

es

,

. .

.
. .Earth

s m

m
s

F
HG
I
KJ 

 



F
HG

I
KJ  







2

2

38 1 6

11

2

28 1

4

18 10

4

6 4 10

15 10
8 2 10

c h
 

 

46. (a) The products of the carbon cycle are 2e
+
 + 2 + 

4
He, the same as that of the 

proton-proton cycle (see Eq. 43-10). The difference in the number of photons is not 

significant. 

 

(b) We have 

 
carbon 1 2 6

1.95 1.19 7.55 7.30 1.73 4.97 MeV

24.7 MeV

Q Q Q Q   

     


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which is the same as that for the proton-proton cycle (once we subtract out the electron-

positron annihilations; see Fig. 43-10):  

 

Qp– p = 26.7 MeV –  2(1.02 MeV) = 24.7 MeV. 

 

47. THINK The energy released by burning 1 kg of carbon is 3.3  10
7
 J. 

 

EXPRESS The mass of a carbon atom is (12.0 u)(1.661  10
– 27

 kg/u) = 1.99  10
– 26

 kg, 

so the number of carbon atoms in 1.00 kg of carbon is  

 

(1.00 kg)/(1.99  10
– 26

 kg) = 5.02  10
25

. 

 

ANALYZE (a) The heat of combustion per atom is  

 

(3.3  10
7
 J/kg)/(5.02  10

25
 atom/kg) = 6.58  10

– 19
 J/atom. 

 

This is 4.11 eV/atom. 

 

(b) In each combustion event, two oxygen atoms combine with one carbon atom, so the 

total mass involved is 2(16.0 u) + (12.0 u) = 44 u. This is  

 

(44 u)(1.661  10
– 27

 kg/u) = 7.31  10
– 26

 kg. 

 

Each combustion event produces 6.58  10
– 19

 J so the energy produced per unit mass of 

reactants is (6.58  10
– 19

 J)/(7.31  10
– 26

 kg) = 9.00  10
6
 J/kg. 

 

(c) If the Sun were composed of the appropriate mixture of carbon and oxygen, the 

number of combustion events that could occur before the Sun burns out would be  

 

(2.0  10
30

 kg)/(7.31  10
– 26

 kg) = 2.74  10
55

. 

 

The total energy released would be  

 

E = (2.74  10
55

)(6.58  10
– 19

 J) = 1.80  10
37

 J. 

 

If P is the power output of the Sun, the burn time would be 

 
37

10 3

26

1.80 10 J
4.62 10 s 1.46 10 y,

3.9 10 W

E
t

P


     


 

or 31.5 10 y,  to two significant figures. 

 

LEARN The Sun burns not coal but hydrogen via the proton-proton cycle in which the 

fusion of hydrogen nuclei into helium nuclei take place. The mechanism of 

thermonuclear fusion reactions allows the Sun to radiate energy at a rate of 3.9  10
 26

 W 

for several billion years.  
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48. In Eq. 43-13, 

 

     2 3

2

H He
2 2 2.014102u 3.016049u 1.008665u 931.5MeV u

3.27MeV .

nQ m m m c       


 

 

In Eq. 43-14, 

 

     2 3 1

2

H H H
2 2 2.014102u 3.016049u 1.007825u 931.5MeV u

4.03MeV .

Q m m m c       


 

 

Finally, in Eq. 43-15, 

 

Q m m m m cn   

   



2 3

2

2 014102 3016049 4 002603 1008665 9315

17 59

H H He4

u u u u MeV u

MeV

d i
b g. . . . .

. .

 

 

49. Since 1.00 L of water has a mass of 1.00 kg, the mass of the heavy water in 1.00 L is 

0.0150  10
– 2

 kg = 1.50  10
– 4

 kg. Since a heavy water molecule contains one oxygen 

atom, one hydrogen atom and one deuterium atom, its mass is  

 

(16.0 u + 1.00 u + 2.00 u) = 19.0 u = (19.0 u)(1.661  10
– 27

 kg/u)  

                                                             = 3.16  10
– 26

 kg. 

 

The number of heavy water molecules in a liter of water is  

 

(1.50  10
– 4

 kg)/(3.16  10
– 26

 kg) = 4.75  10
21

. 

 

Since each fusion event requires two deuterium nuclei, the number of fusion events that 

can occur is N = 4.75  10
21

/2 = 2.38  10
21

. Each event releases energy  

 

Q = (3.27  10
6
 eV)(1.60  10

– 19
 J/eV) = 5.23  10

– 13
 J. 

 

Since all events take place in a day, which is 8.64  10
4
 s, the power output is 

 

P
NQ

t
 

 


  

2 38 10 523 10

8 64 10
144 10 14 4

21 13

4

4
. .

.
. . .

c hc hJ
s

W kW  

 

50. (a) From E = NQ = (Msam/4mp)Q we get the energy per kilogram of hydrogen 

consumed: 
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E

M

Q

mpsam

MeV J MeV

kg
J kg 




 



4

26 2 160 10

4 167 10
6 3 10

13

27

14
. .

.
. .

b gc h
c h  

 

(b) Keeping in mind that a watt is a joule per second, the rate is 

 

dm

dt





 

39 10

6 3 10
6 2 10

26

14

11.

.
. .

W

J kg
kg s  

 

This agrees with the computation shown in Sample Problem — “Consumption rate of 

hydrogen in the Sun.” 

 

(c) From the Einstein relation E = Mc
2
 we get P = dE/dt = c

2
dM/dt, or 

 

dM

dt

P

c
 




 

2

26

8
2

939 10

30 10
4 3 10

.

.
. .

W

m s
kg s

c h
 

 

(d) This finding, that / /dm dt dM dt , is in large part due to the fact that, as the protons 

are consumed, their mass is mostly turned into alpha particles (helium), which remain in 

the Sun. 

 

(e) The time to lose 0.10% of its total mass is 

 

t
M

dM dt
 



 
 

0 0010 0 0010 2 0 10

4 3 10 315 10
15 10

30

9 7

10. . .

. .
. .

a fc h
c hc h

kg

kg s s y
y  

 

51. Since plutonium has Z = 94 and uranium has Z = 92, we see that (to conserve charge) 

two electrons must be emitted so that the nucleus can gain a +2e charge. In the beta decay 

processes described in Chapter 42, electrons and neutrinos are emitted. The reaction 

series is as follows: 
238 239 239

239

U n Np U

Np Pu239

    

  

e v

e v
 

 

52. Conservation of energy gives Q = K + Kn, and conservation of linear momentum 

(due to the assumption of negligible initial velocities) gives |p| = |pn|. We can write the 

classical formula for kinetic energy in terms of momentum: 

 

K mv
p

m
 

1

2 2

2
2

 

which implies that Kn = (m/mn)K.  

 

(a) Consequently, conservation of energy and momentum allows us to solve for kinetic 

energy of the alpha particle, which results from the fusion:  
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n

17.59MeV
3.541MeV

1 ( / ) 1 (4.0015u/1.008665u)

Q
K

m m




  
 

 

 

where we have found the mass of the alpha particle by subtracting two electron masses 

from the 
4
He mass (quoted several times in this Chapter 42).  

 

(b) Then, Kn = Q – K yields 14.05 MeV for the neutron kinetic energy.  

 

53. At T = 300 K, the average kinetic energy of the neutrons is (using Eq. 20-24) 

 

K KTavg eV / K)(300 K) 0.04 eV.   3

2

3

2
8 62 10 5( .  

 

54. First, we figure out the mass of U-235 in the sample (assuming “3.0%” refers to the 

proportion by weight as opposed to proportion by number of atoms): 

 

238 235
U 235 sam

238 235 16

(97%) (3.0%)
(3.0%)

(97%) (3.0%) 2

0.97(238) 0.030(235)
(0.030)(1000 g)

0.97(238) 0.030(235) 2(16.0)

26.4 g.

m m
M M

m m m


 
  

  

 
  

  



 

 

Next, the number of 
235

U nuclei is 

 

N235

2226 4

235
6 77 10


 

( . /
. .

g)(6.02 10 mol)

g / mol

23

 

 

If all the U-235 nuclei fission, the energy release (using the result of Eq. 43-6) is 

 

N Q235

22 25 12677 10 200 135 10 217 10fission MeV) MeV J.     ( . ) ( . .  

 

Keeping in mind that a watt is a joule per second, the time that this much energy can keep 

a 100-W lamp burning is found to be 

 

t 


  
217 10

100
217 10 690

12
10.

.
J

W
s y.  

 

If we had instead used the Q = 208 MeV value from Sample Problem — “Q value in a 

fission of uranium-235,” then our result would have been 715 y, which perhaps suggests 

that our result is meaningful to just one significant figure (“roughly 700 years”). 

 



CHAPTER 43 1834 

55. (a) From H = 0.35 = npmp, we get the proton number density np: 

 

  5 3
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(b) From Chapter 19 (see Eq. 19-9), we have  
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for an ideal gas under “standard conditions.” Thus,  
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56. (a) Rather than use P(v) as it is written in Eq. 19-27, we use the more convenient nK 

expression given in Problem 43-34. The n(K) expression can be derived from Eq. 19-27, 

but we do not show that derivation here. To find the most probable energy, we take the 

derivative of n(K) and set the result equal to zero: 
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which gives K kTp 
1
2

.  Specifically, for T = 1.5  10
7
 K we find  

 

K kTp      1

2

1

2
8 62 10 65 105 7 2( . .eV / K)(1.5 10 K) eV  

 

or 0.65 keV, in good agreement with Fig. 43-10. 

 

(b) Equation 19-35 gives the most probable speed in terms of the molar mass M, and 

indicates its derivation. Since the mass m of the particle is related to M by the Avogadro 

constant, then using Eq. 19-7, 

 

v
RT

M

RT

mN

kT

m
p

A
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2 2 2

. 

 

With T = 1.5  10
7
 K and m = 1.67 10

– 27
 kg, this yields vp = 5.0 10

5
 m/s. 

 

(c) The corresponding kinetic energy is  
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which is twice as large as that found in part (a). Thus, at T = 1.5  10
7
 K we have Kv,p = 

1.3 keV, which is indicated in Fig. 43-10 by a single vertical line. 

 

57. (a) The mass of each DT pellet is 

 

 3 6 3 3 124 4
(20 10 m) (200 kg/m ) 6.7 10 kg

3 3
m r          

 

Since there are equal number of 2 H  and 3 H  present, we have 

 

2 3

2 3

12 23
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 
 

 

Each fusion reaction releases 17.59 MeV of energy, with 10% efficiency, the total energy 

released by the pellet is 

 
14 15(0.10)(8.07 10 )(17.59 MeV) 1.42 10 MeV 227 JE       

 

or about 230 J. 

 

(b) Since 1.0 kg of TNT gives off 4.6 MJ, the TNT equivalent of the pellet is 

 

5

6

227 J
4.93 10  kg

4.6 10  J
m   


. 

(c) The power generated is  
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P E
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58. (a) Equation 19-35 gives the most probable speed in terms of the molar mass M: 

2 / .pv RT M  With T = 1  10
8
 K and M = 2.0 10

– 3
 kg/mol, this yields  

 

5

3

2 2(8.314 J/mol K)(108 K)
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p

RT
v

M 


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
. 

 

(b) The distance moved is 
5 12 7(9.1 10 m/s)(1 10 s) 9.1 10 mpr v t         . 


